Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota
Abstract
:1. Introduction
2. Discovery, Molecular Structure and Properties of BA and CA
3. Metabolism of BA and CA in Poultry
4. Biological Functions of BA and CA
4.1. Antibacterial Function, Acidity, Nutrient Absorption and Performance
4.2. Gut Morphology and Barrier Function
4.3. Immune Function and Antioxidation
Forms of BA/CA | Broiler strain and Trial Duration (Day) | Study Layout and Dosage Levels | Responses Expressed as a Percentage of Respective Controls | Reference |
---|---|---|---|---|
BA | Broiler chicks for 42 days | T1: CTR, T2: 20 mg/kg BMD, T3: 3 g/kg BA, T4: 4 g/kg BA | ↑ GLUT5, SGLT1 and PepT1 expression. ↑ humoral, cell-mediated immune responses and serum biochemistry at T4. ↑VL and VD. | [154] |
SB | M77 Hubbard broiler at d-21 and d-35 | T1: CTR, T2: 0.1 g/kg ZnB, T3: 0.5 g/kg SB, T4: 1.0 g/kg SB | ↑ antibody titer against NCD and SRBCs. ↑ Thymus, spleen and bursa weight. ↑ Duodenum and Jejunum VH. ↑Goblet cells in the SI and ileum. | [147] |
SB | Cobb 400 broiler for 42 days | T1: CTR, T2: AB (50 ppm), T3: 0.09% CSB, T4: 0.18% CSB, T5: 0.03% UCSB, T6: 0.06% UCSB | Cecal Escherichia coli and Clostridium perfringens count reduced with the addition of CSB. ↑ Jejunum VH, VH: CD ratio and VH: VW ratio with addition of CSB by 0.18%. | [155] |
SB | Arbor Acres broilers for 45 days | T0: CTR, T1: 0.3, T2: 0.6 and T3: 1.2 g/kg SB | ↑ weight and length of duodenum, jejunum, ileum, SI, pancreas, thymus, and length of caeca. ↑ Antibody titer against NCD. | [111] |
SB | Broiler chicks | SB with or without Salmonella typhimurium (LPS) challenged disease | SB ↓IL-1, IL-6, IFN-γ, and IL-10 in LPS-stimulated cells. ↓TGF-3 expression in both cases. | [29] |
ESB | Female Chinese Yellow broilers | T1: CON, T2: DSS, T3: 150 mg/kg SB, T4: 300 mg/kg SB | ↓ Lesion scores of intestinal bleedings. ↑ VH and ileum total mucosa. ↓ D (-)-lactate level, IL-6, and IL-1β. ↑ interleukin-10. | [132] |
PPSB | Mixed Cobb chicks at 1–14, 15–28 and 29–42 days. | T1: CTR, T2: AB (100,000 IU/kg), T3: 700 ppm PSB | ↑Jejunum and SI length, jejunal villi. T2 produced deepest crypts and lowest VH:CD ratio in all intestinal segments at d-14. | [156] |
CA | Male Ross 308 broiler for 42 days | Exp. 1: T1: 0, T2: 10, T3: 20, T4: 30 g/kg CA Exp. 2: T1: 0, T2: 30, T3: 60 g/kg CA | Exp.1: ↑ proventriculus weight and IL. ↑ Duodenum, jejunum and ileum, VL. ↑ CD and VL: CD ratio. ↓ epithelial thickness of the Jejunum. Exp. 2: ↑ gizzard weight and IL. ↑ proventriculus, intestine, gizzard, JL and ileum. ↑ VL, CD, and goblet cell count in the hindgut. ↓ Epithelial thickness in the SI. | [126] |
5. Application of BA and CA in Poultry Nutrition
6. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, M.; Salaheen, S.; Biswas, D. Animal Health: Global Antibiotic Issues. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 346–357. [Google Scholar]
- French, D. Chapter Five—Advances in Clinical Mass Spectrometry. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: San Francisco, CA, USA, 2017; Volume 79, pp. 153–198. [Google Scholar]
- Chahardoli, A.; Jalilian, F.; Memariani, Z.; Farzaei, M.H.; Shokoohinia, Y. Analysis of organic acids. In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 26; pp. 767–823. [Google Scholar]
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R. Meta-Analytic Study of Organic Acids as an Alternative Performance-Enhancing Feed Additive to Antibiotics for Broiler Chickens. Poult. Sci. 2017, 96, 3645–3653. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J. Organic Acids for Improving Intestinal Health of Poultry. Worlds Poult. Sci. J. 2015, 71, 630–642. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Kim, I.H. Protected Organic Acids Improved Growth Performance, Nutrient Digestibility and Decreased Gas Emission in Broilers. Animals 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdi, Y.; Létourneau-Montminy, M.-P.; Gaucher, M.-L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of Antibiotics in Broiler Production: Global Impacts and Alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Gao, C.Q.; Shi, H.Q.; Xie, W.Y.; Zhao, L.H.; Zhang, J.Y.; Ji, C.; Ma, Q.G. Dietary Supplementation with Acidifiers Improves the Growth Performance, Meat Quality and Intestinal Health of Broiler Chickens. Anim. Nutr. 2021, 7, 762–769. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.J.; Tor, Y. Antibiotics and Bacterial Resistance in the 21st Century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchhelle, C. Pharming Animals: A Global History of Antibiotics in Food Production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Buttin, P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Dai, D.; Qiu, K.; Zhang, H.; Wu, S.; Han, Y.; Wu, Y.; Qi, G.; Wang, J. Organic Acids as Alternatives for Antibiotic Growth Promoters Alter the Intestinal Structure and Microbiota and Improve the Growth Performance in Broilers. Front. Microbiol. 2020, 11, 618144. [Google Scholar] [CrossRef]
