Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine
Abstract
:1. Introduction
2. Silica Coating of QDs
2.1. Silica-Coated Single QDs
2.2. Silica-Coated Multi-QDs
2.2.1. Multiple-Doped (“Raisin Bun”-Type) Multi-QDs
2.2.2. Template-Based Multi-QDs
2.3. Silica-QD Hybrids with Functional Materials
3. Bioapplications of Silica-Coated QDs
3.1. QDs as Flourescence Labels
3.2. FRET-Based Assay for Biomolecule Sensing
3.3. QDs for Imaging
3.3.1. In Vitro Cell Imaging
3.3.2. In Vivo Cell Tracking
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Zhao, Z.J.; Wang, T.; Gong, J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 2018, 47, 5423–5443. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.M.; Mainwaring, P.N.; Tomlins, S.A.; Trau, M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat. Rev. Urol. 2019, 16, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Rho, W.Y.; Yang, H.Y.; Kim, H.S.; Son, B.S.; Suh, J.S.; Jun, B.H. Recent advances in plasmonic dye-sensitized solar cells. J. Solid State Chem. 2018, 258, 271–282. [Google Scholar] [CrossRef]
- Hahm, E.; Cha, M.G.; Kang, E.J.; Pham, X.H.; Lee, S.H.; Kim, H.M.; Kim, D.E.; Lee, Y.S.; Jeong, D.H.; Juns, B.H. Multilayer Ag-embedded silica nanostructure as a surface-enhanced raman scattering-based chemical sensor with dual-function internal standards. ACS Appl. Mater. Interfaces 2018, 10, 40748–40755. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, D.M.; Jeong, C.; Park, S.Y.; Cha, M.G.; Ha, Y.; Jang, D.; Kyeong, S.; Pham, X.H.; Hahm, E.; et al. Assembly of plasmonic and magnetic nanoparticles with fluorescent silica shell layer for tri-functional SERS-magnetic-fluorescence probes and its bioapplications. Sci. Rep. 2018, 8, 13938. [Google Scholar] [CrossRef] [PubMed]
- Pham, X.H.; Hahm, E.; Kim, T.H.; Kim, H.M.; Lee, S.H.; Lee, Y.S.; Jeong, D.H.; Jun, B.H. Enzyme-catalyzed Ag growth on Au nanoparticle-assembled structure for highly sensitive colorimetric immunoassay. Sci. Rep. 2018, 8, 6290. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Aalipour, A.; Vermesh, O.; Yu, J.H.; Gambhir, S.S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Pham, X.-H.; Rho, W.-Y.; Chang, H.; Lee, S.H.; Kim, J.; Hahm, E.; Lee, J.H.; Lee, Y.-S.; Jun, B.-H. Introduction of Nanobiotechnology. In Advances in Experimental Medicine and Biology; Springer Nature Singapore: Singapore, 2021; Volume 1309, pp. 1–22. [Google Scholar]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef]
- Kagan, C.R.; Murray, C.B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026. [Google Scholar] [CrossRef]
- Yong, K.-T.; Roy, I.; Ding, H.; Bergey, E.J.; Prasad, P.N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 2009, 5, 1997–2004. [Google Scholar] [CrossRef]
- Elzorkany, H.E.; Farghali, M.A.; Hassan, M.A.; El-Sayed, K.; Canonico, M.; Konert, G.; Farroh, K.; Elshoky, H.A.; Kana, R. Ecotoxicology impact of silica-coated CdSe/ZnS quantum dots internalized in Chlamydomonas reinhardtii algal cells. Sci. Total Environ. 2019, 666, 480–489. [Google Scholar] [CrossRef]
- Ha, Y.; Jung, H.S.; Jeong, S.; Kim, H.M.; Kim, T.H.; Cha, M.G.; Kang, E.J.; Pham, X.H.; Jeong, D.H.; Jun, B.H. Fabrication of Remarkably Bright QD Densely-Embedded Silica Nanoparticle. Bull. Korean Chem. Soc. 2019, 40, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Smith, A.M.; Nie, S. Chemical analysis and cellular imaging with quantum dots. Analyst 2004, 129, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.M. Quantum dots in cell biology. J. Histochem. Cytochem. 2011, 59, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Murata, M.M.; Rho, W.-Y.; Kim, J.; Lee, J.H.; Lee, S.H.; Jeong, D.H.; Jun, B.H. Luminescent Nanomaterials (I). In Nanotechnology for Bioapplications; Jun, B.-H., Ed.; Springer Nature Singapore: Singapore, 2021; pp. 67–96. [Google Scholar]
