Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation
Abstract
:1. Introduction
2. Results
2.1. Vasomotor Effect of PDBu and PKC Involvement
2.2. Role of ROS, NAD(P)H Oxidase, and Xanthine Oxidase in the PDBu-Induced Superoxide Production and Vascular Dysfunction
2.3. Expression of NOS and PKCβ2 in Coronary Arterioles
2.4. Role of JNK, p38 Kinase, and Rho Kinase in the Inhibitory Effect of PDBu
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Isolation and Cannulation of Coronary Microvessels
4.3. Effect of PDBu on Vasodilator Function of Isolated Coronary Arterioles
4.4. Immunohistochemical Detection of eNOS and PKCβ2
4.5. Detection of Vascular Superoxide
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rask-Madsen, C.; King, G.L. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishisaki, A.; Tsunobuchi, H.; Nakajima, K.; Imamura, T. Possible involvement of protein kinase C activation in differentiation of human umbilical vein endothelium-derived cell into smooth muscle-like cell. Biol. Cell 2004, 96, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, P.; Baba, A.; Matsuda, T.; Djamgoz, M.B.; Yaqoob, M.M.; Eccles, S.A. Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J. Biol. Chem. 2011, 286, 37919–37931. [Google Scholar] [CrossRef] [Green Version]
- Tiruppathi, C.; Minshall, R.D.; Paria, B.C.; Vogel, S.M.; Malik, A.B. Role of Ca2+ signaling in the regulation of endothelial permeability. Vasc. Pharmacol. 2002, 39, 173–185. [Google Scholar] [CrossRef]
- Muro, S.; Mateescu, M.; Gajewski, C.; Robinson, M.; Muzykantov, V.R.; Koval, M. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L809–L817. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Ren, Y.; Xu, W.; Rosa, R.H., Jr.; Kuo, L.; Hein, T.W. Constriction of retinal venules to endothelin-1: Obligatory roles of ETA receptors, extracellular calcium entry, and rho kinase. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5167–5175. [Google Scholar] [CrossRef] [Green Version]
- Potts, L.B.; Bradley, P.D.; Xu, W.; Kuo, L.; Hein, T.W. Role of endothelium in vasomotor responses to endothelin system and protein kinase C activation in porcine retinal arterioles. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7587–7594. [Google Scholar] [CrossRef]
- Rubanyi, G.M.; Desiderio, D.; Luisi, A.; Johns, A.; Sybertz, E.J. Phorbol dibutyrate inhibits release and action of endothelium-derived relaxing factor(s) in canine blood vessels. J. Pharmacol. Exp. Ther. 1989, 249, 858–863. [Google Scholar]
- Shimomura, E.; Shiraishi, M.; Iwanaga, T.; Seto, M.; Sasaki, Y.; Ikeda, M.; Ito, K. Inhibition of protein kinase C-mediated contraction by Rho kinase inhibitor fasudil in rabbit aorta. Naunyn-Schmiedeberg Arch. Pharmacol. 2004, 370, 414–422. [Google Scholar] [CrossRef]
- Baek, I.; Jeon, S.B.; Kim, J.; Seok, Y.M.; Song, M.J.; Chae, S.C.; Jun, J.E.; Park, W.H.; Kim, I.K. A role for Rho-kinase in Ca2+-independent contractions induced by phorbol-12,13-dibutyrate. Clin. Exp. Pharmacol. Physiol. 2009, 36, 256–261. [Google Scholar] [CrossRef]
- Gupte, S.A.; Kaminski, P.M.; George, S.; Kouznestova, L.; Olson, S.C.; Mathew, R.; Hintze, T.H.; Wolin, M.S. Peroxide generation by p47phox-Src activation of Nox2 has a key role in protein kinase C-induced arterial smooth muscle contraction. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1048–H1057. [Google Scholar] [CrossRef] [Green Version]
- Yasunari, K.; Maeda, K.; Nakamura, M.; Yoshikawa, J. Carvedilol inhibits pressure-induced increase in oxidative stress in coronary smooth muscle cells. Hypertens. Res. 2002, 25, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, N.; Alexander, G.; Park, J.K.; Maasch, C.; Buchwalow, I.; Luft, F.C.; Haller, H. Differential expression of protein kinase C isoforms in streptozotocin-induced diabetic rats. Kidney Int. 1999, 56, 1737–1750. [Google Scholar] [CrossRef] [Green Version]
- Gutterman, D.D. Vascular dysfunction in hyperglycemia: Is protein kinase C the culprit? Circ. Res. 2002, 90, 5–7. [Google Scholar] [CrossRef]