- Hosna, H. Application of Organic Acids in Poultry Nutrition. Int. J. Avian Wildl. Biol. 2018, 3, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Sunder, G.S. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian Australas. J. Anim. Sci. 2009, 22, 1026–1031. [Google Scholar] [CrossRef]
- Deepa, K.; Purushothaman, M.R.; Vasanthakumar, P.; Sivakumar, K. Butyric Acid as an Antibiotic Substitute for Broiler Chicken—A Review. Adv. Anim. Vet. Sci. 2018, 6, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.Z.H.; Afzal, M.; Fatima, M. Prospects of Using Citric Acid as Poultry Feed Supplements. J. Anim. Plant. Sci. 2018, 28, 12. [Google Scholar]
- Huyghebaert, G.; Ducatelle, R.; Immerseel, F.V. An Update on Alternatives to Antimicrobial Growth Promoters for Broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, W.K.; Koh, C.B. The Utilization and Mode of Action of Organic Acids in the Feeds of Cultured Aquatic Animals. Rev. Aquac. 2017, 9, 342–368. [Google Scholar] [CrossRef]
- Górka, P.; Kowalski, Z.M.; Zabielski, R.; Guilloteau, P. Use of Butyrate to Promote Gastrointestinal Tract Development in Calves. J. Dairy Sci. 2018, 101, 4785–4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.H.; Iqbal, J. Recent Advances in the Role of Organic Acids in Poultry Nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, Z.; An, W.; Dong, Y.; Zhang, B. Dietary Sodium Butyrate Improves Intestinal Development and Function by Modulating the Microbial Community in Broilers. PLoS ONE 2018, 13, e0197762. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.M.; Aragona, K.M.; Moreland, S.C.; Erickson, P.S. Supplementation of Sodium Butyrate to Post Weaned Heifer Diets: Effects on Growth Performance, Nutrient Digestibility and Health. J. Dairy Sci. 2019, 102, 3121–3130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, J.J.; Klima, C.L.; Sylte, M.J.; Looft, T. The Microbial Pecking Order: Utilization of Intestinal Microbiota for Poultry Health. Microorganisms 2019, 7, 376. [Google Scholar] [CrossRef] [Green Version]
- Van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The Use of Organic Acids to Combat Salmonella in Poultry: A Mechanistic Explanation of the Efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Baldevraj, R.S.M.; Jagadish, R.S. Incorporation of chemical antimicrobial agents into polymeric films for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagarón, J.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 368–420. [Google Scholar]
- Nguyen, D.H.; Lee, K.Y.; Mohammadigheisar, M.; Kim, I.H. Evaluation of the Blend of Organic Acids and Medium-Chain Fatty Acids in Matrix Coating as Antibiotic Growth Promoter Alternative on Growth Performance, Nutrient Digestibility, Blood Profiles, Excreta Microflora, and Carcass Quality in Broilers. Poult. Sci. 2018, 97, 4351–4358. [Google Scholar] [CrossRef]
- Pereira, R.; Menten, J.F.M.; Bortoluzzi, C.; Napty, G.S.; Longo, F.A.; Vittori, J.; Lourenço, M.C.; Santin, E. Organic Acid Blend in Diets of Broiler Chickens Challenged with Clostridium Perfringens. J. Appl. Poult. Res. 2015, 24, 387–393. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Packialakshmi, B.; Makkar, S.K.; Dridi, S.; Rath, N.C. Effect of Butyrate on Immune Response of a Chicken Macrophage Cell Line. Vet. Immunol. Immunopathol. 2014, 162, 24–32. [Google Scholar] [CrossRef]
- Xiong, J.; Qiu, H.; Bi, Y.; Zhou, H.; Guo, S.; Ding, B. Effects of Dietary Supplementation with Tributyrin and Coated Sodium Butyrate on Intestinal Morphology, Disaccharidase Activity and Intramuscular Fat of Lipopolysaccharide-Challenged Broilers. Braz. J. Poult. Sci. 2018, 20, 707–716. [Google Scholar] [CrossRef]
- Ndelekwute, E.K.; Unah, U.L.; Udoh, U.H. Effect of Dietary Organic Acids on Nutrient Digestibility, Faecal Moisture, Digesta PH and Viscosity of Broiler Chickens. MOJ Anat. Physiol. 2019, 6, 40–43. [Google Scholar]
- Myers, R.L. Butyric and Fatty Acids. In The 100 Most Important Chemical Compounds: A Reference Guide; Greenwood Press: Santa Barbara, CA, USA, 2007; pp. 52–54. [Google Scholar]
- Goldberg, I.; Rokem, J.S. Organic and Fatty Acid Production, Microbial. In Encyclopedia of Microbiology; Academic Press: Oxford, UK, 2009; pp. 421–442. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 264, Butyric Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/264 (accessed on 6 July 2021).
- Karimi, G.; Vahabzadeh, M. Butyric Acid. In Encyclopedia of Toxicology; Academic Press: Oxford, UK, 2014; pp. 597–601. [Google Scholar]
- William, H.B.; Butyric Acid. Encyclopedia Britannica. Available online: https://www.britannica.com/science/butyric-acid (accessed on 9 June 2020).