- Murray, C.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- De Mello Donegá, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Kim, J.; Lee, S.H.; Rho, W.-Y.; Lee, J.H.; Jeong, D.H.; Jun, B.H. Luminescent Nanomaterials (II). In Nanotechnology for Bioapplications; Jun, B.-H., Ed.; Springer Nature Singapore: Singapore, 2021; pp. 97–132. [Google Scholar]
- Zhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today 2017, 20, 360–376. [Google Scholar] [CrossRef]
- Chang, H.; Kim, J.; Rho, W.-Y.; Pham, X.-H.; Lee, J.H.; Lee, S.H.; Jeong, D.H.; Jun, B.H. Silica Nanoparticles. In Nanotechnology for Bioapplications; Jun, B.-H., Ed.; Springer Nature Singapore: Singapore, 2021; pp. 41–65. [Google Scholar]
- Kim, J.A.; Åberg, C.; Salvati, A.; Dawson, K.A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanotechnol. 2011, 7, 62. [Google Scholar] [CrossRef]
- Correa-Duarte, M.A.; Giersig, M.; Liz-Marzan, L.M. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys. Lett. 1998, 286, 497–501. [Google Scholar] [CrossRef]
- Stober, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size Range. J. Cool. Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Koole, R.; Van Schooneveld, M.M.; Hilhorst, J.; de Mello Donegá, C.; Hart, D.C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem. Mater. 2008, 20, 2503–2512. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Jiang, J.; Lee, S.S.; Ying, J.Y. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 2008, 24, 5842–5848. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, A.; Ando, M.; Murase, N. Multiple hydrophobic QDs assembled in SiO2 particles using silane coupling agent. Colloids Surf. A Physicochem. Eng. Asp. 2012, 397, 92–98. [Google Scholar] [CrossRef]
- Jo, A.; Kim, T.H.; Kim, D.M.; Kim, H.M.; Seong, B.; Kim, J.; Pham, X.-H.; Jung, H.S.; Lee, S.H.; Hwang, D.W.; et al. Sensitive detection of virus with broad dynamic range based on highly bright quantum dot-embedded nanoprobe and magnetic beads. J. Ind. Eng. Chem. 2020, 90, 319–326. [Google Scholar] [CrossRef]
- Rogach, A.L.; Nagesha, D.; Ostrander, J.W.; Giersig, M.; Kotov, N.A. “Raisin Bun”-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater. 2000, 12, 2676–2685. [Google Scholar] [CrossRef]
- Yang, P.; Matras-Postolek, K.; Song, X.; Zheng, Y.; Liu, Y.; Ding, K.; Nie, S. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol-gel processes. Mater. Res. Bull. 2015, 70, 385–391. [Google Scholar] [CrossRef]
- Yang, P.; Murase, N.; Yu, J.H. SiO2 beads with quantum dots: Preparation and stability investigation for bioapplications. Colloids Surf. A Physicochem. Eng. Asp. 2011, 385, 159–165. [Google Scholar] [CrossRef]
- Yoo, H.; Woo, K. Direct Hybridization of Hydrophobic Nanocrystals with Colloidal Silica via van der Waals Force. J. Phys. Chem. Lett. 2018, 9, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lim, K.; Woo, K. Facile synthesis and optical properties of colloidal silica microspheres encapsulating a quantum dot layer. Chem. Commun. 2010, 46, 5584–5586. [Google Scholar] [CrossRef]
- Jun, B.H.; Hwang, D.W.; Jung, H.S.; Jang, J.; Kim, H.; Kang, H.; Kang, T.; Kyeong, S.; Lee, H.; Jeong, D.H.; et al. Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv. Funct. Mater. 2012, 22, 1843–1849. [Google Scholar] [CrossRef]
- Han, M.; Gao, X.; Su, J.Z.; Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001, 19, 631–635. [Google Scholar] [CrossRef]
- Lance, K.K.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. 2003, 107, 668–677. [Google Scholar]
