Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. NCI-60 Anticancer Drug Screening
2.2.2. Compounds 4 and 6 Induce Apoptosis-Related Nucleus Changes
2.2.3. Compounds 4 and 6 Induce Changes in Cell Morphology and Confluence
2.2.4. rtPCR Assay Highlights Biological Activity at Gene Level
2.3. Compounds 4 and 6 Exhibit In Silico Bcl-XL Inhibition
2.4. Effect of Compounds 4 and 6 on Normal and Tumor Angiogenesis Process by CAM Assay and Irritation Potential Determination Using the HET-CAM Assay
3. Materials and Methods
3.1. Chemistry
3.1.1. General
3.1.2. Synthesis of Compounds 3, 4
3.1.3. Synthesis of Compounds 5–10
3.2. NCI-60 Screening
3.3. Cell Culture
3.4. Compound Stability in Cell Culture Media
3.5. DAPI Assay
3.6. The Chorioallantoic Membrane Assay
3.7. HET-CAM Assay
3.8. Molecular Docking
3.9. Gene Expression Analysis by qRT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarode, S.C.; Sarode, G.S.; Tupkari, J.V. Oral potentially malignant disorders: A proposal for terminology and definition with review of literature. J. Oral Maxillofac. Pathol. 2014, 18, S77–S80. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, R.; Xia, C.; Zeng, H.; Zhang, S.; Zou, X.; Yang, Z.; Li, H.; Chen, W. Interactions between life expectancy and the incidence and mortality rates of cancer in China: A population-based cluster analysis. Cancer Commun. 2018, 38, 44. [Google Scholar] [CrossRef] [Green Version]
- WHO Cancer. Available online: https://www.who.int/health-topics/cancer (accessed on 1 June 2021).
- Liang, X.-J.; Chen, C.; Zhao, Y.; Wang, P.C. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol. Biol. 2010, 596, 467–488. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, O.; Ghaderi, E. Graphene Nanomesh Promises Extremely Efficient In Vivo Photothermal Therapy. Small 2013, 9, 3593–3601. [Google Scholar] [CrossRef]
- Zhu, W.; Lee, S.-J.; Castro, N.J.; Yan, D.; Keidar, M.; Zhang, L.G. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci. Rep. 2016, 6, 21974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-Z.; Li, Y.; Yu, X.-B.; Liu, L.-N.; Zhu, Z.-A.; Guo, Y.-P. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass. Mater. Sci. Eng. C 2014, 41, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, P.D.; Zielske, S.P.; Roth, J.C.; Ballas, C.B.; Bowman, J.E.; Gerson, S.L. Cancer Gene Therapy: Scientific Basis. Annu. Rev. Med. 2002, 53, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Meidanchi, A.; Ghaderi, E.; Khoei, S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. J. Mater. Chem. B 2014, 2, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Huang, T.; Wu, B.-L.; He, W.-X.; Liu, D. Stem cells in cancer therapy: Opportunities and challenges. Oncotarget 2017, 8, 75756–75766. [Google Scholar] [CrossRef] [Green Version]
- Meidanchi, A.; Akhavan, O.; Khoei, S.; Shokri, A.A.; Hajikarimi, Z.; Khansari, N. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater. Sci. Eng. C 2015, 46, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Dinh Ngoc, T.; Moons, N.; Kim, Y.; De Borggraeve, W.; Mashentseva, A.; Andrei, G.; Snoeck, R.; Balzarini, J.; Dehaen, W. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg. Med. Chem. 2014, 22, 3292–3300. [Google Scholar] [CrossRef] [PubMed]
- Alho, D.P.S.; Salvador, J.A.R.; Cascante, M.; Marin, S. Synthesis and Antiproliferative Activity of Novel Heterocyclic Glycyrrhetinic Acid Derivatives. Molecules 2019, 24, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehelean, C.A.; Soica, C.; Peev, C.; Ciurlea, S.; Feflea, S.; Kasa, P. A pharmaco-toxicological evaluation of betulinic acid mixed with hydroxipropilgamma cyclodextrin on in vitro and in vivo models. Farmacia 2011, 59, 51–59. [Google Scholar]