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Ahsan, U.; Cengiz, Ö.; Raza, I.; Kuter, E.; Chacher, M.F.A.; Iqbal, Z.; Umar, S.; Çakir, S. Sodium Butyrate in Chicken Nutrition: The Dynamics of Performance, Gut Microbiota, Gut Morphology and Immunity. Worlds Poult. Sci. J. 2016, 72, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Miguel, A.S.; Salgado, M.T.; Rodríguez, M.S.M.; Pachón, J.; Sánchez, M.A.; Lobatoa, C.; Pastor, M.R. Role of Butyric Acid in Food and Intestinal Health. Immunol. Infect. 2018, 1, 5. [Google Scholar]
- Xu, Z.; Jiang, L. 3.20—Butyric Acid. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Academic Press: Burlington, MA, USA, 2011; pp. 207–215. [Google Scholar]
- Den Besten, G.; Van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Kulcsár, A.; Mátis, G.; Molnár, A.; Petrilla, J.; Wágner, L.; Fébel, H.; Husvéth, F.; Dublecz, K.; Neogrády, Z. Nutritional Modulation of Intestinal Drug-Metabolizing Cytochrome P450 by Butyrate of Different Origin in Chicken. Res. Vet. Sci. 2017, 113, 25–32. [Google Scholar] [CrossRef]
- Kirimura, K.; Honda, Y.; Hattori, T. Citric Acid. In Comprehensive Biotechnology; Academic Press: Tokyo, Japan, 2011; Volume 3, pp. 135–142. [Google Scholar]
- Eli̇Uz, E. Antimicrobial Activity of Citric Acid against Escherichia Coli, Staphylococcus Aureus and Candida Albicans as a Sanitizer Agent. Eurasian J. For. Sci. 2020, 8, 295–301. [Google Scholar] [CrossRef]
- Karaffa, L.; Kubicek, C.P. Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story? Appl. Microbiol. Biotechnol. 2019, 103, 2889–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoff, F.H.; Bauweleers, H. Citric Acid. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–11. [Google Scholar]
- Sweis, I.E.; Cressey, B.C. Potential Role of the Common Food Additive Manufactured Citric Acid in Eliciting Significant Inflammatory Reactions Contributing to Serious Disease States: A Series of Four Case Reports. Toxicol. Rep. 2018, 5, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.W.; Ling, T.C. Overview of Citric Acid Production from Aspergillus Niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 311, Citric Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/311 (accessed on 18 September 2021).
- Lückstädt, C. Acidifiers in Animal Nutrition. A Guide for Feed Preservation and Acidification to Promote Animal Performance; Nottingham University Press: Nottingham, UK, 2008. [Google Scholar]
- Ajala, A.S.; Adeoye, A.O.; Olaniyan, S.A.; Fasonyin, O.T. A Study on Effect of Fermentation Conditions on Citric Acid Production from Cassava Peels. Sci. Afr. 2020, 8, e00396. [Google Scholar] [CrossRef]
- Ciriminna, R.; Meneguzzo, F.; Delisi, R.; Pagliaro, M. Citric Acid: Emerging Applications of Key Biotechnology Industrial Product. Chem. Cent. J. 2017, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Tanpong, S.; Cherdthong, A.; Tengjaroenkul, B.; Tengjaroenkul, U.; Wongtangtintharn, S. Evaluation of Physical and Chemical Properties of Citric Acid Industrial Waste. Trop. Anim. Health Prod. 2019, 51, 2167–2174. [Google Scholar] [CrossRef]
- Apelblat, A. Properties of citric acid and its solutions. In Citric Acid; Springer: Cham, Switzerland, 2014; pp. 13–141. [Google Scholar]
- Abdel-Salam, O.M.E.; Youness, E.R.; Mohammed, N.A.; Morsy, S.M.Y.; Omara, E.A.; Sleem, A.A. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice. J. Med. Food 2014, 17, 588–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. Scientific Opinion on the Safety and Efficacy of Citric Acid When Used as a Technological Additive (Preservative) for All Animal Species. EFSA 2015, 13, 4009. [Google Scholar]
- Bedford, A.; Gong, J. Implications of Butyrate and Its Derivatives for Gut Health and Animal Production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef]
- Hu, W.; Li, W.; Yang, H.; Chen, J. Current Strategies and Future Prospects for Enhancing Microbial Production of Citric Acid. Appl. Microbiol. Biotechnol. 2019, 103, 201–209. [Google Scholar] [CrossRef]
- Hesham, A.E.L.; Mostafa, Y.S.; AlSharqi, L.E.O. Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates. Mycobiology 2020, 48, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Abdelqader, A.; Al-Fataftah, A.R. Effect of Dietary Butyric Acid on Performance, Intestinal Morphology, Microflora Composition and Intestinal Recovery of Heat-Stressed Broilers. Livest. Sci. 2016, 183, 78–83. [Google Scholar] [CrossRef]
- Papatsiros, V.; Katsoulos, P.; Koutoulis, K.; Karatzia, M.; Dedousi, A.; Christodoulopoulos, G. Alternatives to Antibiotics for Farm Animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2013, 8, 1–15. [Google Scholar] [CrossRef]
- Vital, M.; Howe, A.; Tiedje, J. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta) Genomic Data. mBio 2014, 5, e00889-14. [Google Scholar] [CrossRef] [Green Version]
- Coutzac, C.; Jouniaux, J.-M.; Paci, A.; Schmidt, J.; Mallardo, D.; Seck, A.; Asvatourian, V.; Cassard, L.; Saulnier, P.; Lacroix, L.; et al. Systemic Short Chain Fatty Acids Limit Antitumor Effect of CTLA-4 Blockade in Hosts with Cancer. Nat. Commun. 2020, 11, 2168. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Wu, X.P.; Zhang, K.Y.; Ding, X.M.; Bai, S.P.; Wang, J.P.; Zeng, Q.F. The Effect of Citric Acid Acidification of Drinking Water on Growth Performance, Cecal PH, and Cecal Microflora of Meat Duck. Livest. Sci. 2018, 209, 54–59. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Farag, M.R.; Dhama, K.; Gopi, M. Role of Acidifiers in Livestock Nutrition and Health: A Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Kallam, N.R.K.; Sejian, V. Gut Health and Immunity in Improving Poultry Production. In Advances in Poultry Nutrition Research; Patra, A.K., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Kaczmarek, S.A.; Barri, A.; Hejdysz, M.; Rutkowski, A. Effect of Different Doses of Coated Butyric Acid on Growth Performance and Energy Utilization in Broilers. Poult. Sci. 2016, 95, 851–859. [Google Scholar] [CrossRef]
- Holl, E. Improving Broiler Gut Health by Making the Most of Butyric Acid. Available online: https://www.poultryworld.net/Nutrition/Partner/2021/8/Improving-broiler-gut-health-by-making-the-most-of-butyric-acid-785270E/ (accessed on 3 September 2021).
