Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens
Abstract
:1. Introduction
2. Results
2.1. Sensitivity of Cps and Che to Select Azole Fungicides
2.2. Quality Assessment of RNA-Seq Alignments
2.3. Predicted Detoxification Genes in CT1 and CB45
2.4. Differentially Expressed Genes in Tetraconazole-Treated Cps
2.5. Differentially Expressed Genes in Tetraconazole-Treated Che
2.6. CYP51A and CYP51B Expression Levels
2.7. Prediction of Ergosterol Biosynthesis Genes
3. Discussion
4. Materials and Methods
4.1. Estimating Effective Fungicide Concentrations for 50% and 85% Inhibition of Growth In Vitro of Cps and Che
4.2. Genome Sequencing and Assembly
4.3. RNA Sequencing of Control versus Tetraconazole-Treated CT1 and CB45
4.4. Genome Functional Annotation and Multi-Blast
4.5. Identification of Candidate Detoxification Genes
4.6. RNA-Seq Analysis of Control versus Tetraconazole-Treated Isolates
4.7. Identification of Ergosterol Biosynthesis Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leblanc, N.; Salazar, C.S.; Crouch, J.A. Boxwood blight: An ongoing threat to ornamental and native boxwood. Appl. Microbiol. Biotechnol. 2018, 102, 4371–4380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daughtrey, M.L. Boxwood blight: Threat to ornamentals. Annu. Rev. Phytopathol. 2019, 57, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Gehesquière, B.; Crouch, J.A.; Marra, R.E.; Van Poucke, K.; Rys, F.; Maes, M.; Gobin, B.; Höfte, M.; Heungens, K. Characterization and taxonomic reassessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. nov. Plant Pathol. 2015, 65, 37–52. [Google Scholar] [CrossRef]
- Bartíková, M.; Holková, L.; Šafránková, I. Occurrence of boxwood blight (Calonectria pseudonaviculata and C. henricotiae) in historical gardens in the Czech Republic. Eur. J. Plant Pathol. 2020, 158, 135–142. [Google Scholar] [CrossRef]
- Leblanc, N.; Cubeta, M.A.; Crouch, J.A. Population genomics trace clonal diversification and intercontinental migration of an emerging fungal pathogen of boxwood. Phytopathology 2021, 111, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Lamondia, J.A. Fungicide efficacy against Calonectria pseudonaviculata, causal agent of boxwood blight. Plant Dis. 2014, 98, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Lamondia, J.A. Management of Calonectria pseudonaviculata in boxwood with fungicides and less susceptible host species and varieties. Plant Dis. 2015, 99, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Becher, R.; Weihmann, F.; Deising, H.B.; Wirsel, S.G. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genom. 2011, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, N.; Cools, H.J.; Sierotzki, H.; Shaw, M.; Knogge, W.; Kelly, S.L.; Kelly, D.E.; Fraaije, B.A. Paralog re-emergence: A novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol. Biol. Evol. 2014, 31, 1793–1802. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.P.; Fan, J.R.; Zhou, T.; Liu, X.L.; Liu, J.L.; Schnabel, G. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant Dis. 2012, 96, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Hulvey, J.; Popko, J.T.; Sang, H.; Berg, A.; Jung, G. Overexpression of ShCYP51B and ShatrD in Sclerotinia homoeocarpa isolates exhibiting practical field resistance to a demethylation inhibitor fungicide. Appl. Environ. Microbiol. 2012, 78, 6674–6682. [Google Scholar] [CrossRef] [Green Version]
