A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Mutation Effect of XajCM on Bacterial Growth and Cell Morphology
2.2. Proteomic Analysis of XajCM in the Walnut Hull
2.3. Functional Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Generation of the XajCM Mutant
4.2. Scanning Electron Microscopy
4.3. Growth Curve, Bacterial Inoculation and Plant Material
4.4. Sample Preparation for Proteomic Analysis
4.5. Xaj417 Cell Count by Digital PCR (dPCR)
4.6. Data Analysis and Raw Data Processing
4.7. Quantification and Statistical Analysis
4.8. Functional Enrichment, Protein Subcellular Localization, and Metabolic Pathways Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macaulay, K.M.; Heath, G.A.; Ciulli, A.; Murphy, A.M.; Abell, C.; Carr, J.P.; Smith, A.G. The Biochemical Properties of the Two Arabidopsis Thaliana Isochorismate Synthases. Biochem. J. 2017, 474, 1579–1590. [Google Scholar] [CrossRef] [Green Version]
- Yokoo, S.; Inoue, S.; Suzuki, N.; Amakawa, N.; Matsui, H.; Nakagami, H.; Takahashi, A.; Arai, R.; Katou, S. Comparative Analysis of Plant Isochorismate Synthases Reveals Structural Mechanisms Underlying Their Distinct Biochemical Properties. Biosci. Rep. 2018, 38, BSR20171457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, K.; Holland, C.K.; Starks, C.M.; Jez, J.M. Evolution of Allosteric Regulation in Chorismate Mutases from Early Plants. Biochem. J. 2017, 474, 3705–3717. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.A.B.; Polloni, L.C.; Patané, J.S.L.; Thakur, S.; Felestrino, É.B.; Diaz-Caballero, J.; Digiampietri, L.A.; Goulart, L.R.; Almeida, N.F.; Nascimento, R.; et al. Identification and Analysis of Seven Effector Protein Families with Different Adaptive and Evolutionary Histories in Plant-Associated Members of the Xanthomonadaceae. Sci. Rep. 2017, 7, 16133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djamei, A.; Schipper, K.; Rabe, F.; Ghosh, A.; Vincon, V.; Kahnt, J.; Osorio, S.; Tohge, T.; Fernie, A.R.; Feussner, I.; et al. Metabolic Priming by a Secreted Fungal Effector. Nature 2011, 478, 395–398. [Google Scholar] [CrossRef]
- Degrassi, G.; Devescovi, G.; Bigirimana, J.; Venturi, V. Xanthomonas Oryzae Pv. Oryzae XKK.12 Contains an AroQγ Chorismate Mutase That Is Involved in Rice Virulence. Phytopathology 2010, 100, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Lynch, J.H.; Guo, L.; Rhodes, D.; Morgan, J.A.; Dudareva, N. Completion of the Cytosolic Post-Chorismate Phenylalanine Biosynthetic Pathway in Plants. Nat. Commun. 2019, 10, 15. [Google Scholar] [CrossRef]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef]
- Pereira, U.P.; Gouran, H.; Nascimento, R.; Adaskaveg, J.E.; Goulart, L.R.; Dandekar, A.M. Complete Genome Sequence of Xanthomonas Arboricola Pv. Juglandis 417, a Copper-Resistant Strain Isolated from Juglans Regia L. Genome Announc. 2015, 3, e01126-15. [Google Scholar] [CrossRef] [Green Version]
- Assis, R.A.B.; Varani, A.M.; Sagawa, C.H.D.; Patané, J.S.L.; Setubal, J.C.; Uceda-Campos, G.; da Silva, A.M.; Zaini, P.A.; Almeida, N.F.; Moreira, L.M.; et al. A Comparative Genomic Analysis of Xanthomonas Arboricola Pv. Juglandis Strains Reveal Hallmarks of Mobile Genetic Elements in the Adaptation and Accelerated Evolution of Virulence. Genomics 2021, 113, 2513–2525. [Google Scholar] [CrossRef]