- Bortoluzzi, C.; Pedroso, A.A.; Mallo, J.J.; Puyalto, M.; Kim, W.K.; Applegate, T.J. Sodium Butyrate Improved Performance While Modulating the Cecal Microbiota and Regulating the Expression of Intestinal Immune-Related Genes of Broiler Chickens. Poult. Sci. 2017, 96, 3981–3993. [Google Scholar] [CrossRef]
- Bortoluzzi, C.; Rothrock, M.J.; Vieira, B.S.; Mallo, J.J.; Puyalto, M.; Hofacre, C.; Applegate, T.J. Supplementation of Protected Sodium Butyrate Alone or in Combination with Essential Oils Modulated the Cecal Microbiota of Broiler Chickens Challenged With Coccidia and Clostridium Perfringens. Front. Sustain. Food Syst. 2018, 2, 72. [Google Scholar] [CrossRef]
- Lei, F.; Yin, Y.; Wang, Y.; Deng, B.; Yu, H.D.; Li, L.; Xiang, C.; Wang, S.; Zhu, B.; Wang, X. Higher-Level Production of Volatile Fatty Acids In Vitro by Chicken Gut Microbiotas than by Human Gut Microbiotas as Determined by Functional Analyses. Appl. Environ. Microbiol. 2012, 78, 5763–5772. [Google Scholar] [CrossRef] [Green Version]
- Mátis, G.; Kulcsár, A.; Turowski, V.; Fébel, H.; Neogrády, Z.; Huber, K. Effects of Oral Butyrate Application on Insulin Signaling in Various Tissues of Chickens. Domest. Anim. Endocrinol. 2015, 50, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Mishra, P. Dietary Fiber in Poultry Nutrition and Their Effects on Nutrient Utilization, Performance, Gut Health, and on the Environment: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Eeckhaut, V.; Van Immerseel, F.; Croubels, S.; De Baere, S.; Haesebrouck, F.; Ducatelle, R.; Louis, P.; Vandamme, P. Butyrate Production in Phylogenetically Diverse Firmicutes Isolated from the Chicken Caecum: Butyrate-Producing Bacteria from the Chicken Caecum. Microb. Biotechnol. 2011, 4, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yin, F.; Yang, Y.; Lepp, D.; Yu, H.; Ruan, Z.; Yang, C.; Yin, Y.; Hou, Y.; Leeson, S.; et al. Dietary Butyrate Glycerides Modulate Intestinal Microbiota Composition and Serum Metabolites in Broilers. Sci. Rep. 2018, 8, 4940. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Jiang, S.; Qian, D.; Duan, J. Modulation of Microbially Derived Short-Chain Fatty Acids on Intestinal Homeostasis, Metabolism, and Neuropsychiatric Disorder. Appl. Microbiol. Biotechnol. 2020, 104, 589–601. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Flint, H.J. Formation of Propionate and Butyrate by the Human Colonic Microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: A Double-Edged Sword for Health? Adv. Nutr. 2018, 9, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Trachsel, J.; Bayles, D.O.; Looft, T.; Levine, U.Y.; Allen, H.K. Function and Phylogeny of Bacterial Butyryl Coenzyme A: Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Appl. Environ. Microbiol. 2016, 82, 6788–6798. [Google Scholar] [CrossRef] [Green Version]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. The Role of Butyrate on Colonic Function. Aliment. Pharmacol. Ther. 2007, 27, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Sivaprakasam, S.; Bhutia, Y.D.; Yang, S.; Ganapathy, V. Short Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr. Physiol. 2017, 8, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Mátis, G.; Petrilla, J.; Kulcsár, A.; van den Bighelaar, H.; Boomsma, B.; Neogrády, Z.; Fébel, H. Effects of Dietary Butyrate Supplementation and Crude Protein Level on Carcass Traits and Meat Composition of Broiler Chickens. Arch. Anim. Breed. 2019, 62, 527–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maesschalck, C.; Eeckhaut, V.; Maertens, L.; De Lange, L.; Marchal, L.; Nezer, C.; De Baere, S.; Croubels, S.; Daube, G.; Dewulf, J.; et al. Effects of Xylo-Oligosaccharides on Broiler Chicken Performance and Microbiota. Appl. Environ. Microbiol. 2015, 81, 5880–5888. [Google Scholar] [CrossRef] [Green Version]
- Bautil, A.; Verspreet, J.; Buyse, J.; Goos, P.; Bedford, M.R.; Courtin, C.M. Age-Related Arabinoxylan Hydrolysis and Fermentation in the Gastrointestinal Tract of Broilers Fed Wheat-Based Diets. Poult. Sci. 2019, 98, 4606–4621. [Google Scholar] [CrossRef]
- Bautil, A.; Verspreet, J.; Buyse, J.; Goos, P.; Bedford, M.R.; Courtin, C.M. Arabinoxylan-Oligosaccharides Kick-Start Arabinoxylan Digestion in the Aging Broiler. Poult. Sci. 2020, 99, 2555–2565. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Luo, L.; Hussain, S.B.; Bai, Y.; Alam, S.M. Comparative Metabolites and Citrate-Degrading Enzymes Activities in Citrus Fruits Reveal the Role of Balance between ACL and Cyt-ACO in Metabolite Conversions. Plants 2020, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Peretó, J. Citric Acid Cycle. In Encyclopedia of Astrobiology; Amils, R., Gargaud, M., Cernicharo Quintanilla, J., Cleaves, H.J., Irvine, W.M., Pinti, D., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–3. [Google Scholar]
- Kumari, A. Chapter 2—Citric Acid Cycle. In Sweet Biochemistry; Academic Press: Haryana, India, 2018; pp. 7–11. [Google Scholar]