- Hoshino, S.; Kikuchi, Y.; Nakajima, M.; Kimura, H.; Tsuyama, S.; Uemura, K.; Yoshida, K. Endothelial NO Synthase (eNOS) phosphorylation regulates coronary diameter during ischemia-reperfusion in association with oxidative stress. Free Radic. Res. 2005, 39, 481–489. [Google Scholar] [CrossRef]
- Korzick, D.H.; Rishel, M.E.; Bowles, D.K. Exercise and hypercholesterolemia produce disparate shifts in coronary PKC expression. Med. Sci. Sports Exerc. 2005, 37, 381–388. [Google Scholar] [CrossRef]
- Maczewski, M.; Beresewicz, A. The role of endothelin, protein kinase C and free radicals in the mechanism of the post-ischemic endothelial dysfunction in guinea-pig hearts. J. Mol. Cell. Cardiol. 2000, 32, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Ungvari, Z.; Csiszar, A.; Huang, A.; Kaminski, P.M.; Wolin, M.S.; Koller, A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 2003, 108, 1253–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touyz, R.M.; Schiffrin, E.L. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: Role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J. Hypertens. 2001, 19, 1245–1254. [Google Scholar] [CrossRef]
- Thengchaisri, N.; Hein, T.W.; Ren, Y.; Kuo, L. Endothelin-1 impairs coronary arteriolar dilation: Role of p38 kinase-mediated superoxide production from NADPH oxidase. J. Mol. Cell. Cardiol. 2015, 86, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hein, T.W.; Wang, W.; Ren, Y.; Shipley, R.D.; Kuo, L. Activation of JNK and xanthine oxidase by TNF-α impairs nitric oxide-mediated dilation of coronary arterioles. J. Mol. Cell. Cardiol. 2006, 40, 247–257. [Google Scholar] [CrossRef]
- Qamirani, E.; Ren, Y.; Kuo, L.; Hein, T.W. C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Hein, T.W.; Xu, X.; Ren, Y.; Xu, W.; Tsai, S.H.; Thengchaisri, N.; Kuo, L. Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles. J. Mol. Cell. Cardiol. 2019, 131, 82–90. [Google Scholar] [CrossRef]
- Tsai, S.H.; Lu, G.; Xu, X.; Ren, Y.; Hein, T.W.; Kuo, L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc. Res. 2017, 113, 1329–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.J.; Hill, M.; Kuo, L. Local Regulation of Microvascular Perfusion. In Handbook of Physiology, Section 2: The Cardiovascular System. Microcirculation, 2nd ed.; Pt. 2, Chpt. 6; Tuma, R.F., Duran, W.N., Ley, K., Eds.; American Physiological Society: Maryland, MD, USA, 2008; pp. 161–284. [Google Scholar] [CrossRef]
- Fu, X.; Gong, M.C.; Jia, T.; Somlyo, A.V.; Somlyo, A.P. The effects of the Rho-kinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol ester-induced Ca2+-sensitization of smooth muscle. FEBS Lett. 1998, 440, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.; Iftinca, M.; Cole, W.C.; Plane, F. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions. J. Physiol. 2002, 545, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.M.; Tam, R.; Ondrusova, K.; Mittal, R.; Narang, D.; Tran, C.H.; Welsh, D.G.; Plane, F. Endothelial feedback and the myoendothelial projection. Microcirculation 2012, 19, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Garland, C.J.; Bagher, P.; Powell, C.; Ye, X.; Lemmey, H.A.L.; Borysova, L.; Dora, K.A. Voltage-dependent Ca2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci. Signal. 2017, 10, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilian, W.M.; Kuo, L.; DeFily, D.V.; Jones, C.J.; Davis, M.J. Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions. Eur. Heart J. 1993, 14 (Suppl. I), 55–59. [Google Scholar]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinsley, J.H.; Hunter, F.A.; Childs, E.W. PKC and MLCK-dependent, cytokine-induced rat coronary endothelial dysfunction. J. Surg. Res. 2009, 152, 76–83. [Google Scholar] [CrossRef]