- Jiang, S.; Balan, B.; Assis, R.d.A.B.; Sagawa, C.H.D.; Wan, X.; Han, S.; Wang, L.; Zhang, L.; Zaini, P.A.; Walawage, S.L.; et al. Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas Arboricola Pv. Juglandis Infection. Int. J. Mol. Sci. 2020, 21, 1251. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, H.D.; Assis, R.d.A.B.; Zaini, P.A.; Wilmarth, P.A.; Phinney, B.S.; Moreira, L.M.; Dandekar, A.M. Proteome Analysis of Walnut Bacterial Blight Disease. Int. J. Mol. Sci. 2020, 21, 7453. [Google Scholar] [CrossRef]
- Chakraborty, S.; Britton, M.; Martínez-García, P.J.; Dandekar, A.M. Deep RNA-Seq Profile Reveals Biodiversity, Plant–Microbe Interactions and a Large Family of NBS-LRR Resistance Genes in Walnut (Juglans Regia) Tissues. AMB Express 2016, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Gouran, H.; Gillespie, H.; Nascimento, R.; Chakraborty, S.; Zaini, P.A.; Jacobson, A.; Phinney, B.S.; Dolan, D.; Durbin-Johnson, B.P.; Antonova, E.S.; et al. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella Fastidiosa. Sci. Rep. 2016, 6, 31098. [Google Scholar] [CrossRef] [Green Version]
- Trentin, A.R.; Pivato, M.; Mehdi, S.M.M.; Barnabas, L.E.; Giaretta, S.; Fabrega-Prats, M.; Prasad, D.; Arrigoni, G.; Masi, A. Proteome Readjustments in the Apoplastic Space of Arabidopsis Thaliana Ggt1 Mutant Leaves Exposed to UV-B Radiation. Front. Plant Sci. 2015, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Moreira, L.M.; Soares, M.R.; Facincani, A.P.; Ferreira, C.B.; Ferreira, R.M.; Ferro, M.I.T.; Gozzo, F.C.; Felestrino, É.B.; Assis, R.d.A.B.; Garcia, C.C.M.; et al. Proteomics-Based Identification of Differentially Abundant Proteins Reveals Adaptation Mechanisms of Xanthomonas Citri Subsp. Citri during Citrus Sinensis Infection. BMC Microbiol. 2017, 17, 155. [Google Scholar] [CrossRef]
- Lindow, S.; Olson, W.; Buckner, R. Colonization of dormant walnut buds by Xanthomonas arboricola pv. juglandis is predictive of subsequent disease. Phytopathology 2014, 104, 1163–1174. [Google Scholar] [PubMed] [Green Version]
- Hamberger, B.; Ehlting, J.; Barbazuk, B.; Douglas, C.J. Chapter Four-Comparative Genomics of The Shikimate Pathway in Arabidopsis, Populus Trichocarpa and Oryza Sativa: Shikimate Pathway Gene Family Structure and Identification of Candidates for Missing Links in Phenylalanine Biosynthesis. In Recent Advances in Phytochemistry; Romeo, J.T., Ed.; Integrative Plant Biochemistry; Elsevier: Amsterdam, The Netherlands, 2006; Volume 40, pp. 85–113. [Google Scholar]
- Bliven, K.A.; Maurelli, A.T. Antivirulence Genes: Insights into Pathogen Evolution through Gene Loss. Infect. Immun. 2012, 80, 4061–4070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Y.; Li, X.; Zhu, Y.; Ge, X.; Sun, Y.; Liu, N.; Jia, Y.; Li, F.; Hou, Y. GhABP19, a Novel Germin-Like Protein From Gossypium Hirsutum, Plays an Important Role in the Regulation of Resistance to Verticillium and Fusarium Wilt Pathogens. Front. Plant Sci. 2019, 10, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-Y.; Hsu, F.-C.; Li, J.-P.; Wang, N.-N.; Shih, M.-C. The AP2/ERF Transcription Factor AtERF73/HRE1 Modulates Ethylene Responses during Hypoxia in Arabidopsis. Plant Physiol. 2011, 156, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Agüero, C.B.; Uratsu, S.L.; Greve, C.; Powell, A.L.T.; Labavitch, J.M.; Meredith, C.P.; Dandekar, A.M. Evaluation of Tolerance to Pierce’s Disease and Botrytis in Transgenic Plants of Vitis Vinifera L. Expressing the Pear PGIP Gene. Mol. Plant Pathol. 2005, 6, 43–51. [Google Scholar] [CrossRef]