- Tong, Z.; Zheng, X.; Tong, Y.; Shi, Y.-C.; Sun, J. Systems Metabolic Engineering for Citric Acid Production by Aspergillus Niger in the Post-Genomic Era. Microb. Cell Factories 2019, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Bender, D.A. Tricarboxylic Acid Cycle. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Oxford, UK, 2003; pp. 5851–5856. [Google Scholar]
- Cole, L.; Kramer, P.R. Sugars, Fatty Acids, and Energy Biochemistry. In Human Physiology, Biochemistry and Basic Medicine; Cole, L., Kramer, P.R., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 17–30. [Google Scholar]
- Wolffram, S.; Hagemann, C.; Grenacher, B.; Scharrer, E. Characterization of the Transport of Tri- and Dicarboxylates by Pig Intestinal Brush-Border Membrane Vesicles. Comp. Biochem. Physiol. A Physiol. 1992, 101, 759–767. [Google Scholar] [CrossRef]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Renata, C. Citrate and Mineral Metabolism Kidney Stones and Bone Disease. Front. Biosci. 2003, 8, s1084–s1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajor, A.M.; Sun, N.N. Single Nucleotide Polymorphisms in the Human Na+-Dicarboxylate Cotransporter Affect Transport Activity and Protein Expression. Am. J. Physiol. Ren. Physiol. 2010, 299, F704–F711. [Google Scholar] [CrossRef] [Green Version]
- Granchi, D.; Baldini, N.; Ulivieri, F.M.; Caudarella, R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019, 11, 2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adedokun, S.A.; Olojede, O.C. Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives. Front. Vet. Sci. 2019, 5, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Yu, Z. Intestinal Microbiome of Poultry and Its Interaction with Host and Diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Chen, Y.; Yu, L.; Wang, J.; Huang, M.; Zhu, N. Effects of Lactobacillus Plantarum on Intestinal Integrity and Immune Responses of Egg-Laying Chickens Infected with Clostridium Perfringens under the Free-Range or the Specific Pathogen Free Environment. BMC Vet. Res. 2020, 16, 47. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals 2020, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-C.; Xie, Z.; Zhang, Y.; Nguyen, K.T.; Yang, J. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers. Front. Bioeng. Biotechnol. 2014, 2, 23. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Kil, D.Y.; Oh, H.K.; Han, I.K. Acidifier as an Alternative Material to Antibiotics in Animal Feed. Asian Australas. J. Anim. Sci. 2005, 18, 1048–1060. [Google Scholar] [CrossRef]
- Elnesr, S.S.; Alagawany, M.; Elwan, H.A.M.; Fathi, M.A.; Farag, M.R. Effect of Sodium Butyrate on Intestinal Health of Poultry—A Review. Ann. Anim. Sci. 2020, 20, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Waseem, M.M.; Mukhtar, N.; Rehman, Z. Use of Organic Acids as Potential Feed Additives in Poultry Production. J. World’s Poult. Res. 2016, 6, 105–116. [Google Scholar]
- Chowdhury, R.; Islam, K.M.S.; Khan, M.J.; Karim, M.R.; Haque, M.N.; Khatun, M.; Pesti, G.M. Effect of Citric Acid, Avilamycin, and Their Combination on the Performance, Tibia Ash, and Immune Status of Broilers. Poult. Sci. 2009, 88, 1616–1622. [Google Scholar] [CrossRef]
- Archana, K.; Zuyie, R.; Sharma, K.G.; Vidyarthi, V.K. Organic Acid Supplementation in the Diet of Broiler Chicken—A Review. Livest. Res. Int. 2016, 4, 112–119. [Google Scholar]
- Leeson, S.; Namkung, H.; Antongiovanni, M.; Lee, E.H. Effect of Butyric Acid on the Performance and Carcass Yield of Broiler Chickens. Poult. Sci. 2005, 84, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.X.; Li, S.Q.; Zhao, Z.; An, L.L. Sodium Butyrate as an Effective Feed Additive to Improve Growth Performance and Gastrointestinal Development in Broilers. Vet. Med. Sci. 2020, 6, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Li, H.; Wu, Y.; Zhen, W.; Wang, Z.; Xia, Z.; Guo, Y. Effect of Microencapsulated Sodium Butyrate Dietary Supplementation on Growth Performance and Intestinal Barrier Function of Broiler Chickens Infected with Necrotic Enteritis. Anim. Feed Sci. Technol. 2017, 232, 6–15. [Google Scholar] [CrossRef]
- Pires, M.F.; Leandro, N.S.M.; Jacob, D.V.; Carvalho, F.B.; Oliveira, H.F.; Stringhini, J.H.; Pires, S.F.; Mello, H.H.C.; Carvalho, D.P. Performance and Egg Quality of Commercial Laying Hens Fed with Various Levels of Protected Sodium Butyrate. South Afr. J. Anim. Sci. 2020, 50, 759–765. [Google Scholar]
- Namkung, H.; Yu, H.; Gong, J.; Leeson, S. Antimicrobial Activity of Butyrate Glycerides toward Salmonella Typhimurium and Clostridium Perfringens. Poult. Sci. 2011, 90, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthi, M.A.; Attia, Y.A. Effect of Citric Acid on the Utilization of Olive Cake Diets for Laying Hens. Ital. J. Anim. Sci. 2015, 14, 3966. [Google Scholar] [CrossRef]
- Haq, Z.; Rastogi, A.; Sharma, R.K.; Khan, N. Advances in Role of Organic Acids in Poultry Nutrition: A Review. J. Appl. Nat. Sci. 2017, 9, 2152–2157. [Google Scholar] [CrossRef] [Green Version]
- Dehghani-Tafti, N.; Jahanian, R. Effect of Supplemental Organic Acids on Performance, Carcass Characteristics, and Serum Biochemical Metabolites in Broilers Fed Diets Containing Different Crude Protein Levels. Anim. Feed Sci. Technol. 2016, 211, 109–116. [Google Scholar] [CrossRef]