- Giardina, J.B.; Tanner, D.J.; Khalil, R.A. Oxidized-LDL enhances coronary vasoconstriction by increasing the activity of protein kinase C isoforms alpha and epsilon. Hypertension 2001, 37, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandabashi, T.; Shimokawa, H.; Miyata, K.; Kunihiro, I.; Eto, Y.; Morishige, K.; Matsumoto, Y.; Obara, K.; Nakayama, K.; Takahashi, S.; et al. Evidence for protein kinase C-mediated activation of Rho-kinase in a porcine model of coronary artery spasm. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 2209–2214. [Google Scholar] [CrossRef] [Green Version]
- Khalil, R.A. Protein kinase C inhibitors as modulators of vascular function and their application in vascular disease. Pharmaceuticals 2013, 6, 407–439. [Google Scholar] [CrossRef] [Green Version]
- Velnati, S.; Centonze, S.; Girivetto, F.; Capello, D.; Biondi, R.M.; Bertoni, A.; Cantello, R.; Ragnoli, B.; Malerba, M.; Graziani, A.; et al. Identification of key phospholipids that bind and activate atypical PKCs. Biomedicines 2021, 9, 45. [Google Scholar] [CrossRef]
- Ito, A.; Shimokawa, H.; Nakaike, R.; Fukai, T.; Sakata, M.; Takayanagi, T.; Egashira, K.; Takeshita, A. Role of protein kinase C-mediated pathway in the pathogenesis of coronary artery spasm in a swine model. Circulation 1994, 90, 2425–2431. [Google Scholar] [CrossRef] [Green Version]
- Salamanca, D.A.; Khalil, R.A. Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem. Pharmacol. 2005, 70, 1537–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budzyn, K.; Paull, M.; Marley, P.D.; Sobey, C.G. Segmental differences in the roles of rho-kinase and protein kinase C in mediating vasoconstriction. J. Pharmacol. Exp. Ther. 2006, 317, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Vono, R.; Fuoco, C.; Testa, S.; Pirro, S.; Maselli, D.; Ferland McCollough, D.; Sangalli, E.; Pintus, G.; Giordo, R.; Finzi, G.; et al. Activation of the pro-oxidant PKCβ2-p66Shc signaling pathway contributes to pericyte dysfunction in skeletal muscles of patients with diabetes with critical limb ischemia. Diabetes 2016, 65, 3691–3704. [Google Scholar] [CrossRef] [Green Version]
- Chalfant, C.E.; Ohno, S.; Konno, Y.; Fisher, A.A.; Bisnauth, L.D.; Watson, J.E.; Cooper, D.R. A carboxy-terminal deletion mutant of protein kinase CβII inhibits insulin-stimulated 2-deoxyglucose uptake in L6 rat skeletal muscle cells. Mol. Endocrinol. 1996, 10, 1273–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouroedov, A.; Eto, M.; Joch, H.; Volpe, M.; Luscher, T.F.; Cosentino, F. Selective inhibition of protein kinase Cβ2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 2004, 110, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, T.; Kuo, L.; Ren, Y.; Yoshida, A.; Hein, T.W. C-reactive protein inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2053–2060. [Google Scholar] [CrossRef]
- Singh, J.; Rattan, S. Role of PKC and RhoA/ROCK pathways in the spontaneous phasic activity in the rectal smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G723–G731. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, T.; Hein, T.W.; Yoshida, A.; Kuo, L. Simvastatin elicits dilation of isolated porcine retinal arterioles: Role of nitric oxide and mevalonate-rho kinase pathways. Investig. Ophthalmol. Vis. Sci. 2007, 48, 825–832. [Google Scholar] [CrossRef]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Lauro, D.; Novelli, L.; Page, C.P.; Kanabar, V.; Matera, M.G. High glucose enhances responsiveness of human airways smooth muscle via the Rho/ROCK pathway. Am. J. Respir. Cell Mol. Biol. 2012, 47, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Doe, C.; Bentley, R.; Behm, D.J.; Lafferty, R.; Stavenger, R.; Jung, D.; Bamford, M.; Panchal, T.; Grygielko, E.; Wright, L.L.; et al. Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities. J. Pharmacol. Exp. Ther. 2007, 320, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Kuo, L.; Davis, M.J.; Chilian, W.M. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 1995, 92, 518–525. [Google Scholar] [CrossRef]
- Kuo, L.; Chilian, W.M.; Davis, M.J. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 1991, 261, H1706–H1715. [Google Scholar] [CrossRef]