- Ji, B.; Giovanelli, E.; Habert, B.; Spinicelli, P.; Nasilowski, M.; Xu, X.; Lequeux, N.; Hugonin, J.P.; Marquier, F.; Greffet, J.J.; et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 2015, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- Serrano, I.C.; Vazquez-Vazquez, C.; Adams, A.M.; Stoica, G.; Correa-Duarte, M.A.; Palomares, E.; Alvarez-Puebla, R.A. The effect of the silica thickness on the enhanced emission in single particle quantum dots coated with gold nanoparticles. RSC Adv. 2013, 3, 10691–10695. [Google Scholar] [CrossRef]
- Cha, M.G.; Son, W.K.; Choi, Y.S.; Kim, H.M.; Hahm, E.; Jun, B.H.; Jeong, D.H. High-throughput multiplex analysis method based on Fluorescence-SERS quantum Dot-Embedded silver bumpy nanoprobes. Appl. Surf. Sci. 2021, 558, 149787. [Google Scholar] [CrossRef]
- Ang, E.H.; Zeng, J.; Subramanian, G.S.; Chellappan, V.; Sudhaharan, T.; Padmanabhan, P.; Gulyas, B.; Selvan, S.T. Silica-coated Mn-doped ZnS nanocrystals for cancer theranostics. ACS Appl. Nano Mater. 2020, 3, 3088–3096. [Google Scholar] [CrossRef]
- Kyeong, S.; Jeong, C.; Kim, H.Y.; Kang, H.; Yang, J.K.; Lee, D.S.; Lee, D.S.; Juns, B.H.; Lee, Y.S. Fabrication of mono-dispersed silica-coated quantum dot-assembled magnetic nanoparticles. RSC Adv. 2015, 5, 32072–32077. [Google Scholar] [CrossRef]
- Lin, B.; Yao, X.; Zhu, Y.; Shen, J.; Yang, X.; Li, C. Multifunctional gadolinium-labeled silica-coated core/shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. RSC Adv. 2014, 4, 20641–20648. [Google Scholar] [CrossRef]
- Jinadasa, K.K.; Pena-Vazquez, E.; Bermejo-Barrera, P.; Moreda-Pineiro, A. A phenobarbital containing polymer/silica coated quantum dot composite for the selective recognition of mercury species in fish samples using a room temperature phosphorescence quenching assay. Talanta 2020, 216, 120959. [Google Scholar] [CrossRef] [PubMed]
- Kyeong, S.; Kang, H.; Yim, J.; Jeon, S.J.; Jeong, C.H.; Lee, Y.S.; Jung, B.H.; Kim, J.H. Quantum dot-assembled nanoparticles with polydiacetylene supramolecule toward label-free, multiplexed optical detection. J. Colloid Interface Sci. 2013, 394, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.Q.; Wang, X.; Yang, T.; Ding, Y.; Li, L.; Zhao, S.; Li, P.; Xu, X.; Zhu, L. Multifunctional Fe3O4 cluster@ quantum dot-embedded mesoporous SiO2 nanoplatform probe for cancer cell fluorescence-labelling detection and photothermal therapy. Ceram. Int. 2021, 47, 8271–8278. [Google Scholar] [CrossRef]
- Zhou, R.H.; Sun, S.; Li, C.; Wu, L.; Hou, X.; Wu, P. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging. ACS Appl. Mater. Interfaces 2018, 10, 34060–34067. [Google Scholar] [CrossRef] [PubMed]
- Perton, F.; Tasso, M.; Medina, G.A.M.; Ménard, M.; Blanco-Andujar, C.; Portiansky, E.; van Raap, M.B.F.; Begin, D.; Meyer, F.; Colin, S.B.; et al. Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia. Appl. Mater. Today 2019, 16, 301–314. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, Y.; Wu, R.; Li, J.; Shen, H.; Yang, H.; Zhang, H.; Li, S. Sensitive Immunoassay based on biocompatible and robust silica-coated Cd-free InP-based quantum dots. Inorg. Chem. 2021, 60, 6503–6513. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lv, Y.; Li, N.; Wu, R.; Xing, M.; Shen, H.; Li, L.S.; Chen, X. Robust synthesis of bright multiple quantum dot-embedded nanobeads and its application to quantitative immunoassay. Chem. Eng. J. 2019, 361, 499–507. [Google Scholar] [CrossRef]
- Darwish, G.H.; Asselin, J.; Tran, M.V.; Gupta, R.; Kim, H.; Boudreau, D.; Algar, W.R. Fully self-assembled silica nanoparticle–semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera. ACS Appl. Mater. Interfaces 2020, 12, 33530–33540. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Hao, A.; Shi, Z.; Dai, C.; Yang, Y.; Huang, H. Silica-coated silver nanoparticles decorated with fluorescent CdTe quantum dots and DNA aptamers for detection of tetracycline. ACS Appl. Nano Mater. 2020, 3, 9796–9803. [Google Scholar] [CrossRef]
