Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Chitosan Solution Preparation Procedure
3.3. SPE-Chitosan Memristor Devices Fabrication
3.4. Characterization of SPE-Chitosan Memristor Devices
3.5. Double-Exponential Decay Function
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BE | Bottom electrode |
BRS | Bipolar resistive switching |
CFs | Conductive filaments |
E-beam | Electron beam |
ECM | Electrochemical metallization |
EPSC | Excitatory post-synaptic current |
HRS | High-resistance state |
Icc | Compliance current |
IPSC | Inhibitory post-synaptic current |
LRS | Low-resistance state |
LTM | Long-term memory |
MLC | Multi-level per cell |
PPD | Paired-pulse depression |
PPF | Paired-pulse facilitation |
RS | Resistive switching |
SCLC | Space-charge-limited conduction |
SPE | Solid polymer electrolyte |
STM | Short-term memory |
TE | Top electrode |
Vreset | Reset operating voltage |
Vset | Set operating voltage |
References
- Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Shi, T.; Bi, C.; Rao, F.; Cai, Y.; Zhou, P. Memory materials and devices: From concept to application. InfoMat 2020, 2, 261–290. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Kapur, S.; Saurabh, S.; Grover, A. Resistive random access memory: A review of device challenges. IETE Tech. Rev. 2020, 37, 377–390. [Google Scholar] [CrossRef]
- Banerjee, W. Challenges and applications of emerging nonvolatile memory devices. Electronics 2020, 9, 1029. [Google Scholar] [CrossRef]
- Khalid, M. Review on various memristor models, characteristics, potential applications, and future works. Trans. Electr. Electron. Mater. 2019, 20, 289–298. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Midya, R.; Xia, Q.; Yang, J.J. Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys. 2018, 51, 503002. [Google Scholar] [CrossRef]
- Chang, T.C.; Chang, K.C.; Tsai, T.M.; Chu, T.J.; Sze, S.M. Resistance random access memory. Mater. Today 2016, 19, 254–264. [Google Scholar] [CrossRef]
- Park, S.; Noh, J.; Choo, M.L.; Sheri, A.M.; Chang, M.; Kim, Y.B.; Kim, C.J.; Jeon, M.; Lee, B.G.; Lee, B.H.; et al. Nanoscale RRAM–based synaptic electronics: Toward a neuromorphic computing device. Nanotechnology 2013, 24, 384009. [Google Scholar] [CrossRef]
- Raeis-Hosseini, N.; Lee, J.S. Resistive switching memory using biomaterials. J. Electroceramics 2017, 39, 223–238. [Google Scholar]
- Raeis-Hosseini, N.; Lee, J.S. Controlling the resistive switching behavior in starch–based flexible biomemristors. ACS Appl. Mater. Interfaces 2016, 8, 7326–7332. [Google Scholar] [CrossRef]
- Rananavare, A.P.; Kadam, S.J.; Prabhu, S.V.; Chavan, S.S.; Anbhule, V.; Dongale, T.D. Organic non–volatile memory device based on cellulose fibers. Mater. Lett. 2018, 232, 99–102. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yu, H.C.; Huang, C.Y.; Chung, W.L.; Wu, S.L.; Su, Y.K. Nonvolatile bio–memristor fabricated with egg albumen film. Sci. Rep. 2015, 5, 10022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.C.; Wang, Y.H. Resistive switching behavior in gelatin thin films for nonvolatile memory application. ACS Appl. Mater. Interfaces 2014, 6, 5413–5421. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Q.; Zhu, X.; Li, Y.; Zhang, M.; Li, J.; Zhang, Q. Recent advances in organic-based materials for resistive memory applications. InfoMat 2020, 2, 995–1033. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2020, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Viventi, J.; Amsden, J.J.; Xiao, J.; Vigeland, L.; Kim, Y.S.; Blanco, J.A.; Panilaitis, B.; Frechette, E.S.; Contreras, D.; et al. Dissolvable films of silk fibroin for ultrathin conformal bio–integrated electronics. Nat. Mater. 2010, 9, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Raeis Hosseini, N.; Lee, J.S. Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 2015, 9, 419–426. [Google Scholar] [CrossRef]