- Spivak, A.Y.; Gubaidullin, R.R.; Galimshina, Z.R.; Nedopekina, D.A.; Odinokov, V.N. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-d-glucopyranoside azides via click chemistry. Tetrahedron 2016, 72, 1249–1256. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, M.; Duan, L.; Wang, W.; Zhang, J.; Wang, D.; Liang, X. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 2013, 18, 3615–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based. Complement. Alternat. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Huang, H.-Y.; Wu, Y.-L. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells. Mol. Med. Rep. 2015, 12, 5012–5018. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-R.; Jeong, S.-J.; Lee, N.-R.; Shin, H.-K.; Seo, C.-S. Quantification Analysis and In Vitro Anti-Inflammatory Effects of 20-Hydroxyecdysone, Momordin Ic, and Oleanolic Acid from the Fructus of Kochia scoparia. Pharmacogn. Mag. 2017, 13, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, R.; Zhang, W.; Zhang, X.; Liao, N.; Wang, Z.; Li, W.; Qin, X.; Hai, C. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol. Cell. Endocrinol. 2013, 376, 70–80. [Google Scholar] [CrossRef]
- Wang, X.; Ye, X.; Liu, R.; Chen, H.-L.; Bai, H.; Liang, X.; Zhang, X.-D.; Wang, Z.; Li, W.; Hai, C.-X. Antioxidant activities of oleanolic acid in vitro: Possible role of Nrf2 and MAP kinases. Chem. Biol. Interact. 2010, 184, 328–337. [Google Scholar] [CrossRef]
- Song, X.; Liu, C.-C.; Hong, Y.-R.; Zhu, X.-C. Anticancer activity of novel oleanolic acid methyl ester derivative in HeLa cervical cancer cells is mediated through apoptosis induction and reactive oxygen species production. Bangladesh J. Pharmacol. 2015, 10, 896. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Sun, W.; Peng, W.; Yu, R.; Li, G.; Jiang, T. Pharmacokinetics in Vitro and in Vivo of Two Novel Prodrugs of Oleanolic Acid in Rats and Its Hepatoprotective Effects against Liver Injury Induced by CCl4. Mol. Pharm. 2016, 13, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wen, X.; Sun, H. Oleanolic acid derivatives for pharmaceutical use: A patent review. Expert Opin. Ther. Pat. 2016, 26, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Lee, S.Y. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020, 10, 1505. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ding, Y.; Li, Y.; Zhang, W.; Fang, W.; Chen, X. Anti-tumor activity of a 3-oxo derivative of oleanolic acid. Cancer Lett. 2006, 233, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.Y.; Choi, S.U.; Lee, S.H.; Lee, C.O.; No, Z.; Ahn, J.W. Antitumor triterpenes from medicinal plants. Arch. Pharm. Res. 1994, 17, 375. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Chang, J.-Y.; Kuo, C.-C.; Chang, C.-Y.; Kuo, Y.-H. Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry 2005, 66, 495–501. [Google Scholar] [CrossRef]
- de Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.d.G.F.; Kiefer, W.; Schirmeister, T.; Vieira, P.C. Natural products as inhibitors of recombinant cathepsin L of Leishmania mexicana. Exp. Parasitol. 2015, 156, 42–48. [Google Scholar] [CrossRef]
- Rathi, A.K.; Syed, R.; Shin, H.-S.; Patel, R. V Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat. 2016, 26, 777–797. [Google Scholar] [CrossRef]
- Rokosz, L.L.; Huang, C.-Y.; Reader, J.C.; Stauffer, T.M.; Chelsky, D.; Sigal, N.H.; Ganguly, A.K.; Baldwin, J.J. Surfing the piperazine core of tricyclic farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 5537–5543. [Google Scholar] [CrossRef]
- Chen, J.; Lu, M.; Jing, Y.; Dong, J. The synthesis of L-carvone and limonene derivatives with increased antiproliferative effect and activation of ERK pathway in prostate cancer cells. Bioorg. Med. Chem. 2006, 14, 6539–6547. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, W.; Nie, F.-F.; Zhao, Q.; Rong, J.-J.; Wang, J.; Tao, L.; Qi, Q.; Lu, N.; Li, Z.-Y.; et al. LYG-202, a new flavonoid with a piperazine substitution, shows antitumor effects in vivo and in vitro. Biochem. Biophys. Res. Commun. 2009, 385, 551–556. [Google Scholar] [CrossRef]
- Bildziukevich, U.; Vida, N.; Rárová, L.; Kolář, M.; Šaman, D.; Havlíček, L.; Drašar, P.; Wimmer, Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids 2015, 100, 27–35. [Google Scholar] [CrossRef]
