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Abstract: Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear
receptor superfamily. Many structures of ERα bound with agonists and antagonists have been
determined. However, the dynamic binding patterns of agonists and antagonists in the binding site
of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD)
simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic
binding patterns in ERα. 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand
binding pockets of the agonist and antagonist bound ERα. The best complex conformations from
molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was
conducted to group the structures in the trajectory from MD simulations. The representative structure
from each cluster was selected to calculate the binding interaction energy value for elucidation of
the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding
interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer,
while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug
candidates and facilitate risk assessment of chemicals through ER-mediated responses.

Keywords: molecular docking; molecular dynamics simulations; quantum mechanical calculations;
estrogen receptor; dynamic binding pattern

1. Introduction

Estrogen receptor (ER) is one of the important targets of drugs and endocrine disrupt-
ing chemicals in the endocrine system [1]. It is a ligand-dependent transcriptional factor in
the steroid type 1 nuclear receptor family [2]. ER plays a major role in various biological
functions such as bone modeling, reproductive system, cardiovascular system, metabolism,
and cell proliferation [3]. ER is an extensively studied target among the endocrine receptors.
There are two major ER isoforms, ERα and ERβ. Like other nuclear receptors, ERα con-
sists of three distinct domains: N-terminal domain (residue 1–180), DNA binding domain
(residue 181–263), and C-terminal domain or ligand binding domain (LBD, residue 303–552)
(Figure 1). The activation function domain 1 (AF1) is present in the N-terminal domain and
plays a major role in the protein–protein interaction [4,5]. The mitogen-activated protein
(MAP) kinase pathway regulates the activity of AF1 through the growth factors [6]. The
LBD is composed of twelve helices and two antiparallel β-sheets which are arranged as
a three-layer antiparallel α helical sandwich [5,7]. The first layer is formed by helices 1
to 4 and 7, the middle layer is made up of helices 5, 6, 9 and 10 and the final layer is
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composed of helices 8, and 11 [8–10]. The activation function domain 2 (AF2) in LBD is
responsible for binding of cofactors. AF2 undergoes conformational change due to the
binding of a compound in the ligand binding pocket (LBP). The conformational change
of AF2 determines the types of binding cofactors which play a major role in activating or
inhibiting the target genes of ER [11]. The hinge (residue 264–302) regions connect the DBD
and LBD.
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Figure 1. The cartoon representation of the different domains of ER. LBP is shown in green; AF2
is shown in electrostatic representation; and H12 is shown in magenta and blue for active (agonist
bound) and inactive (antagonist bound) forms, respectively.

The H12 acts as a molecular switch that turns ER activity on and off depending on
the binding chemicals [11–13]. The AF1 and AF2 play a major role in the transcriptional
activation of ER [14]. The estrogenic compounds bind in the hydrophobic pocket of ER
LBD. The hydrophobic pocket is composed of Met342 to Leu354 of H3, Trp383 to Arg394
of H6, Val418 to Leu428 from the preceding loop of H8, Met517 to Met528 of H11, Leu539
to His547 of H12, and Leu402 to Leu 410 of S1/S2 hairpin [7]. Binding of antiestrogenic
compounds to ER induce a H12 conformational changes by placing H12 across the H3
and H11 and moving H12 away from the LBP. Due to the H12 conformation change, the
AF2 in the LBD is distorted and not suitable for binding cofactors [15]. ER enhances and
represses its function via various pathways [10,16,17]. Understanding the ERα dynamic
binding patterns with agonists and antagonists is crucial for discovery of ERα agonists
and antagonists. Dynamic binding pattern represents the forming and breaking of non-
covalent interactions such as hydrogen bonding and Van der Waals interactions between
a protein and a ligand, as well as conformational changes caused by the binding ligand
throughout a molecular dynamics (MD) simulation. More than 350 3D structures of ER
bound with various ligands are deposited in the Protein Data Bank (PDB). Those structures
are useful to understand the structural changes due to agonist and antagonist binding in
the ERα LBP. Various computational techniques such as molecular docking [18–24], MD
simulations [25–30], predictive modeling [31–41], and in vitro studies were conducted to
predict ER binders or non-binders [42,43] and agonists or antagonists [44,45].