- Koev, S.T.; Dykstra, H.; Luo, X.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F.; Ghodssi, R. Chitosan: An integrative biomaterial for lab-on-a-chip devices. Lab Chip 2010, 10, 3026–3042. [Google Scholar] [CrossRef]
- Hosseini, N.R.; Lee, J.S. Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 2015, 25, 5586–5592. [Google Scholar] [CrossRef]
- Jiang, J.; Kuroda, M.A.; Ahyi, A.C.; Isaacs-Smith, T.; Mirkhani, V.; Park, M.; Dhar, S. Chitosan solid electrolyte as electric double layer in multilayer MoS2 transistor for low-voltage operation. Phys. Status Solidi 2015, 212, 2219–2225. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhu, L.Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Hill, J.P.; Ariga, K.; Aono, M. A polymer-electrolyte-based atomic switch. Adv. Funct. Mater. 2011, 21, 93–99. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Wu, M.C.; Jang, W.Y.; Lin, C.H.; Tseng, T.Y. A study on low–power, nanosecond operation and multilevel bipolar resistance switching in Ti/ZrO2/Pt nonvolatile memory with 1T1R architecture. Semicond. Sci. Technol. 2012, 27, 065010. [Google Scholar] [CrossRef] [Green Version]
- Ielmini, D. Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Prakash, A.; Park, J.; Song, J.; Woo, J.; Cha, E.J.; Hwang, H. Demonstration of low power 3–bit multilevel cell characteristics in a TaOx–based RRAM by stack engineering. IEEE Electron Device Lett. 2014, 36, 32–34. [Google Scholar] [CrossRef]
- Bousoulas, P.; Stathopoulos, S.; Tsialoukis, D.; Tsoukalas, D. Low–power and highly uniform 3–b multilevel switching in forming free TiO2−x-based RRAM with embedded Pt nanocrystals. IEEE Electron Device Lett. 2016, 37, 874–877. [Google Scholar] [CrossRef]
- Prakash, A.; Hwang, H. Multilevel cell storage and resistance variability in resistive random access memory. Phys. Sci. Rev. 2016, 1. [Google Scholar] [CrossRef]
- Prakash, A.; Park, J.S.; Song, J.; Lim, S.J.; Park, J.H.; Woo, J.; Cha, E.; Hwang, H. Multi–state resistance switching and variability analysis of HfOx based RRAM for ultra–high density memory applications. In Proceedings of the 2015 International Symposium on Next-Generation Electronics (ISNE), Taipei, Taiwan, 4–6 May 2015; pp. 1–2. [Google Scholar]
- Ambrogio, S.; Balatti, S.; Cubeta, A.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Understanding switching variability and random telegraph noise in resistive RAM. In Proceedings of the2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 31–35. [Google Scholar]
- Tran, K.M.; Do, D.P.; Thi, K.H.T.; Pham, N.K. Influence of top electrode on resistive switching effect of chitosan thin films. J. Mater. Res. 2019, 34, 3899–3906. [Google Scholar] [CrossRef]
- Ambrosi, E.; Bricalli, A.; Laudato, M.; Ielmini, D. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices. Faraday Discuss. 2019, 213, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Bricalli, A.; Ambrosi, E.; Laudato, M.; Maestro, M.; Rodriguez, R.; Ielmini, D. Resistive switching device technology based on silicon oxide for improved ON–OFF ratio—part I: Memory devices. IEEE Trans. Electron Dev. 2018, 65, 115–121. [Google Scholar] [CrossRef]
- Long, B.; Li, Y.; Jha, R. Switching characteristics of Ru/HfO2/TiO2−x/Ru RRAM devices for digital and analog nonvolatile memory applications. IEEE Electron Device Lett. 2012, 33, 706–708. [Google Scholar] [CrossRef]