- Cools, H.J.; Hawkins, N.; Fraaije, B. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol. 2013, 62, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.-X.; Schnabel, G. The cytochrome P450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl. Environ. Microbiol. 2008, 74, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, F.; Schnabel, G.; Wu, J.; Wang, Z.; Ma, Z. Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet. Biol. 2011, 48, 113–123. [Google Scholar] [CrossRef]
- Stravoravdis, S.; LeBlanc, N.; Marra, R.E.; Crouch, J.A.; Hulvey, J.P. Widespread occurrence of a CYP51A pseudogene in Calonectria pseudonaviculata. Mycobiology 2019, 48, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.D.; Ebert, M.K.; Faino, L.; Rivera-Varas, V.; de Jonge, R.; Van de Peer, Y.; Thomma, B.P.; Secor, G.A. RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction. Fungal Genet. Biol. 2016, 92, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Esquivel, B.D.; White, T.C. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 2018, 9, e01291-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, R.; Del Buono, D.; Fordham, M.; Skipsey, M.; Brazier, M.; Dixon, D.P.; Cummins, I. Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by Herbicide Safeners. Z. Naturforsch. C J. Biosci. 2005, 60, 307–316. [Google Scholar] [CrossRef]
- Morel, M.; Meux, E.; Mathieu, Y.; Thuillier, A.; Chibani, K.; Harvengt, L.; Jacquot, J.-P.; Gelhaye, E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb. Biotechnol. 2013, 6, 248–263. [Google Scholar] [CrossRef]
- Sang, H.; Hulvey, J.P.; Green, R.; Xu, H.; Im, J.; Chang, T.; Jung, G. A xenobiotic detoxification pathway through transcriptional regulation in filamentous fungi. mBio 2018, 9, e00457-18. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Chen, S. Non-target site mechanisms of fungicide resistance in crop pathogens: A review. Microorganisms 2021, 9, 502. [Google Scholar] [CrossRef]
- McGoldrick, S.; O’Sullivan, S.M.; Sheehan, D. Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: Insights into evolution of a multifunctional protein superfamily. FEMS Microbiol. Lett. 2005, 242, 1–12. [Google Scholar] [CrossRef]
- Mathieu, Y.; Prosper, P.; Favier, F.; Harvengt, L.; Didierjean, C.; Jacquot, J.-P.; Morel-Rouhier, M.; Gelhaye, E. Diversification of fungal specific class A glutathione transferases in saprotrophic fungi. PLoS ONE 2013, 8, e80298. [Google Scholar] [CrossRef]
- Kretschmer, M.; Leroch, M.; Mosbach, A.; Walker, A.-S.; Fillinger, S.; Mernke, D.; Schoonbeek, H.-J.; Pradier, J.-M.; Leroux, P.; De Waard, M.A.; et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog. 2009, 5, e1000696. [Google Scholar] [CrossRef]
- Paul, S.; Moye-Rowley, W.S. Multidrug resistance in fungi: Regulation of transporter-encoding gene expression. Front. Physiol. 2014, 5, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulshan, K.; Moye-Rowley, W.S. Multidrug resistance in fungi. Eukaryot. Cell 2007, 6, 1933–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-H.; Tsai, H.-C.; Yu, P.-L.; Chung, K.-R. A major facilitator superfamily transporter-mediated resistance to oxidative stress and fungicides requires Yap1, Skn7, and MAP kinases in the citrus fungal pathogen Alternaria alternata. PLoS ONE 2017, 12, e0169103. [Google Scholar] [CrossRef] [Green Version]
