The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review
Abstract
:1. Introduction
1.1. Articular Cartilage
1.2. Past and Current Articular Cartilage Treatments
1.3. Cell-Based Therapies
2. Advantages of Adipose Tissue-Derived MSCs for Articular Cartilage Repair
3. IPFP-Derived MSCs Used in Cartilage Repair
4. Clinical Applications of IPFP-Derived MSCs for Articular Cartilage Repair
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jain, K.B.; Ravikumar, P. Recent advances in treatments of cartilage regeneration for knee osteoarthritis. J. Drug Deliv. Sci. Technol. 2020, 60, 102014. [Google Scholar] [CrossRef]
- Di Martino, A.; Kon, E.; Perdisa, F.; Sessa, A.; Filardo, G.; Neri, M.P.; Bragonzoni, L.; Marcacci, M. Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: Results at 24 months of follow-up. Injury 2015, 46, S33–S38. [Google Scholar] [CrossRef]
- Macchi, V.; Stocco, E.; Stecco, C.; Belluzzi, E.; Favero, M.; Porzionato, A.; De Caro, R. The infrapatellar fat pad and the synovial membrane: An anatomo-functional unit. J. Anat. 2018, 233, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Ioan-Facsinay, A.; Kloppenburg, M. Inflammation and fibrosis in adipose tissue of osteoarthritic joints. Nat. Rev. Rheumatol. 2017, 13, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Sokolove, J.; Lepus, C.M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 2013, 5, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Widuchowski, W.; Widuchowski, J.; Trzaska, T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef]
- Nam, Y.; Rim, Y.A.; Lee, J.; Ju, J.H. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int. 2018, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Falah, M.; Nierenberg, G.; Soudry, M.; Hayden, M.; Volpin, G. Treatment of articular cartilage lesions of the knee. Int. Orthop. 2010, 34, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Petelska, A.; Beldowski, P.; Augé, W.K.; Casey, T.; Walczak, D.; Lemke, K.; Gadomski, A. Hyaluronic acid and phospholipid interactions useful for repaired articular cartilage surfaces—A mini review toward tribological surgical adjuvants. Colloid Polym. Sci. 2017, 295, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.L. Arthroscopic abrasion arthroplasty: A review. Clin. Orthop. Relat. Res. 2001, 391, S306–S317. [Google Scholar] [CrossRef]
- Laupattarakasem, W.; Laopaiboon, M.; Laupattarakasem, P.; Sumananont, C. Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Beris, A.E.; Lykissas, M.G.; Papageorgiou, C.D.; Georgoulis, A.D. Advances in articular cartilage repair. Injury 2005, 36, S14–S23. [Google Scholar] [CrossRef]
- Caffey, S.; McPherson, E.; Moore, B.; Hedman, T.; Vangsness, C.T. Effects of radiofrequency energy on human articular cartilage: An analysis of 5 systems. Am. J. Sports Med. 2005, 33, 1035–1039. [Google Scholar] [CrossRef]
- Kon, E.; Verdonk, P.; Condello, V.; Delcogliano, M.; Dhollander, A.; Filardo, G.; Pignotti, E.; Marcacci, M. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: Systematic clinical data review and study quality analysis. Am. J. Sports Med. 2009, 37 (Suppl. 1), 156–166. [Google Scholar] [CrossRef]
- Steadman, J.R.; Briggs, K.K.; Rodrigo, J.J.; Kocher, M.S.; Gill, T.J.; Rodkey, W.G. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthrosc. J. Arthrosc. Relat. Surg. 2003, 19, 477–484. [Google Scholar] [CrossRef]
- Haene, R.; Qamirani, E.; Story, R.A.; Pinsker, E.; Daniels, T.R. Intermediate outcomes of fresh talar osteochondral allografts for treatment of large osteochondral lesions of the talus. JBJS 2012, 94, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, E.V.; Grebenik, E.A.; Gornostaeva, S.N.; Telpuhov, V.I.; Lychagin, A.V.; Timashev, P.S.; Chagin, A.S. Repair of damaged articular cartilage: Current approaches and future directions. Int. J. Mol. Sci. 2018, 19, 2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftekhari, A.; Maleki Dizaj, S.; Sharifi, S.; Salatin, S.; Rahbar Saadat, Y.; Zununi Vahed, S.; Samiei, M.; Ardalan, M.; Rameshrad, M.; Ahmadian, E.; et al. The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int. J. Mol. Sci. 2020, 21, 536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, S.; Guo, W.; Wang, M.; Hao, C.; Gao, S.; Zhang, X.; Li, X.; Chen, M.; Jing, X. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr. Cartil. 2018, 26, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.-T.; Feng, Y.; Jia, H.-H.; Zhao, M.; Yu, H. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World J. Stem Cells 2019, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.L.; Wang, J. Cell-based articular cartilage repair: The link between development and regeneration. Osteoarthr. Cartil. 2015, 23, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I. Arthritis Rheum. 2008, 58, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; L’Heureux, N.; Elisseeff, J.H. Stem Cell and Tissue Engineering; World Scientific: Singapore, 2011. [Google Scholar]
- Siciliano, C.; Bordin, A.; Ibrahim, M.; Chimenti, I.; Cassiano, F.; Gatto, I.; Mangino, G.; Coccia, A.; Miglietta, S.; Bastianelli, D. The adipose tissue of origin influences the biological potential of human adipose stromal cells isolated from mediastinal and subcutaneous fat depots. Stem Cell Res. 2016, 17, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.F.; Sandell, L.J.; Barrack, T.N.; Cai, L.; Tycksen, E.D.; Tang, S.Y.; Silva, M.J.; Barrack, R.L. A microarray study of articular cartilage in relation to obesity and severity of knee osteoarthritis. Cartilage 2020, 11, 458–472. [Google Scholar] [CrossRef]
- Thijssen, E.; Van Caam, A.; Van Der Kraan, P.M. Obesity and osteoarthritis, more than just wear and tear: Pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 2015, 54, 588–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askari, F.; Solouk, A.; Shafieian, M.; Seifalian, A.M. Stem cells for tissue engineered vascular bypass grafts. Artif. Cells Nanomed. Biotechnol. 2017, 45, 999–1010. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.R.; Pollock, K.; Hubel, A.; McKenna, D. Mesenchymal stem or stromal cells: A review of clinical applications and manufacturing practices. Transfusion 2014, 54, 1418–1437. [Google Scholar] [CrossRef]
- Zuttion, M.S.S.R.; Wenceslau, C.V.; Lemos, P.A.; Takimura, C.; Kerkis, I. Adipose tissue-derived stem cells and the importance of animal model standardization for pre-clinical trials. Rev. Bras. Cardiol. Invasiva 2013, 21, 281–287. [Google Scholar] [CrossRef]
- Technau, A.; Froelich, K.; Hagen, R.; Kleinsasser, N. Adipose tissue-derived stem cells show both immunogenic and immunosuppressive properties after chondrogenic differentiation. Cytotherapy 2011, 13, 310–317. [Google Scholar] [CrossRef]
- Hirano, A.; Sano, M.; Urushihata, N.; Tanemura, H.; Oki, K.; Suzaki, E. Assessment of safety and feasibility of human allogeneic adipose-derived mesenchymal stem cells in a pediatric patient. Pediatric Res. 2018, 84, 575–577. [Google Scholar] [CrossRef]
- Gimble, J.M.; Guilak, F. Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy 2003, 5, 362–369. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, J.; Cho, J.H.; Chung, H.M.; Chae, J.I. Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J. Cell. Biochem. 2016, 117, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Mildmay-White, A.; Khan, W. Cell surface markers on adipose-derived stem cells: A systematic review. Curr. Stem Cell Res. Ther. 2017, 12, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Kabiri, M.; Langroudi, L.; Soleimani, M.; Ai, J. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J. Biomed. Mater. Res. Part A 2016, 104, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Orth, P.; Rey-Rico, A.; Venkatesan, J.K.; Madry, H.; Cucchiarini, M. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning Adv. Appl. 2014, 7, 1. [Google Scholar]
- Han, I.; Kwon, B.-S.; Park, H.-K.; Kim, K.S. Differentiation potential of mesenchymal stem cells is related to their intrinsic mechanical properties. Int. Neurourol. J. 2017, 21 (Suppl. 1), S24. [Google Scholar] [CrossRef]
- Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int. J. Mol. Sci. 2020, 21, 1306. [Google Scholar] [CrossRef] [Green Version]
- Dragoo, J.L.; Johnson, C.; McConnell, J. Evaluation and treatment of disorders of the infrapatellar fat pad. Sports Med. 2012, 42, 51–67. [Google Scholar] [CrossRef]
- Pei, M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials 2017, 117, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Hindle, P.; Khan, N.; Biant, L.; Péault, B. The infrapatellar fat pad as a source of perivascular stem cells with increased chondrogenic potential for regenerative medicine. Stem Cells Transl. Med. 2017, 6, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Belluzzi, E.; El Hadi, H.; Granzotto, M.; Rossato, M.; Ramonda, R.; Macchi, V.; De Caro, R.; Vettor, R.; Favero, M. Systemic and local adipose tissue in knee osteoarthritis. J. Cell. Physiol. 2017, 232, 1971–1978. [Google Scholar] [CrossRef]
- Vahedi, P.; Madadi, M.; Ferdoosi Khosroshahi, A. Comparative study of the proliferation potency of adipose tissue derived stem cells from infrapatellar area, subcutaneous adipose tissue and tail fat pad in a sheep animal model. Daneshvar Med. Basic Clin. Res. J. 2020, 28, 1–11. [Google Scholar]
- Pang, H.-L.; Zhao, Q.-Q.; Ma, Y.; Song, Y.-L.; Min, J.; Lu, J.-R.; Li, H.; Zhao, D.-Q. Long noncoding RNA H19 participates in the regulation of adipose-derived stem cells cartilage differentiation. Stem Cells Int. 2019, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.-G.; Choi, Y.-J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 2012, 19, 902–907. [Google Scholar] [CrossRef]
- Kouidhi, M.; Villageois, P.; Mounier, C.M.; Ménigot, C.; Rival, Y.; Piwnica, D.; Aubert, J.; Chignon-Sicard, B.; Dani, C. Characterization of human knee and chin adipose-derived stromal cells. Stem Cells Int. 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Mennan, C.; McCarthy, H.S.; Roberts, S.; Richardson, J.B.; Wright, K.T. Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat. Stem Cells Int. 2016, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhou, Y.; Li, H.; Wang, R.; Yang, D.; Li, B.; Cao, X.; Fu, J. Transplanted dental pulp stem cells migrate to injured area and express neural markers in a rat model of cerebral ischemia. Cell. Physiol. Biochem. 2018, 45, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.T.; Vinardell, T.; Thorpe, S.D.; Haugh, M.G.; Jones, E.; McGonagle, D.; Kelly, D.J. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. J. Biomech. 2010, 43, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, M.; Buckley, C.T.; Kelly, D.J. A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels. Biotechnol. Appl. Biochem. 2011, 58, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Felimban, R.; Traianedes, K.; Moulton, S.E.; Wallace, G.G.; Chung, J.; Quigley, A.; Choong, P.F.; Myers, D.E. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold. PLoS ONE 2014, 9, e99410. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Traianedes, K.; Choong, P.F.; Myers, D.E. Chondrogenesis of human infrapatellar fat pad stem cells on acellular dermal matrix. Front. Surg. 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Vahedi, P.; Jarolmasjed, S.; Shafaei, H.; Roshangar, L.; Rad, J.S.; Ahmadian, E. In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 2019, 57, 49–56. [Google Scholar] [CrossRef]
- Hemstapat, R.; Sriwatananukulkit, O.; Tawonsawatruk, T.; Rattanapinyopituk, K.; Luangwattanawilai, T.; Srikaew, N. Regenerative Effect of Adipose-Derived Mesenchymal Stem Cells on Pain in a Rat Model of Osteochondral Defect. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Sriwatananukulkit, O.; Tawonsawatruk, T.; Rattanapinyopituk, K.; Luangwattanawilai, T.; Srikaew, N.; Hemstapat, R. Scaffold-Free Cartilage Construct from Infrapatellar Fat Pad Stem Cells for Cartilage Restoration. Tissue Eng. Part A 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Chen, I.-H.; Yang, Y.-T.; Chen, Y.-R.; Yang, K.-C. Infrapatellar Fat Pads–Derived Stem Cell Is a Favorable Cell Source for Articular Cartilage Tissue Engineering: An In Vitro and Ex Vivo Study Based on 3D Organized Self-Assembled Biomimetic Scaffold. Cartilage 2021, 1947603520988153. [Google Scholar] [CrossRef]
