High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers
Abstract
:1. Introduction
2. Description of the Method
2.1. Sequencing by Synthesis
2.2. Ligand Interaction Profiling
2.3. Image Processing, as well as Kinetic and Thermodynamic Measurements
3. General Requirements and Considerations
3.1. Sequencing and Imaging Platforms
3.2. Libraries
- 1
- A fully random sequence. This type of library is especially suitable for the de novo discovery of aptamers. It must be kept in mind that even the NovaSeq can only display about one hundred thousandth of a random DNA library—typically containing ~1 × 1015 different molecules (compare Table 1) [16]. However, each sequence should be represented, on average, by at least ten clusters on the flow cell, in order to reduce measurement noise and possible bias, by performing several distributed measurements for each sequence (compare Section 2.3) [51,58]. Hence, it can be necessary to reduce fully random libraries for HiTS–FLIP to a diversity of ~106 different sequences, e.g., by performing a few rounds of conventional SELEX [28,29]. This allows all sequences to be efficiently displayed simultaneously on the flow cell.
- 2
- A natural (e.g., genomic/transcriptomic) library. This method takes advantage of the large structural and functional diversity of nucleic acid sequences inherent to biological systems. Analogous to the workflow of genome sequencing, the genome of an organism is fragmented, and these fragments (<300 bp) are used as a library. This type of library can be used to study the binding of RNA binding proteins (RBPs) to the transcriptome, as applied in the ‘transcribed genome array’ (TGA)—a RNA HiTS–FLIP variant developed by She et al. [52].
- 3
- A partially random (doped/mutant) library based on a known consensus sequence motif or a known aptamer. For this purpose, single, double, and even higher-order mutations can be introduced into the known sequence. They can either be generated randomly, e.g., using the error-prone polymerase chain reaction (PCR) [30] and by degenerated oligo synthesis [31], or in a programmed manner by array-based synthesis [59,60,61]. The latter enables almost equimolar synthesis of up to 106 designed molecules. This kind of library is especially feasible for analysing and optimising already selected aptamers in mutational assays (see Section 5).
3.3. Targets
4. Aptamer Selection Methods
4.1. DNA Aptamers
4.2. Base-Modified DNA Aptamers
4.3. RNA Aptamers
4.4. Peptide Aptamers
5. Mutational Assays
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Wessels, H.; Paschke-Kratzin, A.; Fischer, M. Aptamers: Universal capture units for lateral flow applications. Anal. Biochem. 2017, 522, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shen, H.; Hu, J.; Fu, Q.; Yao, C.; Yu, S.; Xiao, W.; Tang, Y. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Anal. Bioanal. Chem. 2017, 409, 5209–5216. [Google Scholar] [CrossRef]
- McKeague, M.; DeRosa, M.C. Challenges and opportunities for small molecule aptamer development. J. Nucleic Acids 2012, 2012, 748913. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Acquah, C.; Tan, K.X.; Hii, H.K.; Rajendran, S.R.; Udenigwe, C.C.; Danquah, M.K. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Anal. Bioanal. Chem. 2018, 410, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.L.; Yancey, K.; Battistella, L.; Williams, R.M.; Hickey, K.M.; Bostick, C.D.; Gannett, P.M.; Sooter, L.J. Selection of single-stranded DNA molecular recognition elements against Exotoxin A using a novel decoy-SELEX method and sensitive detection of Exotoxin A in human serum. BioMed Res. Int. 2015, 2015, 417641. [Google Scholar] [CrossRef] [Green Version]