Many ligand-based computational methods were used to predict ERα activity of
chemicals based on chemical features, including ERα binders and nonbinders, and agonist
and antagonist activities [31,46–49]. However, the dynamic binding patterns of ER agonists
and antagonists are not clearly understood. Hence, in this study we applied QM-Polarized
Ligand Docking (QPLD) and MD simulations to elucidate the dynamic binding patterns
of ERα agonists and antagonists using 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT).
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E2 is the natural steroid hormone that activates ER. The activated ER modulates gene
expression in cells. E2 binds with ER in the nucleus and forms a dimer. Subsequently, the
dimer interacts with the estrogen response element of ER and regulates transcription of
the target gene. E2 has two hydroxyl groups, one at C3 and another at 17β (Figure 2). The
hydroxyl group at C3 forms hydrogen bonds with Glu353 and Arg394 of ER. The 17β-OH
group forms a hydrogen bond with His524. The planar part of A/B ring forms a sandwich
between Ala350 and Leu387. The D ring forms a nonpolar contact with Ile424, Gly521
and Leu525 [7]. OHT is a selective estrogen receptor modulator and acts as an antagonist
towards ER in specific tissues [6]. The hydroxyl group in OHT (Figure 2) has a high binding
affinity towards ER [50]. Binding of OHT in the LBP of ER pushes the H12 away to occupy
part of the AF2 site, blocking coactivators binding in AF2 [51]. In QPLD, the ab initio
molecular charges were applied to obtain binding orientation of the two chemicals in the
LBP of ERα [52]. MD simulations were used to elucidate the dynamic binding patterns of
the agonist E2 and antagonist OHT.
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Figure 2. Two-dimensional structures of 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT).

2. Results
2.1. Molecular Docking

QPLD and Glide docking are two widely used docking methods to identify orienta-
tions of compounds in binding sites of proteins [52–54]. The EXtra-Precision (XP) Glide
scores, QPLD scores and docking energy values of the four complexes with the best ligand
orientations are shown in Table 1.

Table 1. Docking scores and docking energy values for the four ER complexes.

ER Complex
Glide QPLD

XP Score Kcal/mol Docking Energy QPLD Score Kcal/mol Docking Energy

ERα1_E2 −11.00 −39.74 −11.45 −38.78
ERα2_E2 −9.65 −32.54 −9.82 −33.41

ERα1_OHT −9.07 −29.43 −8.17 −28.96
ERα2_OHT −8.59 −35.81 −10.94 −38.23

In both docking methods, the agonist E2 had a lower docking energy in the agonist
conformation (ERα1) than in the antagonist conformation (ERα2), while the antagonist
OHT had a higher docking energy in the agonist conformation (ERα1) than in the antagonist
conformation (ERα2). The orientations of E2 and OHT in ERα1 and ERα2, as well as the
ERα residues interacting with E2 and OHT in the four complexes, are depicted in Figure 3.
E2 in the binding site of ERα1 forms interactions with Glu353, Arg394, and His524. E2 also
forms interactions with Glu353 and Arg394 but fails to interact with His524 in the binding
site of ERα2. OHT forms hydrogen bond interactions with both Arg344 and Glu353 in the
binding site of ERα2. OHT interacts with Arg344 but fails to interact with Glu353 in ERα1.
The interaction analysis revealed that E2 forms more hydrogen bond interactions in ERα1,
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while OHT forms more hydrogen bond interactions in ERα2. These four complexes were
subjected to MD simulations to elucidate the dynamic binding patterns of agonist E2 and
antagonist OHT in ERα.
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represent hydrogen bond interactions. Green circles represent the hydrophobic residues; cyan circles represent the polar
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2.2. MD Simulations

In the MD simulations for each of the four complex structures obtained from molecular
docking, structures were recorded for every 4.8 picoseconds (ps) in the trajectory file. Thus,
each trajectory file contains 20,835 structures. The details of the simulation systems are
summarized in Table 2.

Table 2. Summary of the MD simulation systems.

Complex Atoms in Complex Waters Ions

ERα1_E2 3980 7890 30 Na+; 23 Cl−

ERα1_OHT 3994 7890 29 Na+; 22 Cl−

ERα2_E2 3946 9138 36 Na+; 26 Cl−

ERα2_OHT 3960 9138 35 Na+; 25 Cl−

To understand the dynamics of ER binding with the agonist E2 and antagonist OHT,
root mean square deviations (RMSD) were calculated between the 20,835 structures for
ERα1_E2, ERα1_OHT, ERα2_E2, and ERα2_OHT using a MATLAB script. The obtained
RMSD matrixes for the four complexes are shown in Figure 4. Examining the RMSD values
from the MD simulations (shown in Figure 4) found that structural changes were not
the same during the MD simulations and the RMSD matrixes formed patterns. Further-
more, the RMSD patterns are different among the four complexes, indicating the binding
dynamics of the agonist and antagonist in ERα are different.
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The interaction energy was calculated using prime MM/GBSA for whole trajectory
files and the calculated energy values are provided in Table 3.