- Feye, K.M.; Swaggerty, C.L.; Kogut, M.H.; Ricke, S.C.; Piva, A.; Grilli, E. The Biological Effects of Microencapsulated Organic Acids and Botanicals Induces Tissue-Specific and Dose-Dependent Changes to the Gallus Gallus Microbiota. BMC Microbiol. 2020, 20, 332. [Google Scholar] [CrossRef]
- Stamilla, A.; Messina, A.; Sallemi, S.; Condorelli, L.; Antoci, F.; Puleio, R.; Loria, G.R.; Cascone, G.; Lanza, M. Effects of Microencapsulated Blends of Organics Acids and Essential Oils as a Feed Additive for Broiler Chicken. A Focus on Growth Performance, Gut Morphology and Microbiology. Animals 2020, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, A.W.; Kessler, J.W.; Fuller, L.; Williams, S.; Mathis, G.F.; Lumpkins, B.; Valdez, F. Effect of Feeding an Encapsulated Source of Butyric Acid (ButiPEARL) on the Performance of Male Cobb Broilers Reared to 42 d of Age. Poult. Sci. 2015, 94, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ahmed, S.; Ditta, Y.A.; Mehmood, S.; Khan, M.I.; Gillani, S.S.; Rasool, Z.; Sohail, M.L.; Mushtaq, A.; Umar, S. Effect of Microencapsulated Butyric Acid Supplementation on Growth Performance, Ileal Digestibility of Protein, Duodenal Morphology and Immunity in Broilers. J. Hell. Vet. Med. Soc. 2018, 69, 1109. [Google Scholar] [CrossRef] [Green Version]
- Lum, J.; Sygall, R.; Ros Felip, J.M. Comparison of Tributyrin and Coated Sodium Butyrate as Sources of Butyric Acid for Improvement of Growth Performance in Ross 308 Broilers. Int. J. Poult. Sci. 2018, 17, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Bedford, A.; Yu, H.; Squires, E.J.; Leeson, S.; Gong, J. Effects of Supplementation Level and Feeding Schedule of Butyrate Glycerides on the Growth Performance and Carcass Composition of Broiler Chickens. Poult. Sci. 2017, 96, 3221–3228. [Google Scholar] [CrossRef]
- Archana, K.; Zuyie, R.; Vidyarthi, V.K. Effects of Dietary Addition of Organic Acid on Performance of Broiler Chicken. Livest. Res. Int. 2019, 7, 71–76. [Google Scholar]
- Islam, K.M.S.; Schaeublin, H.; Wenk, C.; Wanner, M.; Liesegang, A. Effect of Dietary Citric Acid on the Performance and Mineral Metabolism of Broiler. J. Anim. Physiol. Anim. Nutr. 2012, 96, 808–817. [Google Scholar] [CrossRef]
- Khosravinia, H.; Nourmohammadi, R.; Afzali, N. Productive Performance, Gut Morphometry, and Nutrient Digestibility of Broiler Chicken in Response to Low and High Dietary Levels of Citric Acid. J. Appl. Poult. Res. 2015, 24, 470–480. [Google Scholar] [CrossRef]
- De Meyer, F.; Eeckhaut, V.; Ducatelle, R.; Dhaenens, M.; Daled, S.; Dedeurwaerder, A.; De Gussem, M.; Haesebrouck, F.; Deforce, D.; Van Immerseel, F. Host Intestinal Biomarker Identification in a Gut Leakage Model in Broilers. Vet. Res. 2019, 50, 46. [Google Scholar] [CrossRef] [Green Version]
- Barekatain, R.; Howarth, G.S.; Willson, N.-L.; Cadogan, D.; Wilkinson, S. Excreta Biomarkers in Response to Different Gut Barrier Dysfunction Models and Probiotic Supplementation in Broiler Chickens. PLoS ONE 2020, 15, e0237505. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A.; Trocino, A.; Birolo, M.; Cardazzo, B.; Bordignon, F.; Ballarin, C.; Carraro, L.; Xiccato, G. Dietary Supplementation with Sodium Butyrate: Growth, Gut Response at Different Ages, and Meat Quality of Female and Male Broiler Chickens. Ital. J. Anim. Sci. 2020, 19, 1135–1146. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to Modulate the Intestinal Microbiota and Their Effects on Nutrient Utilization, Performance and Health of Poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Moquet, P.C.A. Butyrate in Broiler Diets: Impact of Butyrate Presence in Distinct Gastrointestinal Tract Segments on Digestive Function, Microbiota Composition and Immune Responses. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2018. [Google Scholar]
- Zou, X.; Ji, J.; Qu, H.; Wang, J.; Shu, D.M.; Wang, Y.; Liu, T.F.; Li, Y.; Luo, C.L. Effects of Sodium Butyrate on Intestinal Health and Gut Microbiota Composition during Intestinal Inflammation Progression in Broilers. Poult. Sci. 2019, 98, 4449–4456. [Google Scholar] [CrossRef]
- Zhang, J.M.; Sun, Y.S.; Zhao, L.Q.; Chen, T.T.; Fan, M.N.; Jiao, H.C.; Zhao, J.P.; Wang, X.J.; Li, F.C.; Li, H.F.; et al. SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Front. Microbiol. 2019, 10, 2176. [Google Scholar] [CrossRef] [Green Version]
- Sossai, P. Butyric Acid: What Is the Future for This Old Substance? Swiss Med. Wkly. 2012, 142, w13596. [Google Scholar] [CrossRef]
- Celasco, G.; Moro, L.; Aiello, C.; Mangano, K.; Milasi, A.; Quattrocchi, C.; Di Marco, R. Calcium Butyrate: Anti-Inflammatory Effect on Experimental Colitis in Rats and Antitumor Properties. Biomed. Rep. 2014, 2, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Ajuwon, K.M. Butyrate Modifies Intestinal Barrier Function in IPEC-J2 Cells through a Selective Upregulation of Tight Junction Proteins and Activation of the Akt Signaling Pathway. PLoS ONE 2017, 12, e0179586. [Google Scholar] [CrossRef]
