Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147
Abstract
:1. Introduction
2. Results
2.1. Establishment of TMEM147 Silencing
2.2. Silencing of TMEM147 Alters CLIMP63/RTN4 ER Labeling
2.3. Statistical Analysis of ER Morphological Alterations in TMEM147-Silenced Cells
2.4. Data Mining to Compile TMEM147 Interactors
2.5. Network Analyses of Reported TMEM147-Associated Proteins
2.6. Pathway Analysis for the TMEM147 Gene Network
3. Discussion
3.1. Effect of TMEM147 Silencing on Rtn, CLIMP63 and ER Structure
3.2. Network Analysis for Additional TMEM147 Action
3.3. Pointers for Future Investigation
4. Conclusions
5. Materials and Methods
5.1. Cell Culture
5.2. RNA Interference
5.3. Immunofluorescence
5.3.1. Antibodies Used
5.3.2. Cell Fixation
5.3.3. Immunofluorescence Staining and Mounting
5.4. Microscopy
5.5. Morphometric Analysis
5.6. Statistical and Bioinformatics Evaluation
5.6.1. Network Analyses
5.6.2. Pathway Reduction
5.6.3. Summary Statistics and Groupwise Comparisons
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dettmer, U.; Kuhn, P.H.; Abou-Ajram, C.; Lichtenthaler, S.F.; Kruger, M.; Kremmer, E.; Haass, C.; Haffner, C. Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex. J. Biol. Chem. 2010, 285, 26174–26181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosemond, E.; Rossi, M.; McMillin, S.M.; Scarselli, M.; Donaldson, J.G.; Wess, J. Regulation of M (3) muscarinic receptor expression and function by transmembrane protein 147. Mol. Pharm. 2011, 79, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCBI-AceView. TMEM147 Isoforms. Available online: https://www.ncbi.nlm.nih.gov/ieb/research/acembly/av.cgi?db=human&term=tmem147 (accessed on 10 February 2021).
- NCBI. TMEM147 Variants. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NM_032635.4,NM_001242597.2,NM_001242598.2 (accessed on 9 June 2020).
- McGilvray, P.T.; Anghel, S.A.; Sundaram, A.; Zhong, F.; Trnka, M.J.; Fuller, J.R.; Hu, H.; Burlingame, A.L.; Keenan, R.J. An ER translocon for multi-pass membrane protein biogenesis. Elife 2020, 9, e56889. [Google Scholar] [CrossRef] [PubMed]
- Ensembl. TMEM147 Gene Expression. Available online: https://asia.ensembl.org/Homo_sapiens/Gene/ExpressionAtlas?db=core;g=ENSG00000105677;r=19:35545600-35547526 (accessed on 11 June 2020).
- Haffner, C.; Dettmer, U.; Weiler, T.; Haass, C. The Nicastrin-like protein Nicalin regulates assembly and stability of the Nicalin-nodal modulator (NOMO) membrane protein complex. J. Biol. Chem. 2007, 282, 10632–10638. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, A.; Maimaris, G.; Makrigiorgi, A.; Charidemou, E.; Lüchtenborg, C.; Ververis, A.; Georgiou, R.; Lederer, C.W.; Haffner, C.; Brügger, B.; et al. TMEM147 interacts with Lamin B Receptor, regulates its localization and levels, and affects cholesterol homeostasis. J. Cell Sci. 2020, 133, jcs245357. [Google Scholar] [CrossRef]
- Makatsori, D.; Kourmouli, N.; Polioudaki, H.; Shultz, L.D.; McLean, K.; Theodoropoulos, P.A.; Singh, P.B.; Georgatos, S.D. The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J. Biol. Chem. 2004, 279, 25567–25573. [Google Scholar] [CrossRef] [Green Version]