Table 3. Interaction energy values for the ER complexes.

Acronyms ∆G_Bind ∆G_Bind_Coulomb ∆G_Bind_vdW Ligand Energy Complex Energy Receptor Energy

ERα1_E2 −44.10 −7.73 −22.17 1.73 −9402.71 −9360.34

ERα1_OHT −44.68 −22.03 −17.47 32.43 −9352.97 −9340.71

ERα2_E2 −24.69 −9.19 −7.13 1.72 −9325.79 −9302.81

ERα2_OHT −42.24 −39.65 −17.04 32.12 −9342.13 −9332.01

To identify distinct structural patterns, hierarchical clustering analysis was conducted
based on the RMSD matrixes. The major clusters (with >500 structures) from the MD simula-
tions for ERα1_E2, ERα1_OHT, ERα2_E2, and ERα2_OHT are summarized in Table 4.
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Table 4. Major clusters from hierarchical clustering analysis.

ER Complex Cluster Number Number of Structures Start Frame End Frame Representative Structure

ERα1_E2

1 4314 2 4328 2312

2 1012 4329 5346 4545

3 1366 5364 6787 6339

4 7027 7423 14,514 13,922

5 1938 14,523 16,491 15,558
6 874 16,730 17,629 17,171

ERα1_OHT

1 1696 2 1698 979

2 860 2456 3422 2866

3 1328 5894 7298 7154
4 13,528 7306 20,835 15,478

ERα2_E2

1 5247 2 5451 2353
2 6915 5453 12,945 8216
3 1294 15,187 16,740 16,064
4 3786 16,735 20,835 18,646

ERα2_OHT

1 3732 5 3745 1813
2 1531 4552 6086 5356
3 3497 6087 9643 7771
4 5916 9641 15,769 13,467
5 2988 15,770 19,021 18,075

To further examine conformational changes of ER caused by agonist (E2) and an-
tagonist (OHT) binding in the simulations, we used the distance between H12 and the
centroid of LBP of ER to measure the conformational changes of H12. The residues (only
in the secondary structure, not from loop region) around 4 Å to the ligands in 1GWR and
3ERT were selected for calculating the centroid of LBP: Met343, Leu346, Thr347, Leu349,
Ala350, Asp351, Glu353, Leu384, Leu387, Leu391, Arg394, Phe404, Met421, Leu428, Gly521,
His524 and Leu525. The residues Asp535 to Leu549 were selected to represent H12. First,
a distance was calculated between the centroid and each of the H12 residues for a struc-
ture in the simulations. The maximum of the H12 distances was used to measure the
distance of H12 from the centroid. For each structure in the simulations, a relative distance
was calculated by subtracting the distance of the initial structure. The resulting relative
distances for simulations of ERα2_E2 and ERα1_OHT are shown in Figure 5. Most of
the structures in the simulation of ERα1-OHT had a longer distance between H12 and
the centroid of LBP than the initial structure (positive relative distances, top of Figure 5),
indicating the antagonist OHT made conformational changes in H12 from the initial active
form towards to inactive form. On the other hand, most of the frames in the trajectory file
from simulation of ERα2_E2 had a shorter distance between H12 and the centroid of LBP
than the initial structure (negative relative distances, bottom of Figure 5), indicating the
agonist E2 caused conformational changes in H12 from the initial inactive form towards the
active form. Then, based on the determination of the active and inactive forms using the
relative H12 distances, the receptor activation energies were calculated using the standard
thermodynamic relation ∆G = −RTln(Nactive/Ninactive) [55], resulting 1.48 Kcal/mol for
ERα1_OHT and 3.51 Kcal/mol for ERα2-E2.
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distance compared to the initial structures.

2.3. Energy Analysis

A molecular mechanics-generalized Born/surface area (MM-GB/SA) approach was
used to calculate the binding free energies for ERα1_E2, ERα2_E2, ERα1_OHT, and
ERα2_OHT complexes. The binding free energy for the representative structure from
each cluster of ERα1_E2, ERα1_OHT, ERα2_E2, and ERα2_OHT complexes are depicted in
Figure 6. The binding free energy analysis plot shows different patterns of energy travel
for complexes.