- Dandekar, A.M.; Jacobson, A.; Ibáñez, A.M.; Gouran, H.; Dolan, D.L.; Agüero, C.B.; Uratsu, S.L.; Just, R.; Zaini, P.A. Trans-Graft Protection Against Pierce’s Disease Mediated by Transgenic Grapevine Rootstocks. Front. Plant Sci. 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeger, W.; Henning, J.; Heckel, D.G.; Pauchet, Y.; Kirsch, R. Direct Evidence for a New Mode of Plant Defense against Insects via a Novel Polygalacturonase-Inhibiting Protein Expression Strategy. J. Biol. Chem. 2020, 295, 11833–11844. [Google Scholar] [CrossRef] [PubMed]
- Tolleter, D.; Hincha, D.K.; Macherel, D. A Mitochondrial Late Embryogenesis Abundant Protein Stabilizes Model Membranes in the Dry State. Biochim. Biophys. Acta (BBA)-Biomembr. 2010, 1798, 1926–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, W.; Ren, Y.; Wang, D.; Su, Y.; Feng, J.; Zhang, C.; Tang, H.; Xu, L.; Muhammad, K.; Que, Y. The Alcohol Dehydrogenase Gene Family in Sugarcane and Its Involvement in Cold Stress Regulation. BMC Genom. 2020, 21, 521. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y. Hydrogen Peroxide Controls Transcriptional Responses of ERF73/HRE1 and ADH1 via Modulation of Ethylene Signaling during Hypoxic Stress. Planta 2014, 239, 877–885. [Google Scholar] [CrossRef]
- Camoni, L.; Visconti, S.; Aducci, P.; Marra, M. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once. Front. Plant Sci. 2018, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, D.; Morris, E.R.; Walker, J.C. 14-3-3 and FHA Domains Mediate Phosphoprotein Interactions. Annu. Rev. Plant Biol. 2009, 60, 67–91. [Google Scholar] [CrossRef]
- Campo, S.; Peris-Peris, C.; Montesinos, L.; Peñas, G.; Messeguer, J.; San Segundo, B. Expression of the Maize ZmGF14-6 Gene in Rice Confers Tolerance to Drought Stress While Enhancing Susceptibility to Pathogen Infection. J. Exp. Bot. 2012, 63, 983–999. [Google Scholar] [CrossRef] [Green Version]
- Manosalva, P.M.; Bruce, M.; Leach, J.E. Rice 14-3-3 Protein (GF14e) Negatively Affects Cell Death and Disease Resistance. Plant. J. 2011, 68, 777–787. [Google Scholar] [CrossRef]
- Chen, F.; Li, Q.; Sun, L.; He, Z. The Rice 14-3-3 Gene Family and Its Involvement in Responses to Biotic and Abiotic Stress. DNA Res. 2006, 13, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-G.; Li, X.; Roden, J.A.; Taylor, K.W.; Aakre, C.D.; Su, B.; Lalonde, S.; Kirik, A.; Chen, Y.; Baranage, G.; et al. Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1. Plant. Cell 2009, 21, 1305–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teper, D.; Salomon, D.; Sunitha, S.; Kim, J.-G.; Mudgett, M.B.; Sessa, G. Xanthomonas Euvesicatoria Type III Effector XopQ Interacts with Tomato and Pepper 14-3-3 Isoforms to Suppress Effector-Triggered Immunity. Plant. J. 2014, 77, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Durán, R.; Robatzek, S. 14-3-3 Proteins in Plant-Pathogen Interactions. Mol. Plant-Microbe Interact. 2015, 28, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Figaj, D.; Ambroziak, P.; Przepiora, T.; Skorko-Glonek, J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int. J. Mol. Sci. 2019, 20, 672. [Google Scholar] [CrossRef] [Green Version]
- Hood, M.I.; Skaar, E.P. Nutritional Immunity: Transition Metals at the Pathogen–Host Interface. Nat. Rev. Microbiol. 2012, 10, 525–537. [Google Scholar] [CrossRef]