- Lan, P.; Wang, J.; Zhang, D.-M.; Shu, C.; Cao, H.-H.; Sun, P.-H.; Wu, X.-M.; Ye, W.-C.; Chen, W.-M. Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives. Eur. J. Med. Chem. 2011, 46, 2490–2502. [Google Scholar] [CrossRef]
- Sommerwerk, S.; Heller, L.; Kerzig, C.; Kramell, A.E. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur. J. Med. Chem. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Giniyatyllina, G.V.; Smirnova, I.E.; Kazakova, O.B.; Yavorskaya, N.P.; Golubeva, I.S.; Zhukova, O.S.; Pugacheva, R.B.; Apryshko, G.N.; Poroikov, V. V Synthesis and anticancer activity of aminopropoxytriterpenoids. Med. Chem. Res. 2015, 24, 3423–3436. [Google Scholar] [CrossRef]
- Friedrich, S.; Serbian, I.; Hoenke, S.; Wolfram, R.K.; Csuk, R. Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides. Med. Chem. Res. 2020, 29, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Bildziukevich, U.; Kaletová, E.; Šaman, D.; Sievänen, E.; Kolehmainen, E.T.; Šlouf, M.; Wimmer, Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids 2017, 117, 90–96. [Google Scholar] [CrossRef]
- Kazakova, O.B.; Giniyatullina, G.V.; Tolstikov, G.A.; Medvedeva, N.I.; Utkina, T.M.; Kartashova, O.L. Synthesis, modification, and antimicrobial activity of the N-methylpiperazinyl amides of triterpenic acids. Russ. J. Bioorganic Chem. 2010, 36, 383–389. [Google Scholar] [CrossRef]
- Salvador, J.A.R.; Leal, A.S.; Valdeira, A.S.; Gonçalves, B.M.F.; Alho, D.P.S.; Figueiredo, S.A.C.; Silvestre, S.M.; Mendes, V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017, 142, 95–130. [Google Scholar] [CrossRef]
- Dong, H.; Yang, X.; Xie, J.; Xiang, L.; Li, Y.; Ou, M.; Chi, T.; Liu, Z.; Yu, S.; Gao, Y.; et al. UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma. Biochem. Pharmacol. 2015, 93, 151–162. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Wang, A.; Zhou, X.; Zheng, Y.; Zhou, J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem. 2015, 92, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Mallavadhani, U.V.; Vanga, N.R.; Jeengar, M.K.; Naidu, V.G.M. Synthesis of novel ring-A fused hybrids of oleanolic acid with capabilities to arrest cell cycle and induce apoptosis in breast cancer cells. Eur. J. Med. Chem. 2014, 74, 398–404. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Freire, C.S.R.; Silvestre, A.J.D.; Silva, A.M.S. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules 2019, 24, 355. [Google Scholar] [CrossRef]
- Chadalapaka, G.; Jutooru, I.; McAlees, A.; Stefanac, T.; Safe, S. Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives. Bioorg. Med. Chem. Lett. 2008, 18, 2633–2639. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-P.; Zhang, B.-J.; Cui, X.-P.; Yang, Y.; Jiang, Z.-Y.; Zhou, Z.-H.; Zhong, Y.-Y.; Mai, Y.-Y.; Ouyang, Z.; Chen, H.-S.; et al. Synthesis and biological evaluation of novel ursolic acid analogues as potential α-glucosidase inhibitors. Sci. Rep. 2017, 7, 45578. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef]
- Chabner, B.A. NCI-60 Cell Line Screening: A Radical Departure in its Time. J. Natl. Cancer Inst. 2016, 108, 388. [Google Scholar] [CrossRef] [Green Version]
- Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995, 34, 91–109. [Google Scholar] [CrossRef]
- Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol. 1992, 19, 622–638. [Google Scholar]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.A.; Johnson, G.S.; Paull, K.D.; Sausville, E.A. The NCI anti-cancer drug screen: A smart screen to identify effectors of novel targets. Anticancer. Drug Des. 1997, 12, 533–541. [Google Scholar]
- Weinstein, J.N.; Myers, T.G.; O’Connor, P.M.; Friend, S.H.; Fornace, A.J.J.; Kohn, K.W.; Fojo, T.; Bates, S.E.; Rubinstein, L.V.; Anderson, N.L.; et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997, 275, 343–349. [Google Scholar] [CrossRef] [Green Version]
- NCI NCI-60 Human Tumor Cell Lines Screen. Available online: https://dtp.cancer.gov/databases_tools/data_search.htm (accessed on 1 November 2018).