- Selmecki, A.; Forche, A.; Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef]
- Somani, D.; Adhav, R.; Prashant, R.; Kadoo, N.Y. Transcriptomics analysis of propiconazole-treated Cochliobolus sativus reveals new putative azole targets in the plant pathogen. Funct. Integr. Genom. 2019, 19, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Kamthan, A.; Kamthan, M.; Datta, A. Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance. PLoS ONE 2017, 12, e0173381. [Google Scholar] [CrossRef]
- Salgado-Salazar, C.; Beirn, L.A.; Ismaiel, A.; Boehm, M.; Carbone, I.; Putman, A.I.; Tredway, L.P.; Clarke, B.B.; Crouch, J.A. Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass. Fungal Biol. 2018, 122, 761–773. [Google Scholar] [CrossRef]
- Andrianopoulos, A.; Kourambas, S.; Sharp, J.A.; Davis, M.A.; Hynes, M.J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J. Bacteriol. 1998, 180, 1973–1977. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Qiu, M.; Wang, B.; Yin, W.-B.; Nie, X.; Qin, Q.; Ren, S.; Yang, K.; Zhang, F.; Zhuang, Z.; et al. Functional analysis of the nitrogen metabolite repression regulator gene nmrA in Aspergillus flavus. Front. Microbiol. 2016, 7, 1794. [Google Scholar] [CrossRef] [Green Version]
- Sondheimer, N.; Lindquist, S. Rnq1: An epigenetic modifier of protein function in yeast. Mol. Cell 2000, 5, 163–172. [Google Scholar] [CrossRef]
- Meriin, A.; Zhang, X.; He, X.; Newnam, G.P.; Chernoff, Y.; Sherman, M.Y. Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 2002, 157, 997–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Castañeda, A.; Cañas-Duarte, S.J.; Guevara-Suarez, M.; Guarro, J.; Restrepo, S.; Ramírez, A.M.C. Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole. Microbiology 2020, 166, 936–946. [Google Scholar] [CrossRef]
- Podobnik, B.; Stojan, J.; Lah, L.; Kraševec, N.; Seliškar, M.; Rižer, T.L.; Rozman, D.; Komel, R. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J. Med. Chem. 2008, 51, 3480–3486. [Google Scholar] [CrossRef]
- Braga-Silva, L.; Mesquita, D.; Ribeiro, M.; Carvalho, S.; Fracalanzza, S.; Santos, A. Trailing end-point phenotype antibiotic-sensitive strains of Candida albicans produce different amounts of aspartyl peptidases. Braz. J. Med. Biol. Res. 2009, 42, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, K.; Shekhova, E.; Mattern, D.J.; Thywissen, A.; Jacobsen, I.D.; Strassburger, M.; Heinekamp, T.; Shelest, E.; Brakhage, A.A.; Kniemeyer, O. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus. Mol. Microbiol. 2016, 101, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Summerell, B.A. The Fusarium Laboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Prentice, R.L. A generalization of the probit and logit methods for dose response curves. Biometrics 1976, 32, 761. [Google Scholar] [CrossRef] [PubMed]
- BioBam Bioinformatics. OmicsBox—Bioinformatics Made Easy. Available online: http://www.biobam.com (accessed on 3 March 2019).
- Götz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A quality Control Tool for High though Put Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 1 March 2018).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef]