- Szczepaniak, J.; Press, C.; Kleanthous, C. The Multifarious Roles of Tol-Pal in Gram-Negative Bacteria. FEMS Microbiol. Rev. 2020, 44, 490–506. [Google Scholar] [CrossRef]
- Santos, C.A.; Janissen, R.; Toledo, M.A.S.; Beloti, L.L.; Azzoni, A.R.; Cotta, M.A.; Souza, A.P. Characterization of the TolB-Pal Trans-Envelope Complex from Xylella Fastidiosa Reveals a Dynamic and Coordinated Protein Expression Profile during the Biofilm Development Process. Biochim. Biophys. Acta 2015, 1854, 1372–1381. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Ghosh, P.; Patel, H.K.; Sonti, R.V. Interaction of the Xanthomonas Effectors XopQ and XopX Results in Induction of Rice Immune Responses. Plant J. 2020, 104, 332–350. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Moreira, L.M.; Ferro, J.A.; Soares, M.R.R.; Laia, M.L.; Varani, A.M.; de Oliveira, J.C.F.; Ferro, M.I.T. Unravelling Potential Virulence Factor Candidates in Xanthomonas Citri. Subsp. Citri by Secretome Analysis. PeerJ 2016, 4, e1734. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhan, Z.; Lin, Y.; Lin, M.; Xie, Q.; Chen, Y.; He, C.; Tao, J.; Li, C. Biosynthesis of Amino Acids in Xanthomonas Oryzae Pv. Oryzae Is Essential to Its Pathogenicity. Microorganisms 2019, 7, 693. [Google Scholar] [CrossRef] [Green Version]
- Granato, L.M.; Picchi, S.C.; de Oliveira Andrade, M.; Takita, M.A.; de Souza, A.A.; Wang, N.; Machado, M.A. The ATP-Dependent RNA Helicase HrpB Plays an Important Role in Motility and Biofilm Formation in Xanthomonas Citri Subsp. Citri. BMC Microbiol. 2016, 16, 55. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.F.L.; Minsavage, G.V.; Graham, J.H.; White, F.F.; Jones, J.B. Mutational Analysis of Type III Effector Genes from Xanthomonas Citri Subsp. Citri. Eur. J. Plant Pathol. 2011, 130, 339–347. [Google Scholar] [CrossRef]
- Fan, X.; Guo, J.; Zhou, Y.; Zhuo, T.; Hu, X.; Zou, H. The ColRS-Regulated Membrane Protein Gene XAC1347 Is Involved in Copper Homeostasis and Hrp Gene Expression in Xanthomonas Citri Subsp. Citri. Front. Microbiol. 2018, 9, 1171. [Google Scholar] [CrossRef]
- Malamud, F.; Homem, R.A.; Conforte, V.P.; Yaryura, P.M.; Castagnaro, A.P.; Marano, M.R.; do Amaral, A.M.; Vojnov, A.A. Identification and Characterization of Biofilm Formation-Defective Mutants of Xanthomonas Citri Subsp. Citri. Microbiology 2013, 159, 1911–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linder, P.; Jankowsky, E. From Unwinding to Clamping—The DEAD Box RNA Helicase Family. Nat. Rev. Mol. Cell Biol. 2011, 12, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, H.; Chanroj, S. Plant Endomembrane Dynamics: Studies of K+/H+ Antiporters Provide Insights on the Effects of PH and Ion Homeostasis. Plant Physiol. 2018, 177, 875–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iadanza, M.G.; Higgins, A.J.; Schiffrin, B.; Calabrese, A.N.; Brockwell, D.J.; Ashcroft, A.E.; Radford, S.E.; Ranson, N.A. Lateral Opening in the Intact β-Barrel Assembly Machinery Captured by Cryo-EM. Nat. Commun. 2016, 7, 12865. [Google Scholar] [CrossRef]
- Araujo, G.G.; Conforte, M.M.; da Purificação, A.D.; Todeschini, I.; Llontop, E.E.; Angeli, C.B.; Inague, A.; Yoshinaga, M.Y.; de Souza, R.F.; Papai, R.; et al. Resource Sharing by Outer Membrane Vesicles from a Citrus Pathogen. BioRxiv 2021. [Google Scholar] [CrossRef]