- Lin, W.P.; Liu, S.J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570–606. [Google Scholar] [PubMed]
- Mondal, S.; Her, J.L.; Chen, F.H.; Shih, S.J.; Pan, T.M. Improved resistance switching characteristics in Ti–doped Yb2O3 for resistive nonvolatile memory devices. IEEE Electron Device Lett. 2012, 33, 1069–1071. [Google Scholar] [CrossRef]
- Feng, P.; Chen, C.; Wang, Z.S.; Yang, Y.C.; Yang, J.; Zeng, F. Nonvolatile resistive switching memories–characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 2010, 20, 1–15. [Google Scholar]
- Chiu, F.C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.C.; Shiffrin, R.M. Human memory: A proposed system and its control processes. Psychol. Learn. Motiv. 1968, 2, 89–195. [Google Scholar]
- Bi, G.Q.; Poo, M.M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- McGaugh, J.L. Memory––A century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhou, Z.; Zhang, Y.; Wang, J.; Zhang, L.; Li, X.; Zhao, M.; Wang, H.; Pei, Y.; Zhao, Q.; et al. An electronic synapse memristor device with conductance linearity using quantized conduction for neuroinspired computing. J. Mater. Chem. C 2019, 7, 1298–1306. [Google Scholar]
- Majumdar, S.; Tan, H.; Qin, Q.H.; van Dijken, S. Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing. Adv. Electron. Mater. 2019, 5, 1800795. [Google Scholar] [CrossRef] [Green Version]
- Zucker, R.S.; Regehr, W.G. Short–term synaptic plasticity. Ann. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.; Zhou, Y.; Han, S.T.; Roy, V.A.L. From biomaterial–based data storage to bio–inspired artificial synapse. Mater. Today 2018, 21, 537–552. [Google Scholar] [CrossRef]
- Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.Y.; Meng, J.L.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Atomic layer deposited Hf0.5Zr0.5O2–based flexible memristor with short/long–term synaptic plasticity. Nanoscale Res. Lett. 2019, 14, 102. [Google Scholar] [CrossRef] [Green Version]
Average (μ) | Standard Deviation (σ) | μ ± σ | |
---|---|---|---|
Set operating voltage (Vset) | 0.89 V | 0.08 V | 0.89 ± 0.08 V |
Set operating voltage (Vreset) | −0.58 V | 0.05 V | −0.58 ± 0.05 V |
Power for set operation (Pset) | 9.23 mW | 0.75 mW | 9.23 ± 0.75 mW |
Power for reset operation (Preset) | 4.94 mW | 0.42 mW | 4.94 ± 0.42 mW |
Set Compliance Current (Icc) | 5 mA | 10 mA | 15 mA | 20 mA | 30 mA |
---|---|---|---|---|---|
Average (μ) | 89.89 | 70.01 | 50.69 | 44.90 | 40.69 |
Standard deviations (σ) | 3.16 | 2.19 | 2.01 | 0.92 | 1.03 |
μ ± σ | 89.89 ± 3.16 | 70.01 ± 2.19 | 50.69 ± 2.01 | 44.90 ± 0.92 | 40.69 ± 1.03 |
Index (Δt = 60 ms) | Index (Δt > 2000 ms) | τ1 | τ2 | |
---|---|---|---|---|
PPF | ~123% | ~100% | 40.4 ms | 593.2 ms |
PPD | ~79% | ~100% | 60.3 ms | 986.6 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, S.-Y.; Cho, W.-J. Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. Int. J. Mol. Sci. 2021, 22, 773. https://doi.org/10.3390/ijms22020773
Min S-Y, Cho W-J. Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. International Journal of Molecular Sciences. 2021; 22(2):773. https://doi.org/10.3390/ijms22020773
Chicago/Turabian StyleMin, Shin-Yi, and Won-Ju Cho. 2021. "Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse" International Journal of Molecular Sciences 22, no. 2: 773. https://doi.org/10.3390/ijms22020773
APA StyleMin, S. -Y., & Cho, W. -J. (2021). Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. International Journal of Molecular Sciences, 22(2), 773. https://doi.org/10.3390/ijms22020773