- Pyrpasopoulou, A.; Meier, J.; Maison, C.; Simos, G.; Georgatos, S.D. The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J. 1996, 15, 7108–7119. [Google Scholar] [CrossRef]
- Worman, H.J.; Yuan, J.; Blobel, G.; Georgatos, S.D. A lamin B receptor in the nuclear envelope. Proc. Natl. Acad. Sci. USA 1988, 85, 8531–8534. [Google Scholar] [CrossRef] [Green Version]
- Olins, A.L.; Rhodes, G.; Welch, D.B.; Zwerger, M.; Olins, D.E. Lamin B receptor: Multi-tasking at the nuclear envelope. Nucleus 2010, 1, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Papavinasasundaram, K.G.; Kasbekar, D.P. TheNeurospora crassa erg3 gene encodes a protein with sequence homology to both yeast sterol C-14 reductase and chicken lamin B receptor. J. Genet. 1994, 73, 33. [Google Scholar] [CrossRef]
- Li, X.; Roberti, R.; Blobel, G. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 2015, 517, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Silve, S.; Dupuy, P.H.; Ferrara, P.; Loison, G. Human lamin B receptor exhibits sterol C14-reductase activity in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1998, 1392, 233–244. [Google Scholar] [CrossRef]
- Worman, H.J.; Evans, C.D.; Blobel, G. The lamin B receptor of the nuclear envelope inner membrane: A polytopic protein with eight potential transmembrane domains. J. Cell Biol. 1990, 111, 1535–1542. [Google Scholar] [CrossRef]
- Holmer, L.; Pezhman, A.; Worman, H.J. The Human Lamin B Receptor/Sterol Reductase Multigene Family. Genomics 1998, 54, 469–476. [Google Scholar] [CrossRef]
- Prakash, A.; Kasbekar, D.P. Genes encoding chimeras of Neurospora crassa erg-3 and human TM7SF2 proteins fail to complement Neurospora and yeast sterol C-14 reductase mutants. J. Biosci. 2002, 27, 105–112. [Google Scholar] [CrossRef]
- Capell-Hattam, I.M.; Sharpe, L.J.; Qian, L.; Hart-Smith, G.; Prabhu, A.V.; Brown, A.J. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J. Biol. Chem. 2020, 295, 2850–2865. [Google Scholar] [CrossRef]
- Deolal, P.; Mishra, K. Regulation of diverse nuclear shapes: Pathways working independently, together. Commun. Integr. Biol. 2021, 14, 158–175. [Google Scholar] [CrossRef]
- Van de Velde, H.J.; Roebroek, A.J.; Senden, N.H.; Ramaekers, F.C.; Van de Ven, W.J. NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J. Cell Sci. 1994, 107, 2403–2416. [Google Scholar] [CrossRef]
- Shibata, Y.; Shemesh, T.; Prinz, W.A.; Palazzo, A.F.; Kozlov, M.M.; Rapoport, T.A. Mechanisms determining the morphology of the peripheral ER. Cell 2010, 143, 774–788. [Google Scholar] [CrossRef] [Green Version]
- Westrate, L.M.; Lee, J.E.; Prinz, W.A.; Voeltz, G.K. Form follows function: The importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 2015, 84, 791–811. [Google Scholar] [CrossRef]
- Nixon-Abell, J.; Obara, C.J.; Weigel, A.V.; Li, D.; Legant, W.R.; Xu, C.S.; Pasolli, H.A.; Harvey, K.; Hess, H.F.; Betzig, E.; et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 2016, 354, aaf3928. [Google Scholar] [CrossRef] [Green Version]