- Torabi, R.; Ranjbar, R.; Halaji, M.; Heiat, M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systematic review. Mol. Cell. Probes 2020, 53, 101636. [Google Scholar] [CrossRef]
- Kumar, N.; Sood, D.; Singh, S.; Kumar, S.; Chandra, R. High bio-recognizing aptamer designing and optimization against human herpes virus-5. Eur. J. Pharm. Sci. 2020, 156, 105572. [Google Scholar] [CrossRef]
- Hünniger, T.; Fischer, C.; Wessels, H.; Hoffmann, A.; Paschke-Kratzin, A.; Haase, I.; Fischer, M. Food sensing: Selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice. J. Agric. Food Chem. 2015, 63, 2189–2197. [Google Scholar] [CrossRef]
- Seo, J.-W.; Kim, J.Y.; Oh, J.-J.; Kim, Y.J.; Kim, G.-H. Selection and characterization of toxic Aspergillus spore-specific DNA aptamer using spore-SELEX. RSC Adv. 2021, 5, 2608–2615. [Google Scholar] [CrossRef]
- Soundy, J.; Day, D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS ONE 2017, 12, e0185385. [Google Scholar]
- Hirose, K.; Tsuchida, M.; Asakura, H.; Wakui, K.; Yoshimoto, K.; Iida, K.; Sato, M.; Shibukawa, M.; Suganuma, M.; Saito, S. A single-round selection of selective DNA aptamers for mammalian cells by polymer-enhanced capillary transient isotachophoresis. Analyst 2017, 142, 4030–4038. [Google Scholar] [CrossRef] [PubMed]
- Klußmann, S. The Aptamer Handbook: Functional Oligonucleotides and Their Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- McKeague, M.; Giamberardino, A.; DeRosa, M.C. Advances in aptamer-based biosensors for food safety. In Environmental Biosensors; IntechOpen: London, UK, 2011. [Google Scholar]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.; Bell, S.D.; Ellington, A.D. Design, synthesis, and amplification of DNA pools for construction of combinatorial pools and libraries. Curr. Protoc. Mol. Biol. 2000, 52. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef]
- Komarova, N.; Kuznetsov, A. Inside the black box: What makes SELEX better? Molecules 2019, 24, 3598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestourie, C.; Cerchia, L.; Gombert, K.; Aissouni, Y.; Boulay, J.; Franciscis, V.D.; Libri, D.; Tavitian, B.; Ducongé, F. Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 2006, 16, 323–335. [Google Scholar] [CrossRef]
- Famulok, M.; Mayer, G. Aptamers and SELEX in chemistry & biology. Chem. Biol. 2014, 21, 1055–1058. [Google Scholar]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.; Xiao, Y.; Nie, J.; Stewart, R.; Csordas, A.T.; Oh, S.S.; Thomson, J.A.; Soh, H.T. Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 15373–15378. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, B.; Gesell, T.; Chen, D.; Lorenz, C.; Schroeder, R. Monitoring genomic sequences during SELEX using high-throughput sequencing: Neutral SELEX. PLoS ONE 2010, 5, e9169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolma, A.; Kivioja, T.; Toivonen, J.; Cheng, L.; Wei, G.; Enge, M.; Taipale, M.; Vaquerizas, J.M.; Yan, J.; Sillanpää, M.J. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 2010, 20, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roulet, E.; Busso, S.; Camargo, A.A.; Simpson, A.J.; Mermod, N.; Bucher, P. High-throughput SELEX–SAGE method for quantitative modeling of transcription-factor binding sites. Nat. Biotechnol. 2002, 20, 831–835. [Google Scholar] [CrossRef]
- Asai, R.; Nishimura, S.I.; Aita, T.; Takahashi, K. In vitro selection of DNA aptamers on chips using a method for generating point mutations. Anal. Lett. 2004, 37, 645–656. [Google Scholar] [CrossRef]
- Nutiu, R.; Friedman, R.C.; Luo, S.; Khrebtukova, I.; Silva, D.; Li, R.; Zhang, L.; Schroth, G.P.; Burge, C.B. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 2011, 29, 659–664. [Google Scholar] [CrossRef]