- Kupfer, D.M.; Drabenstot, S.D.; Buchanan, K.L.; Lai, H.; Zhu, H.; Dyer, D.W.; Roe, B.A.; Murphy, J.W. Introns and splicing elements of five diverse fungi. Eukaryot. Cell 2004, 3, 1088–1100. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A python framework to work with high-throughput sequencing data. Bioinformatics 2014, 31, 166–169. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.; Smyth, G. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.R. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet. Biol. 2019, 131, 103243. [Google Scholar] [CrossRef]
- Worku, M.; Girma, F. Candida auris: From multidrug resistance to pan-resistant strains. Infect. Drug Resist. 2020, 13, 1287–1294. [Google Scholar] [CrossRef]
Fungicide | EC50, ppm | EC85, ppm | ||
---|---|---|---|---|
Cps | Che | Cps | Che | |
Myclobutanil | 0.43 | 0.57 | 3.10 | 4.60 |
Tetraconazole * | 0.20 | 1.00 | 0.60 | 9.70 |
Tebuconazole | 0.10 | 0.13 | 0.56 | 0.86 |
Triadimefon | 5.00 | 4.30 | 26.20 | 37.00 |
Propiconazole | 0.05 | 0.15 | 0.56 | 0.84 |
Name | Description (Blastp Result) | e-Value | Mean Similarity (%) | Fold Change | log2FC * | p-Value |
---|---|---|---|---|---|---|
g3755 | Amine oxidase | 0 | 82.66 | 7.44 | 2.90 | 0.0020 |
g4897 | NmrA family transcriptional regulator | 2.86E-171 | 70.67 | 4.56 | 2.19 | 0.0021 |
g7954 | Cytochrome P450 monooxygenase | 3.94E-173 | 87.1 | 3.95 | 1.98 | 0.0043 |
g4550 | Hypothetical protein AK830_g2355 | 9.20E-115 | 74.11 | 3.17 | 1.66 | 5.63 × 10−8 |
g12983 | Non-ribosomal peptide synthetase | 0 | 64.5 | 3.15 | 1.66 | 0.0044 |
g2466 | Polyamine transporter 4 | 0 | 82.16 | 3.01 | 1.59 | 1.97 × 10−13 |
g9321 | Putative uncharacterized oxidoreductase | 1.53E-124 | 71.69 | 2.78 | 1.48 | 0.0041 |
g3936 | Beta-glucosidase B | 0 | 80.2 | 2.51 | 1.33 | 2.68 × 10−4 |
g11975 | Hypothetical protein CEP53_001993 | 2.59E-98 | 82.1 | 2.50 | 1.32 | 1.47 × 10−11 |
g8 | Cellobiose dehydrogenase | 1.32E-167 | 70.38 | 2.43 | 1.28 | 0.0061 |
g8362 | Membrane protein | 9.24E-60 | 72.66 | 2.33 | 1.22 | 3.54 × 10−5 |
g6303 | Predicted protein | 1.37E-21 | 71.72 | 2.31 | 1.21 | 3.81 × 10−4 |
g4296 | Short chain dehydrogenase | 4.53E-142 | 86.45 | 2.21 | 1.14 | 4.66 × 10−17 |
g10806 | Cytochrome P450 monooxygenase | 0 | 93.45 | 2.15 | 1.10 | 1.00 × 10−9 |
g5767 | Benzodiazapine receptor | 7.02E-110 | 88.73 | 2.13 | 1.09 | 7.92 × 10−8 |
12006 | Phytoene dehydrogenase | 0 | 76.86 | 2.13 | 1.09 | 4.90 × 10−4 |
g11629 | Unnamed protein product | 3.81E-83 | 51.01 | −2.00 | −1.00 | 0.0015 |
g6683 | AhpC/TSA family protein | 3.46E-121 | 88.47 | −2.01 | −1.01 | 0.0033 |
g1573 | Endochitinase 1 precursor | 0 | 82.40 | −2.01 | −1.01 | 6.65 × 10−73 |
g8085 | Related to ankyrin 3 | 1.03E-144 | 52.21 | −2.04 | −1.03 | 2.05 × 10−6 |
g6821 | Hypothetical protein AK830_g533 | 0 | 82.08 | −2.04 | −1.03 | 1.01 × 10−22 |
g2224 | Copper resistance-associated P-type ATPase | 1.42E-93 | 64.75 | −2.05 | −1.04 | 0.0011 |
g10919 | Hypothetical protein FOYG_12748 | 6.12E-44 | 46.12 | −2.06 | −1.04 | 0.0089 |
g4950 | Uncharacterized protein FVRRES_10874 | 1.61E-115 | 55.96 | −2.06 | −1.04 | 4.86 × 10−9 |
g7786 | Hypothetical protein PEX2_036530 | 7.21E-71 | 67.85 | −2.07 | −1.05 | 3.91 × 10−11 |
g9725 | Related to TAP42, component of the Tor signaling pathway | 0 | 87.44 | −2.10 | −1.07 | 1.38 × 10−4 |