- Fattori, J.; Prando, A.; Assis, L.H.P.; Aparicio, R.; Tasic, L. Structural Insights on Two Hypothetical Secretion Chaperones from Xanthomonas Axonopodis Pv. Citri. Protein J. 2011, 30, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Zhang, Y.; Wang, N. Diffusible Signal Factor (DSF)-Mediated Quorum Sensing Modulates Expression of Diverse Traits in Xanthomonas Citri and Responses of Citrus Plants to Promote Disease. BMC Genom. 2019, 20, 55. [Google Scholar] [CrossRef]
- Alvarez-Martinez, C.E.; Sgro, G.G.; Araujo, G.G.; Paiva, M.R.N.; Matsuyama, B.Y.; Guzzo, C.R.; Andrade, M.O.; Farah, C.S. Secrete or Perish: The Role of Secretion Systems in Xanthomonas Biology. Comput. Struct. Biotechnol. J. 2021, 19, 279–302. [Google Scholar] [CrossRef]
- Jewett, M.W.; Lawrence, K.A.; Bestor, A.; Byram, R.; Gherardini, F.; Rosa, P.A. GuaA and GuaB Are Essential for Borrelia Burgdorferi Survival in the Tick-Mouse Infection Cycle. J. Bacteriol. 2009, 191, 6231–6241. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Febres, V.J.; Jones, J.B.; Moore, G.A. A Survey of FLS2 Genes from Multiple Citrus Species Identifies Candidates for Enhancing Disease Resistance to Xanthomonas Citri Ssp. Citri. Hortic. Res. 2016, 3, 16022. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, C.H.D.; Assis, R.A.B.; Zaini, P.A.; Saxe, H.; Wilmarth, P.A.; Salemi, M.; Phinney, B.S.; Dandekar, A.M. De novo arginine synthesis is required for full virulence of Xanthomonas arboricola pv. juglandis during walnut bacterial blght disease. Phyto Pathol. 2021. (Accepted under revision). [Google Scholar]
- Fernandes, C.; Albuquerque, P.; Sousa, R.; Cruz, L.; Tavares, F. Multiple DNA Markers for Identification of Xanthomonas Arboricola Pv. Juglandis Isolates and Its Direct Detection in Plant Samples. Plant Dis. 2017, 101, 858–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Wilmarth, P.A.; Riviere, M.A.; David, L.L. Techniques for Accurate Protein Identification in Shotgun Proteomic Studies of Human, Mouse, Bovine, and Chicken Lenses. J. Ocul. Biol. Dis. Infor. 2009, 2, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A. Assessment of PLSDA Cross Validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER Version 14: More Genomes, a New PANTHER GO-Slim and Improvements in Enrichment Analysis Tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef] [PubMed]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An Integrative Web Server to Predict Subcellular Localization of Proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Käll, L.; Krogh, A.; Sonnhammer, E.L.L. A Combined Transmembrane Topology and Signal Peptide Prediction Method. J. Mol. Biol. 2004, 338, 1027–1036. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
Protein Name/Locus Xaj417 | VIP Score | Homology | SignalP | BUSCA | log2 FC (CM/WT) | Direction | p-Value | FDR | Candidate |
---|---|---|---|---|---|---|---|---|---|
hypothetical protein AKJ12_14105 | 6 | XAC3365 | OTHER | Cytoplasm | 1.48 | up | 0.000000 | 0.000071 | high |
hypothetical protein AKJ12_21575 | 17 | XAC3966 | OTHER | Cytoplasm | 1.22 | up | 0.000018 | 0.001228 | high |
hypothetical protein AKJ12_07070 | 23 | XAC0825 | SP (Sec/SPI) | SP-Extracellular space | 1.11 | up | 0.000001 | 0.000126 | high |
hypothetical protein AKJ12_18130 | 32 | XAC0292 | OTHER | Cytoplasm | 1.06 | up | 0.000000 | 0.000021 | high |
hypothetical protein AKJ12_01945 | 33 | Endopeptidase (XAC2370) | SP (Sec/SPI) | SP-OM-Beta Strand | 1.15 | up | 0.000000 | 0.000007 | high |
hypothetical protein AKJ12_04530 | 40 | Omp (XAC1347) | OTHER | Cytoplasm | 1.07 | up | 0.000025 | 0.001457 | high |