- Wu, D.; Feagin, T.; Mage, P.; Rangel, A.; Wan, L.; Li, A.; Coller, J.; Eisenstein, M.; Pitteri, S.; Soh, H.T. Automated platform for high-throughput screening of base-modified aptamers for affinity and specificity. bioRxiv 2020. [Google Scholar] [CrossRef]
- Mamet, N.; Rusinek, I.; Harari, G.; Shapira, Z.; Amir, Y.; Lavi, E.; Zamir, A.; Borovsky, N.; Joseph, N.; Motin, M. Ab-initio discovery of tumoricidal oligonucleotides in a DNA sequencing machine. bioRxiv 2019, 630830. [Google Scholar]
- Tome, J.M.; Ozer, A.; Pagano, J.M.; Gheba, D.; Schroth, G.P.; Lis, J.T. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing–RNA affinity profiling. Nat. Methods 2014, 11, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Buenrostro, J.D.; Araya, C.L.; Chircus, L.M.; Layton, C.J.; Chang, H.Y.; Snyder, M.P.; Greenleaf, W.J. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 2014, 32, 562–568. [Google Scholar] [CrossRef]
- Layton, C.J.; McMahon, P.L.; Greenleaf, W.J. Large-scale, quantitative protein assays on a high-throughput DNA sequencing chip. Mol. Cell 2019, 73, 1075–1082.e4. [Google Scholar] [CrossRef] [Green Version]
- Svensen, N.; Peersen, O.B.; Jaffrey, S.R. Peptide synthesis on a next-generation DNA sequencing platform. Chembiochem A Eur. J. Chem. Biol. 2016, 17, 1628–1635. [Google Scholar] [CrossRef]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef]
- Illumina Inc. MiSeq-System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2021; M-GL-00006 v1.0. [Google Scholar]
- Holleman, A.F.; Wieberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 1910, 40, 4–7. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Mills, I.; Cvitaš, T.; Homann, K.; Kuchitsu, K.; Kallay, N. Quantities, Units and Symbols in Physical Chemistry, 2nd ed.; International Union of Pure and Applied Chemistry published by Blackwell Science Ltd.: Oxford, UK, 1993. [Google Scholar]
- Wolowski, V.R. High-Quality, High-Throughput Measurement of Protein-DNA Binding Using HiTS-FLIP; Ludwig-Maximilians-Universität München: Munich, Germany, 2016. [Google Scholar]
- Boyle, E.A.; Andreasson, J.O.; Chircus, L.M.; Sternberg, S.H.; Wu, M.J.; Guegler, C.K.; Doudna, J.A.; Greenleaf, W.J. High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding. Proc. Natl. Acad. Sci. USA 2017, 114, 5461–5466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.; Hawkins, J.A.; Jones, S.K., Jr.; Xiao, Y.; Rybarski, J.R.; Dillard, K.E.; Hussmann, J.; Saifuddin, F.A.; Savran, C.A.; Ellington, A.D. Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips. Cell 2017, 170, 35–47.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illumina Inc. Technical Support Bulletin. PhiX Loading Concentrations for Validation Runs on Illumina Sequencing Platforms; Illumina Inc.: San Diego, CA, USA, 2016. [Google Scholar]
- Illumina Inc. Genome AnalyzerIIx System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2009; 770-2009-017. [Google Scholar]
- Illumina Inc. iSeq 100 Sequencing System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2018; 770-2017-020-B. [Google Scholar]
- Illumina Inc. MiniSeq Sequencing System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2019; 770-2015-039-C. [Google Scholar]
- Illumina Inc. NextSeq 550 Sequencing System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2019; 770-2013-053-F. [Google Scholar]
- Illumina Inc. NextSeq 1000 and NextSeq 2000 Sequencing Systems Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2021; M-NA-00008 v1.0. [Google Scholar]
- Illumina Inc. NovaSeq 6000 Sequencing System Specification Sheet; Illumina Inc.: San Diego, CA, USA, 2020; 770-2016-025-N. [Google Scholar]
- Markham, J.; Emanuel, K.; Sjölén, B. ReSeq: Repurposing HiSeq DNA Sequencers 2019. Available online: https://reseq.hackteria.org/ (accessed on 5 July 2021).