- Dawson, T.R.; Lazarus, M.D.; Hetzer, M.W.; Wente, S.R. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 2009, 184, 659–675. [Google Scholar] [CrossRef] [Green Version]
- Shibata, Y.; Voss, C.; Rist, J.M.; Hu, J.; Rapoport, T.A.; Prinz, W.A.; Voeltz, G.K. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 2008, 283, 18892–18904. [Google Scholar] [CrossRef] [Green Version]
- Voeltz, G.K.; Prinz, W.A.; Shibata, Y.; Rist, J.M.; Rapoport, T.A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006, 124, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Zhu, C.; Liu, E.; Nabi, I.R. Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biol. 2019, 17, e3000355. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shibata, Y.; Voss, C.; Shemesh, T.; Li, Z.; Coughlin, M.; Kozlov, M.M.; Rapoport, T.A.; Prinz, W.A. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 2008, 319, 1247–1250. [Google Scholar] [CrossRef]
- Klopfenstein, D.R.; Kappeler, F.; Hauri, H.P. A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J. 1998, 17, 6168–6177. [Google Scholar] [CrossRef] [Green Version]
- Bernales, S.; McDonald, K.L.; Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 2006, 4, e423. [Google Scholar] [CrossRef] [Green Version]
- Nikonov, A.V.; Hauri, H.P.; Lauring, B.; Kreibich, G. Climp-63-mediated binding of microtubules to the ER affects the lateral mobility of translocon complexes. J. Cell Sci. 2007, 120, 2248–2258. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.S.; Blower, M.D. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol. Life Sci. 2016, 73, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Cantwell, H.; Nurse, P. Unravelling nuclear size control. Curr. Genet. 2019, 65, 1281–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, Y. Specialization of nuclear membrane in eukaryotes. J. Cell Sci. 2020, 133, jcs241869. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, Z.; O’Kane, C.J.; Pérez-Moreno, J.J. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front. Neurosci. 2020, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Konno, T.; Parutto, P.; Bailey, D.M.D.; Davì, V.; Crapart, C.; Awadelkareem, M.A.; Hockings, C.; Brown, A.; Xiang, K.M.; Agrawal, A.; et al. Endoplasmic Reticulum morphological regulation by RTN4/NOGO modulates neuronal regeneration by curbing luminal transport. bioRxiv 2021. [Google Scholar] [CrossRef]
- Mukherjee, R.N.; Chen, P.; Levy, D.L. Recent advances in understanding nuclear size and shape. Nucleus 2016, 7, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Klopfenstein, D.R.; Klumperman, J.; Lustig, A.; Kammerer, R.A.; Oorschot, V.; Hauri, H.P. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J. Cell Biol. 2001, 153, 1287–1300. [Google Scholar] [CrossRef] [Green Version]
- Millen, J.I.; Pierson, J.; Kvam, E.; Olsen, L.J.; Goldfarb, D.S. The luminal N-terminus of yeast Nvj1 is an inner nuclear membrane anchor. Traffic 2008, 9, 1653–1664. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.J.; Hetzer, M.W. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 2007, 9, 1160–1166. [Google Scholar] [CrossRef]