- Hansen, V.L.; Kahl, S.; Proszkowiec-Weglarz, M.; Jiménez, S.C.; Vaessen, S.F.C.; Schreier, L.L.; Jenkins, M.C.; Russell, B.; Miska, K.B. The Effects of Tributyrin Supplementation on Weight Gain and Intestinal Gene Expression in Broiler Chickens during Eimeria Maxima-Induced Coccidiosis. Poult. Sci. 2021, 100, 100984. [Google Scholar] [CrossRef]
- Sunkara, L.T.; Achanta, M.; Schreiber, N.B.; Bommineni, Y.R.; Dai, G.; Jiang, W.; Lamont, S.; Lillehoj, H.S.; Beker, A.; Teeter, R.G.; et al. Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression. PLoS ONE 2011, 6, e27225. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, X.; Yu, S.; Su, Y.; Zhu, W. Effects of Early Intervention with Sodium Butyrate on Gut Microbiota and the Expression of Inflammatory Cytokines in Neonatal Piglets. PLoS ONE 2016, 11, e0162461. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Pekel, A.Y.; Alp, M.; Kocabağlı, N. Effects of Dietary Supplementation of Citric Acid, Copper, and Microbial Phytase on Growth Performance and Mineral Retention in Broiler Chickens Fed a Low Available Phosphorus Diet. J. Appl. Poult. Res. 2012, 21, 335–347. [Google Scholar] [CrossRef]
- Nourmohammadi, R.; Afzali, N. Effect of Citric Acid and Microbial Phytase on Small Intestinal Morphology in Broiler Chicken. Ital. J. Anim. Sci. 2013, 12, e7. [Google Scholar] [CrossRef]
- Nourmohammadi, R.; Khosravinia, H. Acidic Stress Caused by Dietary Administration of Citric Acid in Broiler Chickens. Arch. Anim. Breed. 2015, 58, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Suiryanrayna, M.V.A.N.; Ramana, J.V. A Review of the Effects of Dietary Organic Acids Fed to Swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Sabour, S.; Tabeidian, S.A.; Sadeghi, G. Dietary Organic Acid and Fiber Sources Affect Performance, Intestinal Morphology, Immune Responses and Gut Microflora in Broilers. Anim. Nutr. 2019, 5, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bansal, M.; Liyanage, R.; Upadhyay, A.; Rath, N.; Donoghue, A.; Sun, X. Sodium Butyrate Modulates Chicken Macrophage Proteins Essential for Salmonella Enteritidis Invasion. PLoS ONE 2021, 16, e0250296. [Google Scholar] [CrossRef] [PubMed]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the Gut to the Peripheral Tissues: The Multiple Effects of Butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikandar, A.; Zaneb, H.; Younus, M.; Masood, S.; Aslam, A.; Khattak, F.; Ashraf, S.; Yousaf, M.S.; Rehman, H. Effect of Sodium Butyrate on Performance, Immune Status, Microarchitecture of Small Intestinal Mucosa and Lymphoid Organs in Broiler Chickens. Asian Australas. J. Anim. Sci. 2017, 30, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Mátis, G.; Neogrády, Z.; Csikó, G.; Kulcsár, A.; Kenéz, Á.; Huber, K. Effects of Orally Applied Butyrate Bolus on Histone Acetylation and Cytochrome P450 Enzyme Activity in the Liver of Chicken–a Randomized Controlled Trial. Nutr. Metab. 2013, 10, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, K.M.S. Use of Citric Acid in Broiler Diets. Worlds Poult. Sci. J. 2012, 68, 104–118. [Google Scholar] [CrossRef]
- Haque, M.N.; Islam, K.M.S.; Akbar, M.A.; Chowdhury, R.; Khatun, M.; Karim, M.R.; Kemppainen, B.W. Effect of Dietary Citric Acid, Flavomycin and Their Combination on the Performance, Tibia Ash and Immune Status of Broiler. Can. J. Anim. Sci. 2010, 90, 57–63. [Google Scholar] [CrossRef]
- Lakshmi, K.V.; Sunder, G.S. Supplementation of Lactic Acid and Citric Acid in Diets Replacing Antibiotic and Its Influence on Broiler Performance, Meat Yield and Immune Response up to 42 Days of Age. Int. J. Sci. Res. 2013, 4, 1007–1011. [Google Scholar]
- Debi, M.; Islam, K.; Akbar, M.; Ullha, B.; Das, S. Response of Growing Rabbits to Different Levels of Dietary Citric Acid. Bangladesh J. Anim. Sci. 1970, 39, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Biswas, A.; Mir, N.A.; Mandal, A.B. Butyric Acid as a Promising Alternative to Antibiotic Growth Promoters in Broiler Chicken Production. J. Agric. Sci. 2019, 157, 55–62. [Google Scholar] [CrossRef]
- Deepa, K.; Purushothaman, M.; Vasanthakumar, P.; Sivakumar, K. Effect of Dietary Supplementation of Sodium Butyrate on Ceacal Microflora and Villi Morphology in Broiler Chicken. Int. J. Chem. Stud. 2020, 8, 44–48. [Google Scholar] [CrossRef]
- Chamba, F.; Puyalto, M.; Ortiz, A.; Torrealba, H.; Mallo, J.J.; Riboty, R. Effect of Partially Protected Sodium Butyrate on Performance, Digestive Organs, Intestinal Villi and E. Coli Development in Broilers Chickens. Int. J. Poult. Sci. 2014, 13, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Grilli, E. Microencapsulation Allows Slow Release of Organic Acids in the GI Tract of Broilers. In Proceedings of the 16th European Poultry Nutrition Symposium, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Moquet, P.C.A.; Onrust, L.; Van Immerseel, F.; Ducatelle, R.; Hendriks, W.H.; Kwakkel, R.P. Importance of Release Location on the Mode of Action of Butyrate Derivatives in the Avian Gastrointestinal Tract. Worlds Poult. Sci. J. 2016, 72, 61–80. [Google Scholar] [CrossRef]