- Ozer, A.; Tome, J.M.; Friedman, R.C.; Gheba, D.; Schroth, G.P.; Lis, J.T. Quantitative assessment of RNA-protein interactions with high-throughput sequencing–RNA affinity profiling. Nat. Protoc. 2015, 10, 1212–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, R.; Chakravarty, A.K.; Layton, C.J.; Chircus, L.M.; Andreasson, J.O.; Damaraju, N.; McMahon, P.L.; Buenrostro, J.D.; Jarosz, D.F.; Greenleaf, W.J. Comprehensive and quantitative mapping of RNA–protein interactions across a transcribed eukaryotic genome. Proc. Natl. Acad. Sci. USA 2017, 114, 3619–3624. [Google Scholar] [CrossRef] [Green Version]
- Jarmoskaite, I.; Denny, S.K.; Vaidyanathan, P.P.; Becker, W.R.; Andreasson, J.O.; Layton, C.J.; Kappel, K.; Shivashankar, V.; Sreenivasan, R.; Das, R. A quantitative and predictive model for RNA binding by human Pumilio proteins. Mol. Cell 2019, 74, 966–981.e18. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.K.; Bisaria, N.; Yesselman, J.D.; Das, R.; Herschlag, D.; Greenleaf, W.J. High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 2018, 174, 377–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yesselman, J.D.; Denny, S.K.; Bisaria, N.; Herschlag, D.; Greenleaf, W.J.; Das, R. RNA tertiary structure energetics predicted by an ensemble model of the RNA double helix. bioRxiv 2018, 341107. [Google Scholar] [CrossRef]
- Andreasson, J.O.; Gotrik, M.R.; Wu, M.J.; Wayment-Steele, H.K.; Kladwang, W.; Portela, F.; Wellington-Oguri, R.; Participants, E.; Das, R.; Greenleaf, W.J. Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular sensors. bioRxiv 2019. [Google Scholar] [CrossRef]
- Schermelleh, L.; Heintzmann, R.; Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 2010, 190, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denny, S.K.; Greenleaf, W.J. Linking RNA sequence, structure, and function on massively parallel high-throughput sequencers. Cold Spring Harb. Perspect. Biol. 2019, 11, a032300. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Smith, M.W.; Schwarzkopf, K.R.; Roth, K.M.; Peyvan, K.; Munro, S.B.; Lodes, M.J.; Stöver, A.G.; Bernards, K.; Dill, K. CombiMatrix oligonucleotide arrays: Genotyping and gene expression assays employing electrochemical detection. Biosens. Bioelectron. 2007, 22, 1853–1860. [Google Scholar] [CrossRef]
- Blanchard, A.; Kaiser, R.; Hood, L. High-density oligonucleotide arrays. Biosens. Bioelectron. 1996, 11, 687–690. [Google Scholar] [CrossRef]
- Tang, N.; Ma, S.; Tian, J. New tools for cost-effective DNA synthesis. In Synthetic Biology; Zhao, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3–21. [Google Scholar]
- Mitra, A.; Skrzypczak, M.; Ginalski, K.; Rowicka, M. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using Illumina platform. PLoS ONE 2015, 10, e0120520. [Google Scholar] [CrossRef]
- Ouellet, E.; Lagally, E.T.; Cheung, K.C.; Haynes, C.A. A simple method for eliminating fixed-region interference of aptamer binding during SELEX. Biotechnol. Bioeng. 2014, 111, 2265–2279. [Google Scholar] [CrossRef]
- Barnes, C.; Romanov, N.N. Dye Compounds and the Use of Their Labelled Conjugates. U.S. Patents US 8,178,360 B2, 5 May 2012. [Google Scholar]
- Thermo Fisher Scientific Inc. Technical Notes and Product Highlights: The Alexa Fluor Dye Series—Note 1.1. Available online: https://www.thermofisher.com/de/de/home/references/molecular-probes-the-handbook/technical-notes-and-product-highlights/the-alexa-fluor-dye-series.html (accessed on 5 July 2021).