- Anderson, D.J.; Hetzer, M.W. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J. Cell Biol. 2008, 182, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Demmerle, J.; Koch, A.J.; Holaska, J.M. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J. Biol. Chem. 2012, 287, 22080–22088. [Google Scholar] [CrossRef] [Green Version]
- Holaska, J.M.; Wilson, K.L. An emerin “proteome”: Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 2007, 46, 8897–8908. [Google Scholar] [CrossRef] [Green Version]
- Burger, M.; Schmitt-Koopmann, C.; Leroux, J.C. DNA unchained: Two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci. Rep. 2020, 10, 12301. [Google Scholar] [CrossRef]
- Noegel, A.A.; Neumann, S. The role of nesprins as multifunctional organizers in the nucleus and the cytoskeleton. Biochem. Soc. Trans. 2011, 39, 1725–1728. [Google Scholar] [CrossRef] [Green Version]
- May, C.K.; Carroll, C.W. Differential incorporation of SUN-domain proteins into LINC complexes is coupled to gene expression. PLoS ONE 2018, 13, e0197621. [Google Scholar] [CrossRef]
- Hieda, M.; Matsumoto, T.; Isobe, M.; Kurono, S.; Yuka, K.; Kametaka, S.; Wang, J.Y.; Chi, Y.H.; Kameda, K.; Kimura, H.; et al. The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci. Rep. 2021, 11, 5358. [Google Scholar] [CrossRef]
- Silve, S.; Dupuy, P.H.; Labit-Lebouteiller, C.; Kaghad, M.; Chalon, P.; Rahier, A.; Taton, M.; Lupker, J.; Shire, D.; Loison, G. Emopamil-binding protein, a mammalian protein that binds a series of structurally diverse neuroprotective agents, exhibits delta8-delta7 sterol isomerase activity in yeast. J. Biol. Chem. 1996, 271, 22434–22440. [Google Scholar] [CrossRef] [Green Version]
- Takada, Y.K.; Yu, J.; Shimoda, M.; Takada, Y. Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling. J. Immunol. 2019, 203, 1383–1391. [Google Scholar] [CrossRef]
- Beinke, S.; Robinson, M.J.; Hugunin, M.; Ley, S.C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol. Cell Biol. 2004, 24, 9658–9667. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Tanaka, Y.; Nakagawa, I.; Jiang, J.J.; Arima, Y.; Kamimura, D.; Onodera, T.; Iwasaki, N.; Murakami, M. Role of Chondrocytes in the Development of Rheumatoid Arthritis Via Transmembrane Protein 147-Mediated NF-kappaB Activation. Arthritis Rheumatol. 2020, 72, 931–942. [Google Scholar] [CrossRef]
- Abdulhag, U.N.; Soiferman, D.; Schueler-Furman, O.; Miller, C.; Shaag, A.; Elpeleg, O.; Edvardson, S.; Saada, A. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur. J. Hum. Genet. 2015, 23, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Christie, D.A.; Lemke, C.D.; Elias, I.M.; Chau, L.A.; Kirchhof, M.G.; Li, B.; Ball, E.H.; Dunn, S.D.; Hatch, G.M.; Madrenas, J. Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol. Cell Biol. 2011, 31, 3845–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soonthornsit, J.; Sakai, N.; Sasaki, Y.; Watanabe, R.; Osako, S.; Nakamura, N. YIPF1, YIPF2, and YIPF6 are medial-/trans-Golgi and trans-Golgi network-localized Yip domain family proteins, which play a role in the Golgi reassembly and glycan synthesis. Exp. Cell Res. 2017, 353, 100–108. [Google Scholar] [CrossRef]