For ERα1_E2 and ERα2_E2, the free energy values shifted from −86.70 to −97.43 Kcal/mol
and from −92.87 to −96.03 Kcal/mol in the MD simulations, respectively (top of Figure 6).
In the early simulation time, a higher free energy value −86.70 Kcal/mol was observed
for the complex ERα1_E2 than for the complex ERα2_E2 which had a free energy value
of −92.87 Kcal/mol. At the end of the simulations, the complex ERα1_E2 had a lower
free energy value (−97.43 Kcal/mol) than the complex ERα2_E2 (−96.03 Kcal/mol). The
dynamic patterns of free energy revealed that E2 can accommodate better in the LBP of the
ER agonist conformer than the ER antagonist conformer.
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Figure 6. Binding free energy analysis on the average structure from each cluster of ER complexes
ERα2_E2 (brown in A), ERα1_E2 (blue in A), ERα1_OHT (brown in B), and ERα2_OHT (blue in B)
calculated using Prime MM-GB/SA.

For ERα1_OHT and ERα2_OHT, the free energy travels from−134.20 to−123.20 Kcal/mol
and from −106.31 to −101.07 Kcal/mol, respectively (bottom of Figure 6). The increase
in free energy of ERα2_OHT in the simulation was smaller compared to ERα1_OHT.
The larger increase in free energy for ERα1_OHT in the simulation might be due to H12
changing from an agonist conformation to an antagonist conformation. The analysis of free
energy pattern in the simulations indicated that OHT had stronger binding than E2 in the
hydrophobic LBP of ERα.

The dynamic binding interaction pattern analysis revealed that E2 and OHT bind
tightly in the LBP of ERα1 and ERα2. Throughout the simulation, 12 residues of ERα1
interacted with E2. Among the 12 residues, His524 and Glu353 had hydrogen bond
interactions in more than 60% and less than 20% of the simulation time, respectively.
Phe404 had hydrophobic interactions in more than 60% of the simulation time. Though
Ala350, Leu384, Met388, Leu391, Ile424 and Leu525 had hydrophobic interactions, the
interactions were observed in less than 20% of the simulation time (Figure 7). The hydrogen
bond between E2 and His524 and the hydrophobic interaction between E2 and Phe404 were
the most stable in ERα1_E2 complex, while the other observed interactions were transient.
Thirty-three residues of ERα2 formed interactions with OHT. Among the 33 residues,
Glu353 had hydrogen bond interactions with OHT in more than 70% of the simulation time,
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while Thr347, Arg394 and Phe404 had hydrogen bond interactions with OHT in less than
20% of the simulation time. Ala350 and Leu525 had hydrophobic interactions with OHT
in more than 40% of the simulation time, while Met343, Leu346, Leu354, Trp383, Leu384,
Leu387, Met388, Leu391, Phe404, Met421, Ile424, Leu428 and His525 had hydrophobic
interactions with OHT in less than 30% of the simulation time (Figure 7). Therefore, the
hydrogen bond between OHT and Glu353 and hydrophobic interactions between OHT
and Ala350 and Leu525 were more stable than other observed interactions. The dynamic
binding interactions pattern analysis revealed that OHT tightly binds ERα2.
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3. Discussion

ERα is one of the well-studied targets in the endocrine system. It plays a major role in
various diseases such as cancer, bone modeling, reproductive system, cardiovascular sys-
tem, metabolism, and cell proliferation [3]. Until now, many estrogenic activity chemicals
were identified and crystallized in the binding site of the ER. Various computational and
experimental studies were carried out to predict estrogenic activity of chemicals such as
agonist, antagonist, binder, or non-binder. However, the ERα dynamic binding patterns
for agonist and antagonist remain unclear. Hence, in this study, various computational
techniques were applied to gain insight to the dynamic binding patterns of agonist and
antagonist in the binding site of ERα. The 3D structure of ER complexed with E2 and
OHT were retrieved from the PDB. The ERα1 and ERα2 represents the ER conformation in
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presence of E2 and OHT, respectively. The ERα1 and ERα2 were used as the target proteins
to dock the E2 and OHT using QPLD.