- Thermo Fisher Scientific Inc. DyLight Fluors Technology and Product Guide; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2021. [Google Scholar]
- ATTO-TEC GmbH. Product Information: ATTO 647; ATTO-TEC GmbH: Siegen, Germany, 2021. [Google Scholar]
- Cormack, B.P.; Valdivia, R.H.; Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173, 33–38. [Google Scholar] [CrossRef]
- Shaner, N.C.; Campbell, R.E.; Steinbach, P.A.; Giepmans, B.N.; Palmer, A.E.; Tsien, R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 2004, 22, 1567–1572. [Google Scholar] [CrossRef]
- New England Biolabs GmbH. SNAP-Surface 549 Product Information; New England Biolabs GmbH: Ipswich, MA, USA, 2021. [Google Scholar]
- Song, W.; Strack, R.L.; Svensen, N.; Jaffrey, S.R. Plug-and-play fluorophores extend the spectral properties of Spinach. J. Am. Chem. Soc. 2014, 136, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, R.B.; Ernst, L.A.; Mujumdar, S.R.; Lewis, C.J.; Waggoner, A.S. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 1993, 4, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Shaham-Niv, S.; Arnon, Z.A.; Sade, D.; Lichtenstein, A.; Shirshin, E.A.; Kolusheva, S.; Gazit, E. Intrinsic Fluorescence of Metabolite Amyloids Allows Label-Free Monitoring of Their Formation and Dynamics in Live Cells. Angew. Chem. Int. Ed. 2018, 57, 12444–12447. [Google Scholar] [CrossRef] [PubMed]
- Hünniger, T.; Wessels, H.; Fischer, C.; Paschke-Kratzin, A.; Fischer, M. Just in time-selection: A rapid semiautomated SELEX of DNA aptamers using magnetic separation and BEAMing. Anal. Chem. 2014, 86, 10940–10947. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.; Carter, J.; Cunningham, V.; Dalby, A.; Eaton, B. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 2010, 5, e15004. [Google Scholar] [CrossRef] [Green Version]
- Minagawa, H.; Kataoka, Y.; Fujita, H.; Kuwahara, M.; Horii, K.; Shiratori, I.; Waga, I. Modified DNA aptamers for C-reactive protein and lactate dehydrogenase-5 with sub-nanomolar affinities. Int. J. Mol. Sci. 2020, 21, 2683. [Google Scholar] [CrossRef]
- Matsunaga, K.-i.; Kimoto, M.; Hirao, I. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J. Am. Chem. Soc. 2017, 139, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res. 2009, 37, e14. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, H.; Kasahara, Y.; Kuwahara, M.; Obika, S. DNA polymerase variants with high processivity and accuracy for encoding and decoding locked nucleic acid sequences. J. Am. Chem. Soc. 2020, 142, 21530–21537. [Google Scholar] [CrossRef]
- Tolle, F.; Brändle, G.M.; Matzner, D.; Mayer, G. Ein universeller Zugang zu Nucleobasen-modifizierten Aptameren. Angew. Chem. 2015, 127, 11121–11125. [Google Scholar] [CrossRef]
- Burley, G.A.; Gierlich, J.; Mofid, M.R.; Nir, H.; Tal, S.; Eichen, Y.; Carell, T. Directed DNA metallization. J. Am. Chem. Soc. 2006, 128, 1398–1399. [Google Scholar] [CrossRef]
- Huisgen, R. 1, 3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl. 1963, 2, 565–598. [Google Scholar] [CrossRef]
- Kaur, H.; Yung, L.-Y.L. Probing high affinity sequences of DNA aptamer against VEGF165. PLoS ONE 2012, 7, e31196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, W.; Mochizuki, E.; Takase, M.; Hasegawa, H.; Morita, Y.; Yamazaki, H.; Sode, K.; Ikebukuro, K. Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens. Bioelectron. 2009, 24, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Solomatin, S.V.; Greenfeld, M.; Chu, S.; Herschlag, D. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 2010, 463, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Kertesz, M.; Spitale, R.C.; Segal, E.; Chang, H.Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 2011, 12, 641–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinoco Jr, I.; Bustamante, C. How RNA folds. J. Mol. Biol. 1999, 293, 271–281. [Google Scholar] [CrossRef]