- Wang, C.; Meier, U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 2004, 23, 1857–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, G.P.; Shah, R.; Kennedy, B.E.; Murphy, J.P.; Clements, D.; Konda, P.; Giacomantonio, M.; Xu, Z.; Schlaepfer, I.R.; Gujar, S. RTN4 Knockdown Dysregulates the AKT Pathway, Destabilizes the Cytoskeleton, and Enhances Paclitaxel-Induced Cytotoxicity in Cancers. Mol. Ther. 2018, 26, 2019–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyair, R.; Ron, E.; Lederkremer, G.Z. Protein quality control, retention, and degradation at the endoplasmic reticulum. Int Rev. Cell Mol. Biol. 2011, 292, 197–280. [Google Scholar] [PubMed]
- Stutzmann, G.E.; Mattson, M.P. Endoplasmic reticulum Ca (2+) handling in excitable cells in health and disease. Pharm. Rev. 2011, 63, 700–727. [Google Scholar] [CrossRef] [Green Version]
- Ferro-Novick, S.; Reggiori, F.; Brodsky, J.L. ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease. Trends Biochem. Sci. 2021, 46, 630–639. [Google Scholar] [CrossRef]
- Alonso-Lopez, D.; Campos-Laborie, F.J.; Gutierrez, M.A.; Lambourne, L.; Calderwood, M.A.; Vidal, M.; De Las Rivas, J. APID database: Redefining protein-protein interaction experimental evidences and binary interactomes. Database Oxf. 2019, 2019, baz005. [Google Scholar] [CrossRef] [Green Version]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Fahey, M.E.; Bennett, M.J.; Mahon, C.; Jäger, S.; Pache, L.; Kumar, D.; Shapiro, A.; Rao, K.; Chanda, S.K.; Craik, C.S.; et al. GPS-Prot: A web-based visualization platform for integrating host-pathogen interaction data. BMC Bioinform. 2011, 12, 298. [Google Scholar] [CrossRef] [Green Version]
- Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.; Venugopal, A.; et al. Human Protein Reference Database-2009 update. Nucleic Acids Res. 2009, 37, D767–D772. [Google Scholar] [CrossRef] [Green Version]
- Peri, S.; Navarro, J.D.; Amanchy, R.; Kristiansen, T.Z.; Jonnalagadda, C.K.; Surendranath, V.; Niranjan, V.; Muthusamy, B.; Gandhi, T.K.; Gronborg, M.; et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 2003, 13, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; del-Toro, N.; et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014, 42, D358–D363. [Google Scholar] [CrossRef] [Green Version]
- Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef]
- Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, O.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011, 39, D685–D690. [Google Scholar] [CrossRef]
- Wu, J.; Vallenius, T.; Ovaska, K.; Westermarck, J.; Makela, T.P.; Hautaniemi, S. Integrated network analysis platform for protein-protein interactions. Nat. Methods 2009, 6, 75–77. [Google Scholar] [CrossRef]
- Cowley, M.J.; Pinese, M.; Kassahn, K.S.; Waddell, N.; Pearson, J.V.; Grimmond, S.M.; Biankin, A.V.; Hautaniemi, S.; Wu, J. PINA v2.0: Mining interactome modules. Nucleic Acids Res. 2012, 40, D862–D865. [Google Scholar] [CrossRef]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- UniProt, C. The universal protein resource (UniProt). Nucleic Acids Res. 2008, 36, D190–D195. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Pub. Co.: Reading, MA, USA, 1977. [Google Scholar]