E2 and OHT were redocked in the binding sites of ERα1 and ERα2, respectively, to
validate the docking procedure and parameters [56]. The complexes from redocking were
superimposed with the X-ray crystal structures 1GWR and 3ERT, respectively, to calculate
RMSD values for the ligands (Figure 8). The RMSD values for E2 and OHT were 0.309 Å
and 0.439 Å, respectively. The small RMSD values indicate that the docking procedure
used and parameters are reliable.
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The XP scores of E2 in the LBP of ERα1 and ERα2 were −11.00 and −9.65 Kcal/mol, re-
spectively. The ERα1 and ERα2 complex with OHT had XP scores −9.07 and −8.59 Kcal/mol,
respectively. Based on the Glide XP scores, E2 and OHT can bind tightly in the binding site
of ERα1 compared to ERα2. The analysis based on the QPLD scores showed a different
result compared to the Glide XP scores. Based on the QPLD scores, E2 and OHT can
tightly bind in the binding site of ERα1 and ERα2, respectively. Applying ab initio charges
can significantly increase the predictive power of the orientation of the compounds in
the binding site of a protein. Hence, the ERα complex with E2 and OHT were selected
based on the QPLD scores for interaction analysis instead of the Glide XP docking scores.
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The selected four ER complexes (ERα1_E2, ERα1_OHT, ERα2_E2, and ERα2_OHT) were
subjected to MD simulations.

The in-house MATLAB script was used to calculate the RMSD matrixes from MD
simulation trajectory files of the ERα complexes. The heat maps were generated based
on the RMSD matrixes to identify structure clusters in the trajectory files (Figure 4). The
heat maps showed various patterns of structural changes in the MD simulations of the
four complexes. Hence, the hierarchical clustering method was used to group similar
conformations of the ER complex from each trajectory based on its RMSD values. The
clustering analysis revealed 6, 4, 5, and 4 clusters for ERα1_E2, ERα1_OHT, ERα2_OHT, and
ERα2_E2, respectively. The binding free energy value was calculated for the representative
structures from each cluster. For ERα1_E2 and ERα2_E2, the free energy values shifted from
−86.70 to −97.43 Kcal/mol and −92.87 to −96.03 Kcal/mol, respectively. For ERα1_OHT
and ERα2_OHT, the free energy travels from −134.20 to −123.20 Kcal/mol and from
−106.31 to −101.07 Kcal/mol, respectively. The free energy analysis revealed that OHT
had tighter binding than E2 in the hydrophobic ligand pocket of ERα1 and ERα2. So,
to dissociate OHT from ERα higher external energy is required than for E2. Thus, the
antagonist stays longer in the LBP of ER and represses its function.

4. Materials and Methods
4.1. Study Design

The overall workflow of this study is depicted in Figure 9. The ER complexed with
E2 (PDB ID:1GWR, agonist) and OHT (PDB ID:3ERT, antagonist) were downloaded from
the PDB. ER in the agonist and antagonist conformations was named ERα1 and ERα2,
respectively. The QPLD method was applied to re- and cross-dock E2 and OHT in the LBP
of ERα1 and ERα2 conformation. Four ER complexes (ERα1_E2, ERα1_OHT, ERα2_E2,
and ERα2_OHT) were obtained from the molecular docking. The four ER complexes
were subjected to 100-nanosecond (ns) MD simulations using DESMOND (https://www.
schrodinger.com/products/desmond, (accessed on 8 August 2021)-Maestro-Desmond
v-44017 Interoperability Tools, Schrödinger, New York, NY, USA). A MATLAB script was
written to generate a RMSD matrix from each trajectory file. The hierarchical clustering
analysis was carried out based on RMSD values and a representative structure was selected
from each cluster. The binding free energy value was calculated by prime MM-GB/SA for
each representative structure of the ER complexes from clustering analysis.

4.2. Molecular Docking
4.2.1. Protein Preparation WIZARD

The E2 complex structures, 1GWR and 3ERT, were downloaded from the PDB. 1GWR is
a dimer form of ER complexed with E2. In this study, only the chain A with E2 was selected.
Protein Preparation Wizard from Maestro in Schrodinger suite (https://www.schrodinger.
com/products/protein-preparation-wizard, (accessed on 8 August 2021) version 2015-4
Schrödinger, LLC, New York, NY, USA) was used to re-move the heteroatoms and water
molecules which are not interacting with binding site residues from 1GWR_A (ERα1) and
3ERT (ERα2). The Prime module in Schrodinger suite (https://www.schrodinger.com/
products/prime, (accessed on 8 August 2021) version 2015-4 Schrödinger, LLC, New York,
NY, USA) was used to add proper hydrogen atoms and to build the missing atom or
residues in ER. Subsequently, the structures were optimized and minimized by applying
the OPLS-AA-2005 force field [57]. The minimized ERα1 and ERα2 structures were used as
the receptors to dock E2 and OHT. A 2 Å grid box was generated around the E2 and OHT
in the binding site of ERα1 and ERα2, respectively.