- Goryacheva, O.A.; Guhrenz, C.; Schneider, K.; Beloglazova, N.V.; Goryacheva, I.Y.; De Saeger, S.; Gaponik, N. Silanized luminescent quantum dots for the simultaneous multicolor lateral flow immunoassay of two mycotoxins. ACS Appl. Mater. Interfaces 2020, 12, 24575–24584. [Google Scholar] [CrossRef]
- Kim, H.-M.; Oh, C.; An, J.; Baek, S.; Bock, S.; Kim, J.; Jung, H.S.; Song, H.; Kim, J.W.; Jo, A.; et al. Multi-quantum dots-embedded silica-encapsulated nanoparticle-based lateral flow assay for highly sensitive exosome detection. Nanomaterials 2021, 11, 768. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, X.; Wu, R.; Wang, G.; Li, J.; Chai, Y.; Shen, H.; Li, L.S. Sensitive and quantitative determination of cardiac troponin I based on silica-encapsulated CdSe/ZnS quantum dots and a fluorescence lateral flow immunoassay. Anal. Lett. 2020, 53, 1757–1773. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.; Liu, X.; Li, J.; Wang, C.; Wang, S. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay. RSC Adv. 2020, 10, 2483–2489. [Google Scholar] [CrossRef] [Green Version]
- Beloglazova, N.; Goryacheva, O.A.; Speranskaya, E.S.; Aubert, T.; Shmelin, P.S.; Kurbangaleev, V.R.; Goryacheva, I.Y.; De Saeger, S. Silica-coated liposomes loaded with quantum dots as labels for multiplex fluorescent immunoassay. Talanta 2015, 134, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goftman, V.V.; Aubert, T.; Ginste, D.V.; Van Deun, R.; Beloglazova, N.V.; Hens, Z.; De Saeger, S.; Goryacheva, I.Y. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens. Bioelectron. 2016, 79, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, E.; Ansari, L.; Abnous, K.; Taghdisi, S.M.; Ramezani, P.; Ramezani, M.; Alibolandi, M. Silica-quantum dot nanomaterials as a versatile sensing platform. Crit. Rev. Anal. Chem. 2020, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhu, C.; Xu, S.; Wu, X.; Zhang, X.; Zheng, Y.; Wu, M.; Tong, Z.; Fang, W.; Zhang, K. Fluorescent color analysis of ascorbic acid by ratiometric fluorescent paper utilizing hybrid carbon dots-silica coated quantum dots. Dye. Pigment. 2021, 186, 108995. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, Y.; Zhang, B.; Lu, X. Mn2+ doped ZnS QDs modified fluorescence sensor based on molecularly imprinted polymer/sol-gel chemistry for detection of Serotonin. Talanta 2018, 190, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lin, Z.Z.; Zeng, J.; Zhong, H.P.; Chen, X.M.; Huang, Z.Y. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 117–122. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; He, X.W.; Wang, Y.Z.; Li, W.Y.; Zhang, Y.K. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin. Biosens. Bioelectron. 2014, 54, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Kim, M.J.; Choe, Y.; Kim, S.K.; Woo, K. Highly photoluminescent superparamagnetic silica composites for on-site biosensors. J. Mater. Chem. B 2014, 2, 1938–1944. [Google Scholar] [CrossRef]
- Park, S.M.; Wong, D.J.; Ooi, C.C.; Kurtz, D.M.; Vermesh, O.; Aalipour, A.; Suh, S.; Pian, K.L.; Chabon, J.J.; Lee, S.H.; et al. Molecular profiling of single circulating tumor cells from lung cancer patients. Proc. Natl. Acad. Sci. USA 2016, 113, E8379–E8386. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-L.; Tang, M.; Zhang, Z.L.; Qi, C.B.; Hu, J.; Ma, X.Y.; Pang, D.W. Chip-assisted single-cell biomarker profiling of heterogeneous circulating tumor cells using multifunctional nanosphres. Anal. Chem. 2018, 90, 10518–10526. [Google Scholar] [CrossRef]