- Buckley, C.T.; Kelly, D.J. Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs. J. Mech. Behav. Biomed. Mater. 2012, 11, 102–111. [Google Scholar] [CrossRef]
- Lee, S.Y.; Nakagawa, T.; Reddi, A.H. Mesenchymal progenitor cells derived from synovium and infrapatellar fat pad as a source for superficial zone cartilage tissue engineering: Analysis of superficial zone protein/lubricin expression. Tissue Eng. Part A 2010, 16, 317–325. [Google Scholar] [CrossRef]
- Vinardell, T.; Buckley, C.; Thorpe, S.; Kelly, D. Composition–function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad. J. Tissue Eng. Regen. Med. 2011, 5, 673–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, T.; Muneta, T.; Sakaguchi, Y.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Higher chondrogenic potential of fibrous synovium–and adipose synovium–derived cells compared with subcutaneous fat–derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006, 54, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Lopa, S.; Colombini, A.; Stanco, D.; De Girolamo, L.; Sansone, V.; Moretti, M. Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. Eur. Cell Mater. 2014, 27, 298–311. [Google Scholar] [PubMed]
- Vahedi, P.; Soleimanirad, J.; Roshangar, L.; Shafaei, H.; Jarolmasjed, S.; Charoudeh, H.N. Advantages of sheep infrapatellar fat pad adipose tissue derived stem cells in tissue engineering. Adv. Pharm. Bull. 2016, 6, 105. [Google Scholar] [CrossRef]
- Stocco, E.; Barbon, S.; Piccione, M.; Belluzzi, E.; Petrelli, L.; Pozzuoli, A.; Ramonda, R.; Rossato, M.; Favero, M.; Ruggieri, P. Infrapatellar fat pad stem cells responsiveness to microenvironment in osteoarthritis: From morphology to function. Front. Cell Dev. Biol. 2019, 7, 323. [Google Scholar] [CrossRef] [PubMed]
- Tangchitphisut, P.; Srikaew, N.; Numhom, S.; Tangprasittipap, A.; Woratanarat, P.; Wongsak, S.; Kijkunasathian, C.; Hongeng, S.; Murray, I.; Tawonsawatruk, T. Infrapatellar fat pad: An alternative source of adipose-derived mesenchymal stem cells. Arthritis 2016, 2016, 4019873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Rudjito, R.; Fahy, N.; Bos, K.; Verhaar, J.; Clockaerts, S.; Bastiaansen-Jenniskens, Y.; Van Osch, G. The infrapatellar fat pad from diseased joints inhibits chondrogenesis of mesenchymal stem cells. Osteoarthr. Cartil. 2015, 23, A145–A146. [Google Scholar] [CrossRef] [Green Version]
- Im, G. Clinical use of stem cells in orthopaedics. Eur. Cell Mater. 2017, 33, 183–196. [Google Scholar] [CrossRef]
- Pak, J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: A case series. J. Med. Case Rep. 2011, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jo, C.H.; Lee, Y.G.; Shin, W.H.; Kim, H.; Chai, J.W.; Jeong, E.C.; Kim, J.E.; Shim, H.; Shin, J.S.; Shin, I.S. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells 2014, 32, 1254–1266. [Google Scholar] [CrossRef]
- Vahedi, P.; Roshangar, L.; Jarolmasjed, S.; Shafaei, H.; Samadi, N.; Soleimanirad, J. Effect of low-intensity pulsed ultrasound on regenerative potential of transplanted ASCs-PCL construct in articular cartilage defects in sheep. Indian J. Anim. Sci. 2016, 86, 1111–1114. [Google Scholar]
- Vahedi, P.; Jarolmasjed, S.; Soleimani, A. Transplantation of ASCs-Poly (ε-Caprolactone) Nanofiber Scaffold and Evaluate the Effect of Mechanical Loading of Walking on Articular Cartilage Repair in Sheep Model. Cell Tissue Biol. 2021, 15, 199–207. [Google Scholar] [CrossRef]
- Ra, J.C.; Shin, I.S.; Kim, S.H.; Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.; Jo, J.Y.; Yoon, E.J.; Choi, H.J. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011, 20, 1297–1308. [Google Scholar] [CrossRef]