hypothetical protein AKJ12_19795 | 71 | Omp1 | LIPO (Sec/SPII) | SP-Extracellular space | 0.96 | up | 0.000264 | 0.007913 | high |
hypothetical protein AKJ12_01700 | 74 | IA64_08630 | SP (Sec/SPI) | SP-Extracellular space | 0.90 | up | 0.000000 | 0.000010 | high |
hypothetical protein AKJ12_15755 | 97 | PXO_03051 | OTHER | PM-Alpha Helix | 0.83 | up | 0.002633 | 0.043419 | med |
hypothetical protein AKJ12_16480 | 184 | XAC3844 | OTHER | PM-Alpha Helix | 0.73 | up | 0.000347 | 0.009915 | high |
hypothetical protein AKJ12_09885 | 237 | XAC1761 | LIPO (Sec/SPII) | SP-OM-Beta Strand | 0.67 | up | 0.000476 | 0.012267 | med |
hypothetical protein AKJ12_17400 | 280 | RaiA (XAC0419) | OTHER | Cytoplasm | 0.70 | up | 0.001134 | 0.024155 | med |
hypothetical protein AKJ12_14465 | 437 | XAC3439 | SP (Sec/SPI) | SP-Extracellular space | 0.52 | up | 0.001445 | 0.028278 | med |
hypothetical protein AKJ12_07680 | 474 | ElpS (XAC0692) | OTHER | Cytoplasm | 0.51 | up | 0.002401 | 0.040406 | med |
GO Biological Process | Xcc (4126) | Input (534) | Input (Expected) | Input (Over/Under) | FE | Raw p-Value | FDR |
---|---|---|---|---|---|---|---|
regulation of cellular component organization (GO:0051128) | 8 | 6 | 1.04 | + | 5.79 | 2.94 × 10−3 | 4.64 × 10−2 |
organonitrogen compound catabolic process (GO:1901565) | 91 | 24 | 11.78 | + | 2.04 | 2.79 × 10−3 | 4.46 × 10−2 |
DNA metabolic process (GO:0006259) | 188 | 10 | 24.33 | - | 0.41 | 2.77 × 10−3 | 4.46 × 10−2 |
purine nucleoside bisphosphate metabolic process (GO:0034032) | 22 | 10 | 2.85 | + | 3.51 | 2.22 × 10−3 | 3.74 × 10−2 |
gluconeogenesis (GO:0006094) | 7 | 6 | 0.91 | + | 6.62 | 1.86 × 10−3 | 3.24 × 10−2 |
response to oxidative stress (GO:0006979) | 31 | 13 | 4.01 | + | 3.24 | 9.10 × 10−4 | 1.85 × 10−2 |
glycolytic process (GO:0006096) | 16 | 10 | 2.07 | + | 4.83 | 3.45 × 10−4 | 7.82 × 10−3 |
leucine biosynthetic process (GO:0009098) | 5 | 5 | 0.65 | + | 7.73 | 2.99 × 10−3 | 4.67 × 10−2 |
tricarboxylic acid cycle (GO:0006099) | 20 | 14 | 2.59 | + | 5.41 | 8.93 × 10−6 | 3.08 × 10−4 |
siderophore transmembrane transport (GO:0044718) | 35 | 19 | 4.53 | + | 4.19 | 3.75 × 10−6 | 1.38 × 10−4 |
GO molecular function | Xcc (4126) | Input (534) | Input (expected) | Input (over/under) | FE | Raw p-value | FDR |
oxidoreductase activity, acting on a sulfur group of donors (GO:0016668) | 12 | 8 | 1.55 | + | 5.15 | 1.01 × 10−3 | 4.56 × 10−2 |
oxidoreductase activity, acting on the CH-OH group of donors (GO:0016616) | 47 | 21 | 6.08 | + | 3.45 | 1.23 × 10−5 | 8.32 × 10−4 |
siderophore uptake transmembrane transporter activity (GO:0015344) | 34 | 19 | 4.4 | + | 4.32 | 2.71 × 10−6 | 2.10 × 10−4 |
Protein Name | Log2 FC (CM/WT) | Direction | p-Value | FDR | Candidate | GO: Biological Process | GO: Cellular Component | GO: Molecular Function | KW: Ligand |
---|---|---|---|---|---|---|---|---|---|
PGIP | 2.520 | up | 0.000000 | 0.000000 | high | Defense response | Extracellular region (EC) | Polygalacturonase inhibitor activity | na |
Cysteine-rich repeat secretory protein 38 | 0.770 | up | 0.000000 | 0.000002 | high | Response to abscisic acid | Extracellular region (EC) | na | na |
Germin-like protein subfamily 1 member 7 | 1.446 | up | 0.000001 | 0.000114 | high | Defense response | Apoplast; cell wall | Mg ion binding; nutrient reservoir activity | Mg-Metal-binding |