- Greenleaf, W.J.; Frieda, K.L.; Foster, D.A.; Woodside, M.T.; Block, S.M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 2008, 319, 630–633. [Google Scholar] [CrossRef] [Green Version]
- Mulugu, S.; Potnis, A.; Taylor, J.; Alexander, K.; Bastia, D. Mechanism of termination of DNA replication of Escherichia coli involves helicase–contrahelicase interaction. Proc. Natl. Acad. Sci. USA 2001, 98, 9569–9574. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Wells, V.; Plotch, S.J.; DeStefano, J.J. Primer-dependent synthesis by poliovirus RNA-dependent RNA polymerase (3Dpol). Nucleic Acids Res. 2001, 29, 2715–2724. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, T.A.; Flanegan, J.B. Identification of poliovirus polypeptide P63 as a soluble RNA-dependent RNA polymerase. J. Virol. 1980, 35, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.J.; Ghosh, S.K.B.; Cameron, C.E. Poliovirus RNA-dependent RNA polymerase (3Dpol): Divalent cation modulation of primer, template, and nucleotide selection. J. Biol. Chem. 1999, 274, 37060–37069. [Google Scholar] [CrossRef] [Green Version]
- Lubinski, J.M.; Ransone, L.J.; Dasgupta, A. Primer-dependent synthesis of covalently linked dimeric RNA molecules by poliovirus replicase. J. Virol. 1987, 61, 2997–3003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.-R.; Wu, R. [5] Terminal transferase: Use in the tailing of DNA and for in vitro mutagenesis. Methods Enzymol. 1983, 100, 96–116. [Google Scholar] [PubMed]
- Huang, Z.; Fasco, M.J.; Kaminsky, L.S. Optimization of Dnase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. Biotechniques 1996, 20, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.; Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 1974, 71, 1342–1346. [Google Scholar] [CrossRef] [Green Version]
- Osterman, I.A.; Evfratov, S.A.; Sergiev, P.V.; Dontsova, O.A. Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res. 2013, 41, 474–486. [Google Scholar] [CrossRef] [Green Version]
- Ude, S.; Lassak, J.; Starosta, A.L.; Kraxenberger, T.; Wilson, D.N.; Jung, K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 2013, 339, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Peil, L.; Starosta, A.L.; Lassak, J.; Atkinson, G.C.; Virumäe, K.; Spitzer, M.; Tenson, T.; Jung, K.; Remme, J.; Wilson, D.N. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. USA 2013, 110, 15265–15270. [Google Scholar] [CrossRef] [Green Version]
- Starosta, A.L.; Lassak, J.; Peil, L.; Atkinson, G.C.; Virumäe, K.; Tenson, T.; Remme, J.; Jung, K.; Wilson, D.N. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res. 2014, 42, 10711–10719. [Google Scholar] [CrossRef] [Green Version]
- Woolstenhulme, C.J.; Parajuli, S.; Healey, D.W.; Valverde, D.P.; Petersen, E.N.; Starosta, A.L.; Guydosh, N.R.; Johnson, W.E.; Wilson, D.N.; Buskirk, A.R. Nascent peptides that block protein synthesis in bacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 878–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardesty, B.; Kramer, G. Folding of a nascent peptide on the ribosome. Prog. Nucleic Acid Res. Mol. Biol. 2000, 66, 41–66. [Google Scholar]
- Schaffitzel, C.; Hanes, J.; Jermutus, L.; Plückthun, A. ribosome display: An in vitro method for selection and evolution of antibodies from libraries. J. Immunol. Methods 1999, 231, 119–135. [Google Scholar] [CrossRef]