- Dufrane, D.; Docquier, P.-L.; Delloye, C.; Poirel, H.A.; André, W.; Aouassar, N. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: Clinical proof of concept. Medicine 2015, 94, e2220. [Google Scholar] [CrossRef]
- Doner, G.P.; Noyes, F.R. Arthroscopic resection of fat pad lesions and infrapatellar contractures. Arthrosc. Tech. 2014, 3, e413–e416. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.A.; Crawford, A.; Mundy, J.; Correlo, V.; Sol, P.; Bhattacharya, M.; Hatton, P.V.; Reis, R.; Neves, N. Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomater. 2010, 6, 1149–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, H.V.; Mulhall, K.J.; O’Brien, F.J.; Kelly, D.J. Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds. J. Tissue Eng. Regen. Med. 2017, 11, 2979–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiStefano, T.; Chen, H.Y.; Panebianco, C.; Kaya, K.D.; Brooks, M.J.; Gieser, L.; Morgan, N.Y.; Pohida, T.; Swaroop, A. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep. 2018, 10, 300–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakar, A.; Lynch, A.P.; Ahearne, M. Self-Assembled Infrapatellar Fat-Pad Progenitor Cells on a Poly-ε-Caprolactone Film for Cartilage Regeneration. Artif. Organs 2016, 40, 376–384. [Google Scholar] [CrossRef]
- Somoza, R.A.; Welter, J.F.; Correa, D.; Caplan, A.I. Chondrogenic differentiation of mesenchymal stem cells: Challenges and unfulfilled expectations. Tissue Eng. Part B Rev. 2014, 20, 596–608. [Google Scholar] [CrossRef] [Green Version]
- Pizzute, T.; Lynch, K.; Pei, M. Impact of tissue-specific stem cells on lineage-specific differentiation: A focus on the musculoskeletal system. Stem Cell Rev. Rep. 2015, 11, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.-C.; Wu, K.-C.; Chou, H.-L.; Hung, W.-T.; Liu, H.-W.; Chu, T.-Y. Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan. Cell Transplant. 2015, 24, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- McConnell, J. Running injuries: The infrapatellar fat pad and plica injuries. Phys. Med. Rehabil. Clin. 2016, 27, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Eymard, F.; Chevalier, X. Inflammation of the infrapatellar fat pad. Jt. Bone Spine 2016, 83, 389–393. [Google Scholar] [CrossRef]
- Roelofs, A.J.; Zupan, J.; Riemen, A.H.; Kania, K.; Ansboro, S.; White, N.; Clark, S.M.; De Bari, C. Joint morphogenetic cells in the adult mammalian synovium. Nat. Commun. 2017, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mak, J.; Jablonski, C.; Leonard, C.; Dunn, J.F.; Raharjo, E.; Matyas, J.; Biernaskie, J.; Krawetz, R. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci. Rep. 2016, 6, 1–12. [Google Scholar]
- Ashton, B.A.; Allen, T.D.; Howlett, C.; Eaglesom, C.; Hattori, A.; Owen, M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res. 1980, 294–307. [Google Scholar] [CrossRef]
- Shelbourne, K.D.; Jari, S.; Gray, T. Outcome of untreated traumatic articular cartilage defects of the knee: A natural history study. JBJS 2003, 85 (Suppl. 2), 8–16. [Google Scholar] [CrossRef] [PubMed]
- Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular fibrocartilage-Why does hyaline cartilage fail to repair? Adv. Drug Deliv. Rev. 2019, 146, 289–305. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Olsen, B.R. Bone development. Bone 2015, 80, 14–18. [Google Scholar] [CrossRef] [Green Version]
Technique | Effect | Reference |
---|---|---|
Non-operative Methods | Pharmacotherapy drugs (steroidal and non-steroid anti-inflammatory drugs, glucosamine, chondroitin sulphates, etc.) to control symptoms | [9] |
Abrasion Arthroplasty | Creation of a rough surface in the damaged area in order to form fibrocartilage (subchondral bone is not directly accessed) | [10] |
Arthroscopic Debridement | Removal of the damaged part of the tissue, allowing the subchondral bone to initiate the healing process | [11] |