- Bardi, G.; Malvindi, M.A.; Gherardini, L.; Costa, M.; Pompa, P.P.; Cingolani, R.; Pizzorusso, T. The biocompatibility of amino functionalized CdSe/ZnS quantum-dot-Doped SiO2 nanoparticles with primary neural cells and their gene carrying performance. Biomaterials 2010, 31, 6555–6566. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.; Muders, M.; Zhang, H.; Tindall, D.J. Mechanism of lymph node metastasis in prostate cancer. Future Oncol. 2010, 6, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Sleeman, J.P. The Lymph Node as a Bridgehead in the Metastatic Dissemination of Tumors; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Erogbogbo, F.; Tien, C.A.; Chang, C.W.; Yong, K.T.; Law, W.C.; Ding, H.; Roy, I.; Swihart, M.T.; Prasad, P.N. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem. 2011, 22, 1081–1088. [Google Scholar] [CrossRef]
- Dalal, C.; Jana, N.R. Riboflavin-terminated, multivalent quantum dot as fluorescent cell imaging probe. Langmuir 2019, 35, 11380–11388. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.; Han, R.; Luo, D.; Du, L.; Zheng, Q.; Wang, L.; Hong, Y.; Liu, Y.; Sha, Y. A facile synthesis of biocompatible, glycol chitosan shelled CdSeS/ZnS QDs for live cell imaging. Colloids Surf. B-Biointerfaces 2018, 172, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Veeranarayanan, S.; Poulose, A.C.; Mohamed, M.S.; Nagaoka, Y.; Iwai, S.; Nakagame, Y.; Kashiwada, S.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging. Int. J. Nanomed. 2012, 7, 3769. [Google Scholar]
- May, J.L.; Erogbogbo, F.; Yong, K.T.; Ding, H.; Law, W.C.; Swihart, M.T.; Prasad, P.N. Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic® encapsulation and antibody targeting. J. Solid Tumors 2012, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.; Ma, X.; House, A.; Kauzlarich, S.M.; Louie, A.Y. PET imaging and biodistribution of silicon quantum dots in mice. ACS Med. Chem. Lett. 2011, 2, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Li, W.; Liu, H.; Zhang, Y.; Chen, G.; Li, Z.; Wang, Q. An activatable NIR-II nanoprobe for in vivo early real-time diagnosis of traumatic brain injury. Angew. Chem. Int. Ed. 2020, 59, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, V.; Gao, X. siRNA-aptamer chimeras on nanoparticles: Preserving targeting functionality for effective gene silencing. ACS Nano 2011, 5, 8131–8139. [Google Scholar] [CrossRef] [PubMed]
- Volsi, A.L.; Fiorica, C.; D’Amico, M.; Scialabba, C.; Palumbo, F.S.; Giammona, G.; Licciardi, M. Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy. Eur. Polym. J. 2018, 105, 38–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, X.-H.; Park, S.-M.; Ham, K.-M.; Kyeong, S.; Son, B.S.; Kim, J.; Hahm, E.; Kim, Y.-H.; Bock, S.; Kim, W.; et al. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. Int. J. Mol. Sci. 2021, 22, 10116. https://doi.org/10.3390/ijms221810116
Pham X-H, Park S-M, Ham K-M, Kyeong S, Son BS, Kim J, Hahm E, Kim Y-H, Bock S, Kim W, et al. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. International Journal of Molecular Sciences. 2021; 22(18):10116. https://doi.org/10.3390/ijms221810116
Chicago/Turabian StylePham, Xuan-Hung, Seung-Min Park, Kyeong-Min Ham, San Kyeong, Byung Sung Son, Jaehi Kim, Eunil Hahm, Yoon-Hee Kim, Sungje Bock, Wooyeon Kim, and et al. 2021. "Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine" International Journal of Molecular Sciences 22, no. 18: 10116. https://doi.org/10.3390/ijms221810116
APA StylePham, X. -H., Park, S. -M., Ham, K. -M., Kyeong, S., Son, B. S., Kim, J., Hahm, E., Kim, Y. -H., Bock, S., Kim, W., Jung, S., Oh, S., Lee, S. H., Hwang, D. W., & Jun, B. -H. (2021). Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. International Journal of Molecular Sciences, 22(18), 10116. https://doi.org/10.3390/ijms221810116