4.2.2. Ligand Preparation

E2 and OHT were extracted from the structures 1GWR and 3ERT, respectively. These
two compounds were imported into the LigPrep module in Schrodinger suite (https:
//www.schrodinger.com/products/ligprep, (accessed on 8 August 2021) version 2015-4

https://www.schrodinger.com/products/desmond
https://www.schrodinger.com/products/desmond
https://www.schrodinger.com/products/protein-preparation-wizard
https://www.schrodinger.com/products/protein-preparation-wizard
https://www.schrodinger.com/products/prime
https://www.schrodinger.com/products/prime
https://www.schrodinger.com/products/ligprep
https://www.schrodinger.com/products/ligprep
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Schrödinger, LLC, New York, NY, USA) to check the bond order, ionization states, steric
isomers and search the tautomers. The conformers were generated using the ConfGen
method in the LigPrep module with distance dependent dielectric solvation and OPLS-
AA_2005 force field used for energy minimization. The prepared E2 and OHT were saved
in the SDF format.
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4.2.3. QPLD Molecular Docking

QPLD is one of the powerful docking methods to identify the best orientation of a
chemical in the binding site of a protein. As illustrated in Figure 10, QPLD combines
the Glide docking algorithm with QM/MM calculations by Q-site program which uses
the Jaguar and Impact program for the ligand with binding site residues (QM) and the
remaining regions of the protein (MM), respectively. Subsequently, the ab initio charge
was applied for the chemicals calculated using the Q-site which uses the 6-31G**/LACVP*
basis set, B3LYP and Ultrafine SCF accuracy level for the density function calculation.

Initially, the Glide molecular docking module was used to dock E2 and OHT in the
LBP of ERα1 and ERα2 using XP mode. GRID files were prepared by selecting residues 5 Å
around the ligands. QM-based charge generated by DFT method was incorporated. The
poses generated from Glide docking for the four complex structures (ERα1_E2, ERα1_OHT,
ERα2_E2, and ERα2_OHT) by XP mode were subjected to QPLD to redock E2 and OHT in
the LBP of ER1α and ER2α. First, QPLD generates several unique ER complexes with E2



Int. J. Mol. Sci. 2021, 22, 9371 13 of 18

and OHT. The QM regions were assigned for the ligand and the residues within 5 Å to the
ligands (Figure 11).
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The generated ER complexes were automatically subjected to the Q-site to compute
the single point energy for each ER complex. Once the charge was calculated, E2 and
OHT were redocked in the LBP of ERα1 and ERα2 by Glide module. Finally, 20 different
complexes with XP score, docking energy, and the QPLD score were calculated.

4.3. MD Simulations

MD simulations were used to optimize the conformation of the docked ER complexes
by analyzing the movements of atoms. The best conformation of ERα1_E2, ERα1_OHT,
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ERα2_E2, and ERα2_OHT from QPLD were subjected to 100 ns MD simulations using
DESMOND (https://deshawresearch.com, (accessed on 8 August 2021) Maestro-Desmond
v-44017 Interoperability Tools, Schrödinger, New York, NY, USA). The simulation systems
were prepared by applying the OPLS-AA-2005 force field to the ER and ligands (E2 and
OHT) and an orthorhombic box was generated by 10 Å border from the ER complexes.
The accuracy of MD simulation is impacted by the force field used for the components in a
simulation system. A specific force field should be derived and used for a nonstandard
molecule [58]. The OPLS parameters are optimized for a variety of structural features in
small molecules such as E2 and OHT to reproduce the thermodynamic properties in the
liquid state [59–61]. The orthorhombic box was filled with TIP3P water molecules. To
neutralize the whole simulation system, 0.15 M Na+ and Cl− were added based on the
total charge of the ER complex. The ER simulation systems were subjected to two-step
energy minimizations with and without the restraint applied on the solute. As a first step
of energy minimization, the ER complex was subjected to 12 ps of NVT simulation carried
out at 10 K with Berendsen barostat. A restraint was applied to all the heavy atoms of the
ER complexes, followed by 12 ps of NPT simulations carried out at 1 atmospheric pressure
and 10 K with Berendsen barostat. The temperature and pressure were kept constant at
310 K for 100 ns. Further, the relaxed systems were subjected to a 100-ns simulation with
a time set of two femtoseconds. The final trajectory files were saved for every 4.8 ps and
used for subsequent analysis.