Autologous Chondrocyte Implantation (ACI) | Transplantation of isolated and expanded chondrocytes from healthy cartilage to the defected area | [12] |
Chondroplasty | Utilizes laser or radiofrequency-based probes to smooth the damaged edges of cartilage | [13] |
Matrix-assisted ACI (MACI) | Isolated and expanded autologous chondrocytes are combined with a scaffold which is implanted into the defect site | [14] |
Microfracture (subchondral drilling) | Subchondral bone is stimulated by drilling, allowing the bone marrow MSCs to migrate to the damaged area and form fibrocartilage | [15] |
Mosaicplasty | Osteochondral autografts or allografts are transferred from a donor site to the defect site | [16] |
Adipose Tissue-Derived MSCs | Bone Marrow-Derived MSCs | Umbilical Cord-Derived MSCs | |
---|---|---|---|
Ease of Harvest and Isolation | +++ | + | ++ |
Amounts of Tissue Obtained | +++ | ++ | + |
Capacity for Proliferation and Colony Formation | ++ | + | +++ |
Maintenance of Function Irrespective of Donor Age | ++ | + | +++ |
Suitability for Soft Tissue Regeneration (e.g., skin, cartilage, etc.) | +++ | ++ | + |
Suitability for Hard Tissue Re-generation (e.g., bone, tooth, etc.) | + | ++ | +++ |
Cell Source | Carrier | Outcome | Reference |
---|---|---|---|
Porcine IPFP-derived MSCs | Agarose hydrogels | Chondrogenic differentiation of cells in vitro were shown by histochemistry and biochemical analyses of glycosaminoglycans, as well as mechanical tests within 6 weeks | [49] |
Porcine IPFP-derived MSCs | Fibrin hydrogels incorporated with TGF-β1-loaded gelatin microspheres | In vitro chondrogenesis of cells promoted for 21 days, as demonstrated by histochemistry and biochemical analyses of glycosaminoglycans | [50] |
Human IPFP-derived MSCs | 3D-printed chitosan scaffolds | Cartilage-like tissue formed on the constructs after 4 weeks of culture, as demonstrated by immunohistochemistry analyses and collagen type II, aggrecan, and SOX9 gene expression | [51] |
Human IPFP-derived MSCs | Acellular dermal matrix (ADM) from rat dermis | Differentiation towards a hyaline-like cartilage phenotype on the constructs as proven by the expression of collagen type II, aggrecan, and SOX9 over 4 weeks in vitro | [52] |
Sheep IPFP-derived MSCs | Nanofibrous polycaprolactone (PCL) scaffolds | Constructs promoted hyaline-like cartilage formation in vivo, evaluated by SOX9 and aggrecan expression for over 6 months | [53] |
IPFP-derived MSCs | Scaffold-free 3D pellet culture | Constructs provided osteochondral regeneration in a rat osteochondral defect model within 12 weeks | [54] |
Human IPFP-derived MSCs | Scaffold-free 3D pellet culture | Constructs integrated well into the femoral condyle, presenting hyaline cartilage features as indicated by SOX9 and COL2A1 gene expression in vitro and in vivo | [55] |
Rabbit IPFP-derived MSCs | 3D gelatin-based biomimetic scaffold | Chondrogenic tissue formation as evidenced by collagen type II, aggrecan, and SOX9 expression in vitro for 3 weeks | [56] |
Tissue Donor | Assay | Results | References |
---|---|---|---|
Articular Cartilage in the Knee in a Porcine Model (n = 3) (4 months old) | Cells harvested and population doubling time | FGF-2 increased IPFP-derived MSC proliferation | [57] |
Pigsty (n = 2) (5 months old) | Cell calculation | ECM development promoted IPFP-derived MSC proliferation and maintained stem cell morphology | [58] |
Patients for Sectional Surgical Removal of a Meniscus (n = 15) (26–68 years old) | Cell production and population doubling time (PDT) | Transforming growth factor beta (TFP) completion considerably promoted the proliferation rate of the meniscus of joint cells, IPFP-derived MSC, and SDSCs, but less than that of adipose tissue-derived MSCs | [59] |
Adolescent Patients with Anterior Cruciate Ligament (ACL) Trauma for Regeneration (n = 4) (17.2 (SD 0.7) years old) | Cell calculation | IPFP-derived MSC has less proliferative capacity than SDSCs but more than ScASCs | [60] |