- Darken, M.A. Puromycin inhibition of protein synthesis. Pharmacol. Rev. 1964, 16, 223–243. [Google Scholar] [PubMed]
- Roberts, R.W.; Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 1997, 94, 12297–12302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemoto, N.; Miyamoto-Sato, E.; Husimi, Y.; Yanagawa, H. In vitro virus: Bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett. 1997, 414, 405–408. [Google Scholar]
- Eaton, B.E.; Gold, L.; Zichi, D.A. Let’s get specific: The relationship between specificity and affinity. Chem. Biol. 1995, 2, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Lupold, S.E.; Hicke, B.J.; Lin, Y.; Coffey, D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002, 62, 4029–4033. [Google Scholar]
- Ruigrok, V.J.; Levisson, M.; Hekelaar, J.; Smidt, H.; Dijkstra, B.W.; Van der Oost, J. Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches. Int. J. Mol. Sci. 2012, 13, 10537–10552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, J.M.; Kwak, H.; Waters, C.T.; Sprouse, R.O.; White, B.S.; Ozer, A.; Szeto, K.; Shalloway, D.; Craighead, H.G.; Lis, J.T. Defining NELF-E RNA binding in HIV-1 and promoter-proximal pause regions. PLoS Genet. 2014, 10, e1004090. [Google Scholar] [CrossRef] [Green Version]
- Shui, B.; Ozer, A.; Zipfel, W.; Sahu, N.; Singh, A.; Lis, J.T.; Shi, H.; Kotlikoff, M.I. RNA aptamers that functionally interact with green fluorescent protein and its derivatives. Nucleic Acids Res. 2012, 40, e39. [Google Scholar] [CrossRef] [Green Version]
- Schütze, T.; Wilhelm, B.; Greiner, N.; Braun, H.; Peter, F.; Mörl, M.; Erdmann, V.A.; Lehrach, H.; Konthur, Z.; Menger, M. Probing the SELEX process with next-generation sequencing. PLoS ONE 2011, 6, e29604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmer, M.; Ijaz, U.Z.; D’Amore, R.; Hall, N.; Sloan, W.T.; Quince, C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 2015, 43, e37. [Google Scholar] [CrossRef] [PubMed]
- Jares-Erijman, E.A.; Jovin, T.M. FRET imaging. Nat. Biotechnol. 2003, 21, 1387–1395. [Google Scholar] [CrossRef]
Sequencing Platform | Maximum Reads Per Run | Run Time | Reference |
---|---|---|---|
GA IIx | 168 million | 2.5–9.5 day | [44] |
iSeq 100 | 4 million | 9.5–19 h | [45] |
MiniSeq | 25 million | 4–24 h | [46] |
MiSeq | 25 million | 4–55 h | [35] |
NextSeq 550 | 400 million | 12–30 h | [47] |
NextSeq 1000/2000 | 1.1 billion | 11–48 h | [48] |
NovaSeq 6000 | 20 billion | 13–44 h | [49] |
Publication Year | HiTS Platform | FLIP Platform | References |
---|---|---|---|
2011–2017 | GA IIx | GA IIx | [27,30,31,40,41,51] |
2016 | GA IIx | Epifluorescence microscope | [33] |
2017 | MiSeq | TIRF microscope | [42] |
2017–2019 | MiSeq | Repurposed GA IIx | [32,52,53,54,55,56] |
2019 | NextSeq 500 | Epifluorescence microscope | [29] |
2020 | MiSeq | MiSeq | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drees, A.; Fischer, M. High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers. Int. J. Mol. Sci. 2021, 22, 9202. https://doi.org/10.3390/ijms22179202
Drees A, Fischer M. High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers. International Journal of Molecular Sciences. 2021; 22(17):9202. https://doi.org/10.3390/ijms22179202
Chicago/Turabian StyleDrees, Alissa, and Markus Fischer. 2021. "High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers" International Journal of Molecular Sciences 22, no. 17: 9202. https://doi.org/10.3390/ijms22179202
APA StyleDrees, A., & Fischer, M. (2021). High-Throughput Selection and Characterisation of Aptamers on Optical Next-Generation Sequencers. International Journal of Molecular Sciences, 22(17), 9202. https://doi.org/10.3390/ijms22179202