g2437 | Hypothetical protein AK830_g6151 | 2.77E-115 | 52.64 | −2.12 | −1.09 | 9.04 × 10−11 |
g9807 | Hypothetical protein | 0 | 71.60 | −2.13 | −1.09 | 2.27 × 10−4 |
g11724 | Cytochrome P450 monooxygenase FUM15 | 0 | 93.17 | −2.14 | −1.10 | 0.0173 |
g10528 | NAD(P)-binding domain protein | 2.54E-118 | 76.44 | −2.18 | −1.13 | 4.35 × 10−5 |
g168 | Related to ARCA protein | 0 | 69.08 | −2.20 | −1.14 | 2.12 × 10−6 |
g6699 | Hypothetical protein AK830_g11121 | 0 | 79.89 | −2.21 | −1.14 | 4.70 × 10−40 |
g4515 | Hypothetical protein FCULG_00008984 | 0 | 72.15 | −2.21 | −1.14 | 0.0149 |
g7647 | Tannase and feruloyl esterase | 0 | 74.16 | −2.22 | −1.15 | 0.0463 |
g2422 | Hypothetical protein S40288_06769 | 3.29E-96 | 62.25 | −2.23 | −1.16 | 3.62 × 10−4 |
g10964 | CVNH domain-containing protein | 1.00E-76 | 64.11 | −2.24 | −1.16 | 1.13 × 10−47 |
g10999 | Beta-glucosidase 1 | 0 | 76.92 | −2.26 | −1.17 | 0.0027 |
g6402 | Related to signal peptide protein | 4.11E-90 | 60.69 | −2.26 | −1.18 | 0.0202 |
g176 | Predicted protein | 3.17E-42 | 54.15 | −2.26 | −1.18 | 8.24 × 10−12 |
g3909 | Related to quinate transport protein | 0 | 91.93 | −2.29 | −1.19 | 0.0283 |
g4209 | Related to RNQ1-prion, epigenetic modifier of protein function | 1.29E-129 | 67.60 | −2.30 | −1.20 | 3.31 × 10−52 |
g8262 | Succinate-semialdehyde dehydrogenase | 0 | 91.28 | −2.36 | −1.24 | 4.45 × 10−45 |
g6192 | Hypothetical protein CSUB01_04341 | 9.35E-59 | 57.37 | −2.40 | −1.26 | 0.0077 |
g7723 | Hypothetical protein CEP52_010997 | 6.25E-114 | 63.88 | −2.40 | −1.27 | 0.012 |
g6378 | 30 kDa heat shock protein | 1.64E-100 | 80.62 | −2.47 | −1.30 | 3.92 × 10−7 |
g8973 | Hypothetical protein BFJ68_g11167 | 0 | 54.02 | −2.47 | −1.30 | 8.85 × 10−10 |
g6167 | No successful annotation | -- | -- | −2.49 | −1.32 | 0.0227 |
g6992 | ph protein | 4.28E-156 | 82.60 | −2.56 | −1.36 | 2.05 × 10−61 |
g12366 | Hypothetical protein | 9.53E-118 | 67.61 | −2.58 | −1.37 | 1.07 × 10−5 |
g5885 | Heat shock protein 30 | 1.21E-107 | 79.46 | −2.73 | −1.45 | 1.24 × 10−6 |
g8937 | Hypothetical protein CDD83_2148 | 1.87E-71 | 62.41 | −2.74 | −1.45 | 0.0087 |
g11752 | Hypothetical protein | 152E-57 | 65.38 | −2.77 | −1.47 | 1.58 × 10−35 |
g5903 | Related to Zn-dependent oxidoreductases | 0 | 85.94 | −2.78 | −1.47 | 0.0122 |
g6754 | Predicted protein | 0 | 83.81 | −2.86 | −1.52 | 7.78 × 10−28 |
g8520 | Lipase 2 | 0 | 63.85 | −3.02 | −1.59 | 4.58 × 10−6 |
g12477 | Aurofusarin/rubrofusarin efflux pump AFLT | 0 | 91.34 | −3.04 | −1.61 | 0.0015 |
g9066 | Related to isoamyl alcohol oxidase | 0 | 77.69 | −3.15 | −1.65 | 0.0243 |
g174 | Hypothetical protein DV735_g44, partial | 3.18E-51 | 46.99 | −3.25 | −1.70 | 0.0289 |
g4674 | Hypothetical protein CEP53_004141 | 5.28E-65 | 53.38 | −3.26 | −1.71 | 6.35 × 10−8 |
g6874 | Transmembrane protein | 2.43E-107 | 79.26 | −3.29 | −1.72 | 1.13 × 10−4 |
g8665 | Hypothetical protein AK830_g8487 | 1.99E-82 | 60.83 | −3.36 | −1.75 | 2.49 × 10−25 |
g11475 | Putative transporter | 0 | 86.43 | −3.41 | −1.77 | 0.0468 |
g6191 | Hypothetical protein CNYM01_02327 | 1.69E-176 | 55.57 | −3.46 | −1.79 | 7.71 × 10−13 |
g12476 | 2,4-dienoyl-CoA reductase precursor | 8.00E-175 | 76.95 | −4.14 | −2.05 | 0.0038 |
g11916 | Hypothetical protein CSHISOI_01161 | 2.78E-33 | 44.31 | −4.16 | −2.06 | 0.0282 |
g11954 | Hypothetical protein AK830_g7182 | 6.58E-111 | 71.82 | −5.51 | −2.46 | 0.0097 |