Germin-like protein subfamily 1 member 13 | 0.673 | up | 0.000218 | 0.006936 | high | Defense response | Apoplast; cell wall | Mg ion binding; nutrient reservoir activity | Mg-Metal-binding |
Late embryogenesis abundant protein At1g64065 | 0.506 | up | 0.000330 | 0.009552 | high | Abiotic stress | Integral component of membrane | na | na |
Probable glucan endo-1,3-beta-glucosidase At4g16260 | 0.477 | up | 0.000360 | 0.010207 | med | Carbohydrate metabolic process; defense response | Anchored component of PM; EC | Hydrolase activity; polysaccharide binding | na |
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 3 | 1.672 | up | 0.001201 | 0.024840 | med | Methionine metabolic process | Cytoplasm; nucleus | Iron ion binding | Fe-Metal-binding |
Alcohol dehydrogenase class-P (AtADH) | 0.585 | up | 0.001429 | 0.028188 | med | Response to hypoxia, abscisic acid, estradiol, hydrogen peroxide, and osmotic stress | Cytosol; plasma membrane | NAD activity; nucleotide and zinc ion binding | Metal-binding |
Beta-hexosaminidase 1 | 0.327 | up | 0.002061 | 0.036378 | med | Carbohydrate metabolic process | Cytosol; vacuole | Beta-N-acetylhexosaminidase activity | na |
Molybdenum cofactor sulfurase (MCS; MOS; MoCo sulfurase) | 0.456 | up | 0.002370 | 0.040231 | med | ABA biosynthesis; auxin-signaling pathway; defense response; stomatal movement | Intracellular | Molybdenum ion binding; selenocysteine lyase | Pyridoxal phosphate |
EG45-like domain containing protein 2 | −1.155 | down | 0.000041 | 0.002101 | high | SAR | Apoplast; cell wall | na | na |
Ferredoxin-2, chloroplastic (AtFd2) | −0.633 | down | 0.000389 | 0.010674 | med | Photosynthetic electron transport chain | Chloroplast | Metal ion binding | Metal-binding |
NADPH-dependent alkenal/one oxidoreductase, chloroplastic (AtAOR) | −0.389 | down | 0.001066 | 0.023011 | med | Oxidation-reduction process | Apoplast; chloroplast; thylakoid | Enone reductase activity; zinc ion binding | NAD |
Probable glucan endo-1,3-beta-glucosidase BG1 | −0.674 | down | 0.002270 | 0.038983 | med | Carbohydrate metabolic process; defense response | Anchored component of PM; EC | Hydrolase activity; polysaccharide binding | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assis, R.d.A.B.; Sagawa, C.H.D.; Zaini, P.A.; Saxe, H.J.; Wilmarth, P.A.; Phinney, B.S.; Salemi, M.; Moreira, L.M.; Dandekar, A.M. A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. Int. J. Mol. Sci. 2021, 22, 10374. https://doi.org/10.3390/ijms221910374
Assis RdAB, Sagawa CHD, Zaini PA, Saxe HJ, Wilmarth PA, Phinney BS, Salemi M, Moreira LM, Dandekar AM. A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. International Journal of Molecular Sciences. 2021; 22(19):10374. https://doi.org/10.3390/ijms221910374
Chicago/Turabian StyleAssis, Renata de A. B., Cíntia H. D. Sagawa, Paulo A. Zaini, Houston J. Saxe, Phillip A. Wilmarth, Brett S. Phinney, Michelle Salemi, Leandro M. Moreira, and Abhaya M. Dandekar. 2021. "A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms" International Journal of Molecular Sciences 22, no. 19: 10374. https://doi.org/10.3390/ijms221910374
APA StyleAssis, R. d. A. B., Sagawa, C. H. D., Zaini, P. A., Saxe, H. J., Wilmarth, P. A., Phinney, B. S., Salemi, M., Moreira, L. M., & Dandekar, A. M. (2021). A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. International Journal of Molecular Sciences, 22(19), 10374. https://doi.org/10.3390/ijms221910374