- Kuo, L.; Davis, M.J.; Cannon, M.S.; Chilian, W.M. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ. Res. 1992, 70, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Hein, T.W.; Belardinelli, L.; Kuo, L. Adenosine A2A receptors mediate coronary microvascular dilation to adenosine: Role of nitric oxide and ATP-sensitive potassium channels. J. Pharmacol. Exp. Ther. 1999, 291, 655–664. [Google Scholar]
- Bohlen, H.G. Protein kinase βII in Zucker obese rats compromises oxygen and flow-mediated regulation of nitric oxide formation. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H492–H497. [Google Scholar] [CrossRef]
- Shen, G.X. Selective protein kinase C inhibitors and their applications. Curr. Drug Targets Cardiovasc. Hematol. Disord. 2003, 3, 301–307. [Google Scholar] [CrossRef]
- Wei, L.; Yin, Z.; Yuan, Y.; Hwang, A.; Lee, A.; Sun, D.; Li, F.; Di, C.; Zhang, R.; Cao, F.; et al. A PKC-β inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc. Res. 2010, 80, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hein, T.W.; Omae, T.; Xu, W.; Yoshida, A.; Kuo, L. Role of arginase in selective impairment of endothelium-dependent nitric oxide synthase-mediated dilation of retinal arterioles during early diabetes. Investig. Ophthalmol. Vis. Sci. 2020, 61, 36. [Google Scholar] [CrossRef]
- Heitzer, T.; Wenzel, U.; Hink, U.; Krollner, D.; Skatchkov, M.; Stahl, R.A.; MacHarzina, R.; Brasen, J.H.; Meinertz, T.; Munzel, T. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: Evidence for an involvement of protein kinase C. Kidney Int. 1999, 55, 252–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, H.; Gador, A.; Lu, Y.H.; Lin, G.; Bankar, G.; MacLeod, K.M. Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCβ2. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H989–H1000. [Google Scholar] [CrossRef] [Green Version]
- Guzik, T.J.; Sadowski, J.; Guzik, B.; Jopek, A.; Kapelak, B.; Przybylowski, P.; Wierzbicki, K.; Korbut, R.; Harrison, D.G.; Channon, K.M. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Siflinger-Birnboim, A.; Goligorsky, M.S.; Del Vecchio, P.J.; Malik, A.B. Activation of protein kinase C pathway contributes to hydrogen peroxide-induced increase in endothelial permeability. Lab. Investig. J. Tech. Methods Pathol. 1992, 67, 24–30. [Google Scholar]
- Lu, G.; Greene, E.L.; Nagai, T.; Egan, B.M. Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 1998, 32, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Inoguchi, T.; Li, P.; Umeda, F.; Yu, H.Y.; Kakimoto, M.; Imamura, M.; Aoki, T.; Etoh, T.; Hashimoto, T.; Naruse, M.; et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000, 49, 1939–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudry, M.; Combadiere, C.; Marquetty, C.; Sheibani, A.; el Benna, J.; Hakim, J. Dissimilarities in superoxide anion production by human neutrophils stimulated by phorbol myristate acetate or phorbol dibutyrate. Immunopharmacology 1990, 19, 23–32. [Google Scholar] [CrossRef]
- Wojtera, E.; Konior, A.; Fedoryszak-Kuska, N.; Beresewicz, A. Obligatory role of intraluminal O2- in acute endothelin-1 and angiotensin II signaling to mediate endothelial dysfunction and MAPK activation in guinea-pig hearts. Int. J. Mol. Sci. 2014, 15, 19417–19443. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, X.; Potter, B.J.; Wang, W.; Kuo, L.; Michael, L.; Bagby, G.J.; Chilian, W.M. TNF-α contributes to endothelial dysfunction in ischemia/reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Baldus, S.; Koster, R.; Chumley, P.; Heitzer, T.; Rudolph, V.; Ostad, M.A.; Warnholtz, A.; Staude, H.J.; Thuneke, F.; Koss, K.; et al. Oxypurinol improves coronary and peripheral endothelial function in patients with coronary artery disease. Free Radic. Biol. Med. 2005, 39, 1184–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.L.; Ren, Y.; Rosa, R.H., Jr.; Kuo, L.; Hein, T.W. Contributions of sodium-hydrogen exchanger-1 and mitogen-activated protein kinases to enhanced retinal venular constriction to endothelin-1 in diabetes. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34353852/ (accessed on 20 August 2021).