g5478 | Protein alcS | 6.31E-101 | 77.15 | −5.81 | −2.54 | 0.0060 |
g10880 | Putative dienelactone hydrolase protein | 1.73E-150 | 80.87 | −6.49 | −2.70 | 0.0025 |
g5555 | Hypothetical protein AK830_g4498 | 8.40E-104 | 80.07 | −6.72 | −2.75 | 5.88 × 10−19 |
g11706 | MFS general substrate transporter | 4.10E-128 | 70.32 | −6.80 | −2.77 | 0.0183 |
g8925 | No successful annotation | -- | -- | −11.32 | −3.50 | 0.0074 |
Name | Description (Blastp Result) | e-Value | Mean Similarity (%) | Fold Change | log2FC * | p-Value |
---|---|---|---|---|---|---|
g9154 | Hypothetical protein CEP51_000673 | 2.20E-132 | 76.62 | 5.29 | 2.40 | 0.0025 |
g8011 | Polyamine transporter 4 | 0 | 81.96 | 3.91 | 1.97 | 2.31 × 10−25 |
g5429 | Cytochrome P450 monooxygenase | 0 | 93.05 | 3.85 | 1.94 | 5.11 × 10−34 |
g8424 | Uracil permease | 0 | 75.19 | 3.48 | 1.80 | 0.0023 |
g5428 | Cytochrome-b5 reductase | 0 | 84.22 | 3.48 | 1.80 | 3.68 × 10−39 |
g1551 | Flavonol synthase | 0 | 89.89 | 3.23 | 1.69 | 0.0013 |
g8987 | Putative fad -dependent oxidoreductase protein | 0 | 82.94 | 2.99 | 1.58 | 0.0018 |
g8537 | Benzoate 4-monooxygenase | 0 | 89.37 | 2.97 | 1.57 | 0.0015 |
g1569 | Quinone oxidoreductase | 0 | 78.15 | 2.73 | 1.45 | 0.0034 |
g5809 | Aldehyde dehydrogenase | 0 | 80.98 | 2.68 | 1.42 | 2.43 × 10−4 |
g2437 | Related to choline dehydrogenase | 0 | 85.31 | 2.56 | 1.36 | 6.02 × 10−4 |
g937 | Hypothetical protein | 0 | 79.28 | 2.56 | 1.36 | 0.0038 |
g5236 | Gluconate 5-dehydrogenase | 0 | 95.34 | 2.39 | 1.26 | 0.0027 |
g6263 | Hypothetical protein CEP53_001993 | 2.24E-100 | 82.91 | 2.32 | 1.22 | 4.46 × 10−11 |
g3800 | Hypothetical protein NECHADRAFT_97613 | 3.70E-162 | 76.9 | 2.20 | 1.14 | 2.14 × 10−9 |
g3704 | Uncharacterized protein FFFS_03043 | 0 | 64.92 | 2.20 | 1.13 | 1.43 × 10−16 |
g9615 | Hypothetical protein CEP53_001289 | 3.14E-132 | 79.07 | 2.06 | 1.04 | 8.46 × 10−4 |
g7108 | Indoleamine 2,3-dioxygenase | 0 | 84.17 | −2.00 | −1.00 | 2.72 × 10−7 |
g2227 | Hypothetical protein AK830_g4468 | 1.43E-24 | 58.42 | −2.00 | −1.00 | 1.21 × 10−4 |
g1520 | Hypothetical protein AK830_g4498 | 6.07E-105 | 80.02 | −2.01 | −1.01 | 1.24 × 10−18 |
g11957 | Hypothetical protein M419DRAFT_5450 | 3.76E-89 | 52.21 | −2.03 | −1.02 | 2.57 × 10−44 |
g1807 | Predicted protein | 2.77E-42 | 65.74 | −2.07 | −1.05 | 1.34 × 10−30 |
g6618 | Short chain dehydrogenase/reductase family protein | 1.21E-113 | 70.07 | −2.07 | −1.05 | 0.0016 |
g10262 | Hypothetical protein AK830_g1682 | 1.79E-33 | 54.49 | −2.09 | −1.06 | 6.10 × 10−9 |
g2895 | Related to aspartyl proteinase SAP3 precursor | 0 | 71.46 | −2.11 | −1.07 | 2.77 × 10−22 |
g3319 | No successful annotation | -- | -- | −2.14 | −1.10 | 1.80 × 10−6 |
g10017 | Hypothetical protein AK830_g9553 | 2.46E-77 | 57.73 | −2.23 | −1.16 | 9.33 × 10−7 |
g10337 | Hypothetical protein FOTG_02367 | 0 | 53.82 | −2.27 | −1.19 | 4.28 × 10−18 |
g5103 | Related to inhibitor of calcineurin | 2.41E-114 | 86.65 | −2.28 | −1.19 | 2.30 × 10−85 |
g13846 | Aminotriazole resistance protein | 0 | 60.56 | −2.64 | −1.40 | 7.04 × 10−24 |
g10436 | Subtilisin-like proteinase Mp1 | 1.38E-164 | 69.22 | −2.96 | −1.57 | 2.13 × 10−4 |
g5443 | Hypothetical protein DL763_001348 | 1.90E-49 | 60.11 | −6.03 | −2.59 | 0.0046 |
g6520 | Hypothetical protein NECHADRAFT_67887 | 1.14E-67 | 73.96 | −7.42 | −2.89 | 6.48 × 10−4 |