Variant | mRNA Length | Protein Length | Accession No. | Note |
---|---|---|---|---|
1 | 868 nt | 224 aa | NP_116024.1NM_032635.4 | Main isoform |
2 | 939 nt | 175 aa (aa 50–224) | NP_001229526.4NM_001242597.2 | Compared to Variant 1 with truncated N terminus and identical C terminus, by inclusion of an additional exon in its extended 5′ UTR and initiating translation at a downstream, in-frame start codon |
3 | 646 nt | 150 aa (aa 1–70, aa 144–224) | NP_001229527.1NM_001242598.2 | Compared to Variant 1 with identical N and C terminus, but lacking two consecutive exons in the coding region; shortest variant |
Gene Symbol a [String-db ID] b | Uniprot ID c | Interaction Type d | GO IDs e | GO Group/ Context f | Protein g | Source Db h |
---|---|---|---|---|---|---|
ABHD16A | O95870 | A | Phosphatidylserine lipase ABHD16A | A,B,C,D,E,G,F,J | ||
ABI3 | Q9P2A4 | A | ABI gene family member 3 | A,B,D,E,G,F,I,J | ||
AVPR2 | P30518 | B | 4888, 8528, 38023, 4930 | A | Vasopressin V2 receptor | C |
BCAP31 | P51572 | F | B-cell receptor-associated protein 31 | C | ||
BRF2 | Q9HAW0 | B | Transcription factor IIIB 50 kDa subunit | A,D,F,I,J | ||
CAPNS1 | P04632 | F | Calpain small subunit 1 | C | ||
CASP4 | P49662 | B | Caspase-4 | A,D,F,J | ||
CCDC47 | Q96A33 | A | PAT complex subunit CCDC47 | H | ||
CD40 | P25942 | A | 4888, 38023 | A | Tumor necrosis factor receptor superfamily member 5 | A,B,G,F,I,J |
CD79A | P11912 | A | 4888, 38023 | A | B-cell antigen receptor complex-associated protein alpha chain | A,B,G,F,I,J |
CGN | Q9P2M7 | B | Cingulin | A | ||
CHRM3 | P20309 | A | 4888, 38023, 8227, 4930 | A | Muscarinic acetylcholine receptor M3 | C,H |
CLDN7 | O95471 | A | Claudin-7 | A,B,G,F,I,J | ||
CLN8 | Q9UBY8 | A | Protein CLN8 | A,B,D,H,J | ||
CLRN1 | P58418 | A | Clarin-1 | A,B,D,H,J | ||
COX6B1 | P14854 | F | 22890, 15077 | B | Cytochrome c oxidase subunit 6B1 | C |
CREB3L1 | Q96BA8 | A | Cyclic AMP-responsive element-binding protein 3-like protein 1 | A,B,D,G,F,I,J,K | ||
CXCR2 | P25025 | A | 4888, 8528, 38023, 4930 | A | C-X-C chemokine receptor type 2 | A,B,G,F,I,J,K |
DHCR7 | Q9UBM7 | A | 16628 | C | 7-dehydrocholesterol reductase | H |
DPM3 | Q9P2X0 | A | Dolichol-phosphate mannosyltransferase subunit 3 | A,B,G,F,I,J | ||
EBP | Q15125 | A | 4888, 38023, 16860, 16863 | A,C | 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase | A,B,G,F,I,J,K |
EFNA4 | P52798 | A | 4888, 38023 | A | Ephrin-A4 | A,B,G,F,I,J |
EIF3K | Q9UBQ5 | F | 43022 | D | Eukaryotic translation initiation factor 3 subunit K | C |
ENPP4 | Q9Y6X5 | A | Bis(5′-adenosyl)-triphosphatase ENPP4 | A,B,G,F,J | ||
F11R | Q9Y624 | A | Junctional adhesion molecule A | A,B,G,F,J,K | ||
FASN | P49327 | G | 16628 | C | Fatty acid synthase | B |
FFAR2 | O15552 | A | 4888, 38023, 4930 | A | Free fatty acid receptor 2 | A,B,G,F,J,K |
FOXF2 | Q12947 | E | Forkhead box protein F2 | I | ||
GJA8 | P48165 | A | Gap junction alpha-8 protein | A,B,G,F,J | ||
GLP1R | P43220 | A | 4888, 8528, 38023, 4930 | A | Glucagon-like peptide 1 receptor | A,B,D,G,H,J |