- Moquet, P.C.A.; Salami, S.A.; Onrust, L.; Hendriks, W.H.; Kwakkel, R.P. Butyrate Presence in Distinct Gastrointestinal Tract Segments Modifies Differentially Digestive Processes and Amino Acid Bioavailability in Young Broiler Chickens. Poult. Sci. 2018, 97, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Alicja, S.; Kozłowski, K. Effect of Dietary Supplementation with Butyric Acid or Sodium Butyrate on Egg Production and Physiological Parameters in Laying Hens. Eur. Poult. Sci. 2016, 80. [Google Scholar] [CrossRef]
- van den Borne, J.J.G.C.; Heetkamp, M.J.W.; Buyse, J.; Niewold, T.A. Fat Coating of Ca Butyrate Results in Extended Butyrate Release in the Gastrointestinal Tract of Broilers. Livest. Sci. 2015, 175, 96–100. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Hosseindoust, A.; Kim, I.H. Evaluating the Effect of Microencapsulated Blends of Organic Acids and Essential Oils in Broiler Chickens Diet. J. Appl. Poult. Res. 2015, 24, 511–519. [Google Scholar] [CrossRef]
- Salahi, A. Effect of in Ovo Administration of Butyric Acid into Broiler Breeder Eggs on Chicken Small Intestine PH and Morphology. Slovak J. Anim. Sci. 2015, 18, 8–15. [Google Scholar]
- Oladokun, S.; Adewole, D.I. In Ovo Delivery of Bioactive Substances: An Alternative to the Use of Antibiotic Growth Promoters in Poultry Production—A Review. J. Appl. Poult. Res. 2020, 29, 744–763. [Google Scholar] [CrossRef]
- Fazayeli-Rad, A.R.; Nazarizadeh, H.; Vakili, M.; Afzali, N.; Nourmohammadi, R. Effect of Citric Acid on Performance, Nutrient Retention and Tissue Biogenic Amine Contents in Breast and Thigh Meat from Broiler Chickens. Eur. Poult. Sci. 2014, 78, 9. [Google Scholar] [CrossRef]
- Uddin, M.; Islam, K.; Reza, A.; Chowdhury, R. Citric Acid as Feed Additive in Diet of Rabbit- Effect on Growth Performance. J. Bangladesh Agric. Univ. 2014, 12, 87–90. [Google Scholar] [CrossRef] [Green Version]
Forms of BA/CA | Broiler Strain and Trial Duration (Day) | Study Layout and Dosage Levels | Responses Expressed as a Percentage of Respective Controls | Reference |
---|---|---|---|---|
EBA (Buti PEARL) | Male Cobb broilers for 42 days | Exp. 1: T1: CTR, T2: 100, T3: 200 and T4: 300 g/t EBA respectively. Exp. 2: Similar with Exp.1 but added T5:400 and T6: 500 g/t EBA. | EXP 1: ↓ FC at d 0–21. ↑ BWG at d-35 and d-42. EXP 2: ↓ FC at T6. ↑ BWG at d-35 and 42 inT4, T5 and T6. | [120] |
MEBA | Hubbard classic | T1: CTR, T2: 0.25, T3: 0.35 and T4: 0.45 g/kg of MEB. | ↑ BWG, FCR and AID with addition of MEB. | [121] |
TB and FCSB | Ross 308 Broilers for 35 days | T1: CTR, T2: TB (53% BA), T3: FCSB (24% BA) | At d-25 and 35, ↑BWG at T2 (0.058 kg) and T3 (0.043 kg). At d 9–25, ↑FCR at T2 by 5 points, T3 by 6 points. T2 and T3 ↑ FCR in all periods by 4 and 5 points respectively. | [122] |
MB and TB | Ross 308 male broilers for 42 days | Exp. 1: T1: CTR, T2: 500, T3: 1000, T4: 2000, T5: 3000 ppm MB. Exp. 2: T1: CTR, T2: 5T5M, T3: 5T5Ms, T4: 5T20M, T5: 5T20Ms | Exp. 1: ↓abdominal fat deposition. ↑Breast muscle. Exp. 2: ↑Breast muscle weight in T2 at 5 weeks of age. | [123] |
BA | Commercial broilers for 35 days | T1: CTR, T2: Antibiotic (furazolidone), T3: 0.2%, T4: 0.4%, T5: 0.6% BA | ↑ FCR, dressing % and ↓ abdominal fat content | [15] |
BA, CA | Unsexed Ros 308 broiler for d-42 | 3 × 3 factorial CRD: CP levels (H, M, L) and 3 dietary OA (CTR, 2.5 g/kg CA or BA) | M + L CP ↓ ADG at d 0–14 and d 14–28. CA ↑ ADG at d 0–14. Both CA + BA ↑ADG, FCR and carcass yield, ↓ gizzard weight at d-42. | [117] |
CA | Vencob broilers for 42 days | T1: CTR, T2: 2.4, T3: 3.2, T4: 4.00 mg/kg CA respectively | ↑ FCE better in T3 followed by T2, T1 and T4. ↑dressing% and carcass yield in T3. | [124] |
CA | Ross broiler chicks for 35 days | T1: CTR, T2: 0.25, T3: 0.75%, T4: 1.25% CA | ↑ BWG, FCE, microminerals digestibility, bone ash and mineral density, and strength at T3. ↑ Slaughter weight and carcass quality with CA addition. | [125] |
CA | Male Ross 308 broiler for 42 days | Exp. 1: T1: CTR, T2: 10, T3: 20, T4: 30 g/kg CA Exp. 2: T1: CTR, T2: 30, T3: 60 g/kg CA | Exp.1: ↑ ADG, FCR and nutrient digestibility. Exp. 2: ↑ ADG and ADFI. ↑ ICPD, AME and tP. | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melaku, M.; Zhong, R.; Han, H.; Wan, F.; Yi, B.; Zhang, H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. Int. J. Mol. Sci. 2021, 22, 10392. https://doi.org/10.3390/ijms221910392
Melaku M, Zhong R, Han H, Wan F, Yi B, Zhang H. Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. International Journal of Molecular Sciences. 2021; 22(19):10392. https://doi.org/10.3390/ijms221910392
Chicago/Turabian StyleMelaku, Mebratu, Ruqing Zhong, Hui Han, Fan Wan, Bao Yi, and Hongfu Zhang. 2021. "Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota" International Journal of Molecular Sciences 22, no. 19: 10392. https://doi.org/10.3390/ijms221910392
APA StyleMelaku, M., Zhong, R., Han, H., Wan, F., Yi, B., & Zhang, H. (2021). Butyric and Citric Acids and Their Salts in Poultry Nutrition: Effects on Gut Health and Intestinal Microbiota. International Journal of Molecular Sciences, 22(19), 10392. https://doi.org/10.3390/ijms221910392