- Knock, G.A.; Ward, J.P. Redox regulation of protein kinases as a modulator of vascular function. Antioxid. Redox Signal. 2011, 15, 1531–1547. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.M.; Irwin, M.G.; Xia, Z.Y.; Huang, Z.; Ouyang, J.; Xia, Z. Role of protein kinase C β2 activation in TNF-α-induced human vascular endothelial cell apoptosis. Can. J. Physiol. Pharmacol. 2009, 87, 221–229. [Google Scholar] [CrossRef]
- Alvira, C.M.; Sukovich, D.J.; Lyu, S.C.; Cornfield, D.N. Rho kinase modulates postnatal adaptation of the pulmonary circulation through separate effects on pulmonary artery endothelial and smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L872–L878. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Romero, M.J.; Toque, H.A.; Yang, G.; Caldwell, R.B.; Caldwell, R.W. The role of RhoA/Rho kinase pathway in endothelial dysfunction. J. Cardiovasc. Dis. Res. 2010, 1, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, H.; Sunamura, S.; Satoh, K. RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 2016, 118, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, M.; Xuan, L.; Liu, Y.; Chen, C. Anagliptin inhibits neointimal hyperplasia after balloon injury via endothelial cell-specific modulation of SOD-1/RhoA/JNK signaling in the arterial wall. Free Radic. Biol. Med. 2018, 121, 105–116. [Google Scholar] [CrossRef]
- Ohtsu, H.; Mifune, M.; Frank, G.D.; Saito, S.; Inagami, T.; Kim-Mitsuyama, S.; Takuwa, Y.; Sasaki, T.; Rothstein, J.D.; Suzuki, H.; et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1831–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringvold, H.C.; Khalil, R.A. Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv. Pharmacol. 2017, 78, 203–301. [Google Scholar] [CrossRef] [Green Version]
- Thengchaisri, N.; Kuo, L. Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: Role of cyclooxygenase and potassium channels. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H2255–H2263. [Google Scholar] [CrossRef] [Green Version]
- Hein, T.W.; Zhang, C.; Wang, W.; Chang, C.I.; Thengchaisri, N.; Kuo, L. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: Counteracting role of arginase. FASEB J. 2003, 17, 2328–2330. [Google Scholar] [CrossRef]
- Kuo, L.; Davis, M.J.; Chilian, W.M. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 1988, 255, H1558–H1562. [Google Scholar] [CrossRef]
- Chilian, W.M. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ. Res. 1991, 69, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, L.B.; Ren, Y.; Lu, G.; Kuo, E.; Ngo, E.; Kuo, L.; Hein, T.W. Constriction of retinal arterioles to endothelin-1: Requisite role of rho kinase independent of protein kinase C and L-type calcium channels. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2904–2912. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, L.; Su, W.; Huang, F.; Zhang, Y.; Xia, Z.Y.; Xia, Z.; Lei, S. Selective inhibition of PKCβ2 restores ischemic postconditioning-mediated cardioprotection by modulating autophagy in diabetic rats. J. Diabetes Res. 2020, 2020, 2408240. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bubolz, A.H.; Mendoza, S.; Zhang, D.X.; Gutterman, D.D. H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ. Res. 2011, 108, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hein, T.W.; Wang, W.; Kuo, L. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ. Res. 2003, 92, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Thengchaisri, N.; Shipley, R.; Ren, Y.; Parker, J.; Kuo, L. Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: Role of hydrogen peroxide. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hein, T.W.; Qamirani, E.; Ren, Y.; Xu, X.; Thengchaisri, N.; Kuo, L. Selective activation of LOX-1 mediates C-reactive protein evoked endothelial vasodilator dysfunction in coronary arterioles. Circ. Res. 2014, 114, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thengchaisri, N.; Hein, T.W.; Ren, Y.; Kuo, L. Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. Int. J. Mol. Sci. 2021, 22, 9763. https://doi.org/10.3390/ijms22189763
Thengchaisri N, Hein TW, Ren Y, Kuo L. Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. International Journal of Molecular Sciences. 2021; 22(18):9763. https://doi.org/10.3390/ijms22189763
Chicago/Turabian StyleThengchaisri, Naris, Travis W. Hein, Yi Ren, and Lih Kuo. 2021. "Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation" International Journal of Molecular Sciences 22, no. 18: 9763. https://doi.org/10.3390/ijms22189763
APA StyleThengchaisri, N., Hein, T. W., Ren, Y., & Kuo, L. (2021). Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation. International Journal of Molecular Sciences, 22(18), 9763. https://doi.org/10.3390/ijms22189763