GOLM1 | Q8NBJ4 | A | Golgi membrane protein 1 | A,B,G,F,J | ||
GPR101 | Q96P66 | A | 4888, 38023, 8227, 4930 | A | Probable G-protein coupled receptor 101 | A,B,G,F,J |
GPR37L1 | O60883 | A | 4888, 8528, 38023, 4930 | A | G-protein coupled receptor 37-like 1 | A,B,G,F,J,K |
GPR42 | O15529 | A | 4888, 38023, 4930 | A | G-protein coupled receptor 42 | B,G,F,I,J |
GPR61 | Q9BZJ8 | A | 4888, 38023, 4930 | A | G-protein coupled receptor 61 | A,B,G,F,J |
HTR2C | P28335 | A | 4888, 38023, 8227, 4930 | A | 5-hydroxytryptamine receptor 2C | A,B,D,G,F,J |
IER3IP1 | Q9Y5U9 | C | Immediate early response 3-interacting protein 1 | L | ||
IL3RA | P26951 | A | 4888, 38023 | A | Interleukin-3 receptor subunit alpha | A,B,G,F,J,K |
KASH5 [CCDC155] | Q8N6L0 | A | Protein KASH5 | A,B,G,F,I,J | ||
LBR | Q14739 | A | 16628 | C | Delta (14)—Sterol Reductase LBR | H |
LDLRAD1 | Q5T700 | A | Low-density lipoprotein receptor class A domain-containing protein 1 | A,B,D,G,F,J | ||
LEF1 | Q9UJU2 | E | 38023 | A | Lymphoid enhancer-binding factor 1 | I |
LEUTX | A8MZ59 | A | Paired-like homeodomain transcription factor LEUTX | A,B,G,F,I,J | ||
LHFPL2 | Q6ZUX7 | A | LHFPL tetraspan subfamily member 2 protein | A,B,G,F,J | ||
LRRFIP2 | Q9Y608 | B | Leucine-rich repeat flightless-interacting protein 2 | A | ||
MIF | P14174 | F | 16860, 16863 | C | Macrophage migration inhibitory factor | C |
MPRIP | Q6WCQ1 | B | Myosin phosphatase Rho-interacting protein | A | ||
MTCH2 | Q9Y6C9 | C | Mitochondrial carrier homolog 2 | L | ||
MTIF3 | Q9H2K0 | A | 43022 | D | Translation initiation factor IF-3, mitochondrial | A,B,G,F,I,J,K |
MUC1 | P15941 | A | Mucin-1 | A,B,G,F,I,J | ||
NCLN | Q969V3 | A | Nicalin | C,H,L | ||
NFKB1 | P19838 | A | Nuclear factor NF-kappa-B p105 subunit | H | ||
NHP2 | Q9NX24 | F | H/ACA ribonucleoprotein complex subunit 2 | C | ||
NOMO | A | NODAL modulator | H | |||
PACC1 [TMEM206] | Q9H813 | A | Proton-activated chloride channel | A,B,D,G,F,J | ||
PDCD1LG2 | Q9BQ51 | A | Programmed cell death 1 ligand 2 | A,B,G,F,I,J | ||
PHPT1 | Q9NRX4 | F | 14 kDa phosphohistidine phosphatase | L | ||
PLEKHG3 | A1L390 | B | Pleckstrin homology domain-containing family G member 3 | A | ||
POLE4 | Q9NR33 | F | DNA polymerase epsilon subunit 4 | C | ||
POLR2I | P36954 | F | DNA-directed RNA polymerase II subunit RPB9 | C | ||
PPP1R9A | Q9ULJ8 | B | Neurabin-1 | A | ||
PSCA | O43653 | A | Prostate stem cell antigen | A,B,G | ||
PSENEN | Q9NZ42 | F | Gamma-secretase subunit PEN-2 | L | ||
PVR | P15151 | A | 38023 | A | Poliovirus receptor | A,B,G,F,J,K |
RABAC1 | Q9UI14 | F | Prenylated Rab acceptor protein 1 | C | ||
RBM42 | Q9BTD8 | F | RNA-binding protein 42 | C | ||
RMDN3 | Q96TC7 | A | Regulator of microtubule dynamics protein 3 | A,B,G,F,J | ||
RNF185 | Q96GF1 | A | E3 ubiquitin-protein ligase RNF185 | A,B,G,F,J | ||
RTKN | Q9BST9 | B | Rhotekin | A | ||
RUVBL2 | Q9Y230 | F | RuvB-like 2 | C | ||
SCAMP4 | Q969E2 | A | Secretory carrier-associated membrane protein 4 | A,B,G,J | ||
SEC61A1 | P61619 | A | 43022 | D | Protein transport protein Sec61 subunit alpha isoform 1 | H |