The trajectory files were used to elucidate the ER molecular mechanism in the presence
of E2 and OHT. Initially, the RMSD matrices were created using the MATLAB script. The
structures in each trajectory file were clustered based on the RMSD values calculated
between them. The clusters with more than 500 structures were selected. A representative
structure was obtained from each cluster for energy analysis.

4.4. Energy Calculation

The representative structures of ERα1 and ERα2 complexes from the clustering anal-
ysis were used to calculate the binding free energy. The MM-GB/SA method and OPLS-
AA_2005 force field were used to compute the electrostatic component of the solvation free
energy. This approach combines the molecular mechanism and continuum solvent models
to predict the protein–ligand binding free energy as illustrated by the thermodynamic cycle
shown in in Figure 12.
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First, the receptor (ERα1 or ERα2), ligand (E2 or OHT), and complex of a receptor
bound by a ligand were optimized in the solvent environment. The optimized structures
were then used to calculate energy terms such as coulomb energy, covalent binding energy,

https://deshawresearch.com
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Van der Waals energy, lipophilic energy, generalized Born electrostatic solvation energy,
hydrogen bonding correction, and pi-pi stacking correction. These energy terms for the
receptor, ligand, and complex were summed up as free energy as shown in equations below.

EProtein = ECoulomb
Protein + ECovalent

Protein + EHbond
Protein + ELipo

Protein + ESolv_GB
Protein + EvdW

Protein + EPacking
Protein

ELigand = ECoulomb
Ligand + ECovalent

Ligand + EHbond
Ligand + ELipo

Ligand + ESolv_GB
Ligand + EvdW

Ligand + EPacking
Protein

EComplex = ECoulomb
Complex + ECovalent

complex + EHbond
Complex + ELipo

Complex + ESolv_GB
Complex + EvdW

Complex + EPacking
Complex

ECoulomb, ECovalent, EHbond, ELipo, ESolv_GB, EvdW, and EPacking represent coulomb energy,
covalent binding energy, hydrogen bonding correction, lipophilic energy, generalized
born electrostatic solvation energy, Van der Waals energy, and pi-pi packing correction,
respectively. The binding free energy is estimated from the free energies of the ligand,
protein and the complex using the following equations.

∆Gbind = Ecomplex − Eprotein − Eligand

∆Gbind is the estimated binding free energy. Ecomplex is the estimated free energy of the
complex in solvent, EProtein is the free energy of the protein in solvent, and Eligand is the free
energy of the ligand in solvent.

5. Conclusions

ER is one of the important endocrine targets in the endocrine system. Overexpression
of ER leads to various diseases such as cancer. Hence, understanding the dynamic binding
patterns of agonist and antagonist binding in the hydrophobic binding pocket of ER gives
insight into designing and predicting effective estrogenic compounds. Here, we applied an
approach combining QM/MM docking and MD simulations to determine the energy-based
ER agonist and antagonist binding mechanisms. The molecular docking revealed that E2
and OHT tightly bind in the LBP of ERα1 and ERα2, respectively. QPLD more accurately
predicted the binding orientation of the estrogenic compounds in the LBP of ER than
Glide docking. The heat maps RMSD values revealed that different clusters formed for
the structures during the MD simulations and the binding mechanisms of agonist and
antagonist in ERα were different. The binding free energy analysis for the representative
structures of the clusters revealed that OHT binds more tightly with ERα2, while E2 prefers
to bind ERα1. The binding interaction analysis revealed that the hydrogen bond between
OHT and Glu353 and the hydrophobic interaction between OHT and Ala350 and Leu525
are the most stable interactions in the ERα2_OHT complex. These interactions might be
the reason for the tight binding of OHT rather than E2 in the LBP of ERα1 and ERα2.
Our findings shed light on the structural basis of agonist and antagonist dynamic binding
pattern. This insight into the binding pattern and free energy analysis may help to discover
ERα agonists and antagonists as drug candidates and facilitate risk assessment of chemicals
through ER-mediated responses.
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