Osteoarthritis in Old Patients for Whole Knee Arthroplasty (n = 4) (70.5 (SD 9.2) years old) | Cell counting | IPFP-derived MSC have more proliferative capacity compared with SDSCs but more than other cases | [61] |
IPFP-derived MSCs from Sheep Knees (n = 5) (10,12,14,16,18 months old) | Transplantation of IPFP-ASCs | Hyaline cartilage-like formed in some cartilage defects | [62] |
IPFP-derived MSCs from Sheep Knees (n = 5) (12 months old) | Assay of doubling time ASC | Maintain proliferation potential and fibroblastic-like morphology of IPFP-derived MSCs during different passages | [53,62] |
IPFP-derived MSCs Patients (n = 7) (74 years old) | Isolation of IPFP-stem cells and cell calculation | The extracellular matrix fragments in suspension prevented the calculation of cells | [63] |
IPFP, Patients (n = 5) (50 years old) | Yielding of IPFP by liposuction and isolation of stem cells | IPFP-derived MSCs are an important alternative source for adipose-derived cells | [64] |
IPFP-derived MSCs, Patients (n= 8 Men and 17 Women) (30 years old) | Assaying the stem cell injection | IPFP-derived MSCs treatment with intra-articular injections is effective and reduces pain | [45] |
Macrophages from Adipose tissue, Patients with Osteoarthritis (60 years old) | Harvesting of macrophages from IPFP | The macrophages from IPFP can change articular cartilage-based stem cell therapy | [65] |
Study | Cases | Outcome | Prospects | Reference |
---|---|---|---|---|
Autologous adipose tissue-derived MSCs injected into the hips of patients, in combination with hyaluronic acid (HA), platelet rich plasma (PRP), and CaCl2 | Osteonecrosis of the hip femoral head: 1 female (age 29) and 1 male (age 47) Osteoarthritis: 2 females (ages 70 and 79) | Bone formation in osteonecrosis patients and cartilage formation in osteoarthritis patients within 1–3 months, as evidenced by MRI | ACS + HA + PRP + CaCl2 presents a slightly invasive therapy for osteonecrosis and osteoarthritis | [67] |
Percutaneous injection of IPFP-derived MSCs into arthritic knees | Knee osteoarthritis: 8 male and 17 female patients (age range, 34–69) | Pain reduction and improvement in function in patients with knee osteoarthritis within 3–18 months | For knee osteoarthritis, this could be an effective treatment after optimization of some parameters such as cell and injection numbers | [45] |
Intra-articular injection of autologous adipose tissue-derived MSCs into arthritic knees | Knee osteoarthritis: 15 female and 3 male patients (age range, 18–75) | Radiological, arthroscopic, and histological analyses demonstrated hyaline-like cartilage formation, resulting in pain reduction and improvement in function 6 months after the injection into osteoarthritic knees | Large randomized clinical trials for the treatment of osteoarthritis | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahedi, P.; Moghaddamshahabi, R.; Webster, T.J.; Calikoglu Koyuncu, A.C.; Ahmadian, E.; Khan, W.S.; Jimale Mohamed, A.; Eftekhari, A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. Int. J. Mol. Sci. 2021, 22, 9215. https://doi.org/10.3390/ijms22179215
Vahedi P, Moghaddamshahabi R, Webster TJ, Calikoglu Koyuncu AC, Ahmadian E, Khan WS, Jimale Mohamed A, Eftekhari A. The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. International Journal of Molecular Sciences. 2021; 22(17):9215. https://doi.org/10.3390/ijms22179215
Chicago/Turabian StyleVahedi, Parviz, Rana Moghaddamshahabi, Thomas J. Webster, Ayse Ceren Calikoglu Koyuncu, Elham Ahmadian, Wasim S. Khan, Ali Jimale Mohamed, and Aziz Eftekhari. 2021. "The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review" International Journal of Molecular Sciences 22, no. 17: 9215. https://doi.org/10.3390/ijms22179215
APA StyleVahedi, P., Moghaddamshahabi, R., Webster, T. J., Calikoglu Koyuncu, A. C., Ahmadian, E., Khan, W. S., Jimale Mohamed, A., & Eftekhari, A. (2021). The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. International Journal of Molecular Sciences, 22(17), 9215. https://doi.org/10.3390/ijms22179215