SHISA3 | A0PJX4 | A | Protein shisa-3 homolog | A,B,G,F,J | ||
SLC10A1 | Q14973 | A | 15294, 15370, 15291, 15081, 46873, 1901618, 22890, 15077 | B | Sodium/bile acid cotransporter | A,B,G,F,J,K |
SLC12A7 | Q9Y666 | A | 15296, 15377, 15294, 15291, 46873, 22890, 15077 | B | Solute carrier family 12 member 7 | A,B,G,F,J |
SLC13A4 | Q9UKG4 | A | 15296, 15373, 15294, 15370, 15291, 15081, 46873, 22890, 15077 | B | Solute carrier family 13 member 4 | A,B,G,F,I,J,K |
SLC22A1 | O15245 | A | 15296, 15373, 15377, 5277, 5330, 5334, 8513, 15294, 15370, 15651, 15291, 15081, 46873, 1901618, 22890, 15077 | B | Solute carrier family 22 member 1 | A,B |
SLC22A2 | O15244 | A | 15296, 15373, 15377, 5277, 5330, 5334, 8513, 15294, 15370, 15651, 15291, 15081, 46873, 1901618, 22890, 15077 | B | Solute carrier family 22 member 2 | A,B |
SLC41A1 | Q8IVJ1 | A | 15291, 15081, 46873, 22890, 15077 | B | Solute carrier family 41 member 1 | H |
STOML2 | Q9UJZ1 | F | Stomatin-like protein 2, mitochondrial | C | ||
SUSD3 | Q96L08 | A | Sushi domain-containing protein 3 | A,B,G,F,I,J | ||
SYNE4 | Q8N205 | A | Nesprin-4 | A,B,D,G,F,I,J | ||
TACR1 | P25103 | A | 4888, 8528, 38023, 4930 | A | Substance-P receptor | A,B,G,F,I,J,K |
TBCB | Q99426 | F | Tubulin-folding cofactor B | C | ||
TEX29 | Q8N6K0 | A | Testis-expressed protein 29 | A,B,G,F,J | ||
TMCO1 | Q9UM00 | A | 46873, 22890 | B,D | Calcium load-activated calcium channel | H |
TMEM14B | Q9NUH8 | A | Transmembrane protein 14B | A,B,G,F,J | ||
TMEM237 | Q96Q45 | A | Transmembrane protein 237 | A,B,G,F,J | ||
TMEM248 | Q9NWD8 | A | Transmembrane protein 248 | A,B,G,F,I,J | ||
TMEM252 | Q8N6L7 | A | Transmembrane protein 252 | A,B,G,F,I,J | ||
TMEM42 | Q69YG0 | A | Transmembrane protein 42 | A,B,G,F,J | ||
TMEM52B | Q4KMG9 | A | Transmembrane protein 52B | A,B,G,F,I,J | ||
TPI1 | P60174 | F | 16860 | C | Triosephosphate isomerase | C |
TRAPPC3 | O43617 | F | Trafficking protein particle complex subunit 3 | C | ||
TRPC6 | Q9Y210 | H | 46873, 22890 | B | Short transient receptor potential channel 6 | B,H,J |
TSPAN12 | O95859 | A | Tetraspanin-12 | A,B,G,F,J | ||
YIPF6 | Q96EC8 | C | Protein YIPF6 | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maimaris, G.; Christodoulou, A.; Santama, N.; Lederer, C.W. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. Int. J. Mol. Sci. 2021, 22, 10231. https://doi.org/10.3390/ijms221910231
Maimaris G, Christodoulou A, Santama N, Lederer CW. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. International Journal of Molecular Sciences. 2021; 22(19):10231. https://doi.org/10.3390/ijms221910231
Chicago/Turabian StyleMaimaris, Giannis, Andri Christodoulou, Niovi Santama, and Carsten Werner Lederer. 2021. "Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147" International Journal of Molecular Sciences 22, no. 19: 10231. https://doi.org/10.3390/ijms221910231
APA StyleMaimaris, G., Christodoulou, A., Santama, N., & Lederer, C. W. (2021). Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. International Journal of Molecular Sciences, 22(19), 10231. https://doi.org/10.3390/ijms221910231