g7560 | Hypothetical protein | 0 | 58.51 | −7.89 | −2.98 | 3.57 × 10−4 |
Name | Description (Blastp Result) | Min e-Value | Cps % Identity | Cps Genes |
---|---|---|---|---|
GO Name-P:ergosterol biosynthesis process | ||||
g6498 | NADH-cytochrome b5 reductase 2 | 0 | 100 | g4129 |
g133 * | cytochrome P450 61 | 1.1E-166 | 100 | g3336 |
g7816 | e3 ubiquitin-protein ligase hula | 0 | 99.92 | g5528 |
g13550 | putative squalene synthase | 0 | 99.86 | g3858 |
g1530 | cytochrome P450 61 | 0 | 99.69 | g3336 |
g12864 | NADPH-cytochrome P450 reductase | 0 | 99.50 | g9924 |
g9740 | phytoene dehydrogenase | 0 | 99.08 | g12006 |
g5865 | probable sterol C-24 reductase (ERG4) | 0 | 99.02 | g5534 |
g3859 | NADPH-cytochrome P450 reductase | 0 | 75.25 | g9924 |
Name | Description (Blastp Result) | Fusarium GenBank Accession | Cps Genome Multi-Blast | ||
---|---|---|---|---|---|
Min e-Value | Cps % Identity | Cps Genes | |||
g10523 | Acetyl-CoA acetyltransferase (ERG10) | TVY72719.1 | 0 | 99.92 | g3826 |
* g9796 | 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) | CAA63970.1, sp|P0CT44.1| | 0 | 99.72 | g7570 |
g9170 | mevalonate kinase (ERG12) | TVY77487.1 | 0 | 99.67 | g10401 |
g13304 | predicted protein (ERG8) | TVY72023.1 | 0 | 99.92 | g9882 |
g11758 | isopentenyl-diphosphate Delta-isomerase (IDI) | EWY96464.1 | 0 | 99.87 | g9857 |
g6524 | Farnesyl pyrophosphate synthase (FPS) | sp|S0E627.1| | 0 | 99.29 | g9279 |
g2103 | Farnesyl pyrophosphate synthase (FPS) | sp|Q92235.1| | 0 | 99.81 | g10129 |
g13550 | squalene synthase (ERG9) | EWY95524.1 | 0 | 99.86 | g3858 |
g13589 | squalene monooxygenase (ERG1) | TVY72423.1 | 0 | 99.87 | g9959 |
g13485 | geranylgeranyl pyrophosphate synthase (GPS) | sp|Q92236.1| | 0 | 99.59 | g2678 |
g13972 | lanosterol synthase (ERG7) | TVY78064.1 | 0 | 99.75 | g10346 |
* g8604 | delta(14)-sterol reductase (ERG3 or ERG24) | ABB48844.1, TVY78591.1 | 0 | 99.73 | g12760 |
g7626 | methylsterol monooxygenase (ERG25) | TVY72244.1 | 0 | 99.89 | g9698 |
g2642 | 3-keto-steroid reductase (ERG27) | TVY72041.1 | 0 | 99.72 | g3656 |
g13957 | predicted protein (ERG28) | TVY63301.1 | 0 | 99.61 | g6640 |
g12891 | C-8 sterol isomerase (ERG2) | EWY99288.1 | 0 | 99.85 | g7224 |
g12992 | cytochrome P450 61 (ERG5) | TVY77434.1 | 0 | 99.81 | g6026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stravoravdis, S.; Marra, R.E.; LeBlanc, N.R.; Crouch, J.A.; Hulvey, J.P. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. Int. J. Mol. Sci. 2021, 22, 9255. https://doi.org/10.3390/ijms22179255
Stravoravdis S, Marra RE, LeBlanc NR, Crouch JA, Hulvey JP. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. International Journal of Molecular Sciences. 2021; 22(17):9255. https://doi.org/10.3390/ijms22179255
Chicago/Turabian StyleStravoravdis, Stefanos, Robert E. Marra, Nicholas R. LeBlanc, Jo Anne Crouch, and Jonathan P. Hulvey. 2021. "Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens" International Journal of Molecular Sciences 22, no. 17: 9255. https://doi.org/10.3390/ijms22179255
APA StyleStravoravdis, S., Marra, R. E., LeBlanc, N. R., Crouch, J. A., & Hulvey, J. P. (2021). Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. International Journal of Molecular Sciences, 22(17), 9255. https://doi.org/10.3390/ijms22179255