- Rostom, S.A.F. Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem. 2006, 14, 6475–6485. [Google Scholar] [CrossRef]
- Pavlik, E.J.; Kenady, D.E.; van Nagell, J.R.J.; Hanson, M.B.; Donaldson, E.S.; Casper, S.; Garrett, D.; Smith, D.; Keaton, K.; Flanigan, R.C. Stability of doxorubicin in relation to chemosensitivity determinations: Loss of lethality and retention of antiproliferative activity. Cancer Investig. 1984, 2, 449–458. [Google Scholar] [CrossRef]
- Parys, W.; Pyka, A. Use of tlc and densitometry to evaluate the chemical stability of nicotinic acid and its esters on silica gel. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1038–1046. [Google Scholar] [CrossRef]
- Benga, G. Basic studies on gene therapy of human malignant melanoma by use of the human interferon β gene entrapped in cationic multilamellar liposomes.: 1. Morphology and growth rate of six melanoma cell lines used in transfection experiments with the human interferon β gene. J. Cell. Mol. Med. 2001, 5, 402–408. [Google Scholar] [CrossRef]
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures RPMI-7951 ACC 66. Available online: https://www.dsmz.de/collection/catalogue/details/culture/ACC-66# (accessed on 3 October 2021).
- Jez, M.; Bas, T.; Veber, M.; Košir, A.; Dominko, T.; Page, R.; Rožman, P. The hazards of DAPI photoconversion: Effects of dye, mounting media and fixative, and how to minimize the problem. Histochem. Cell Biol. 2013, 139, 195–204. [Google Scholar] [CrossRef]
- Mandelkow, R.; Gümbel, D.; Ahrend, H.; Kaul, A.; Zimmermann, U.; Burchardt, M.; Stope, M.B. Detection and Quantification of Nuclear Morphology Changes in Apoptotic Cells by Fluorescence Microscopy and Subsequent Analysis of Visualized Fluorescent Signals. Anticancer Res. 2017, 37, 2239–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeng, E. Apoptosis (programmed cell death) and its signals—A review. Braz. J. Biol. 2021, 81, 1133–1143. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, Y.; Wang, S.; Wei, G.; Cheng, M. Synthesis and tumor cytotoxicity of novel 1,2,3-triazole-substituted 3-oxo-oleanolic acid derivatives. Chem. Res. Chinese Univ. 2016, 32, 938–942. [Google Scholar] [CrossRef]
- Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 2015, 89, 289–317. [Google Scholar] [CrossRef]
- Naseri, M.H.; Mahdavi, M.; Davoodi, J.; Tackallou, S.H.; Goudarzvand, M.; Neishabouri, S.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int. 2015, 15, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamas-Din, A.; Kale, J.; Leber, B.; Andrews, D.W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 2013, 5, a008714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannus, F.; Medina-O’Donnell, M.; Rivas, F.; Díaz-Ruiz, L.; Rufino-Palomares, E.E.; Lupiáñez, J.A.; Parra, A.; Reyes-Zurita, F.J. A Diamine-PEGylated Oleanolic Acid Derivative Induced Efficient Apoptosis through a Death Receptor and Mitochondrial Apoptotic Pathway in HepG2 Human Hepatoma Cells. Biomolecules 2020, 10, 1375. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, S.R.; Ediriweera, M.K.; Nwokwu, C.D.U.; Bandara, C.J.; Tennekoon, K.H.; Piyathilaka, P.; Karunaratne, D.N.; Karunaratne, V. A Study on Cytotoxic and Apoptotic Potential of a Triterpenoid Saponin (3-O-alpha-L-Arabinosyl Oleanolic Acid) Isolated from Schumacheria castaneifolia Vahl in Human Non-Small-Cell Lung Cancer (NCI-H292) Cells. Biomed Res. Int. 2017, 2017, 9854083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-C.; Chen, Y.-L.; Lin, P.-Y.; Chuang, W.-L. Ursolic Acid-Induced Apoptosis via Regulation of the PI3K/Akt and MAPK Signaling Pathways in Huh-7 Cells. Molecules 2018, 23, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mioc, M.; Avram, S.; Bercean, V.; Porcarasu, M.B.; Soica, C.; Susan, R.; Kurunczi, L. Synthesis, characterization and antiproliferative activity assessment of a novel 1H-5-mercapto-1,2,4 triazole derivative. Rev. Chim. 2017, 68, 745–747. [Google Scholar] [CrossRef]
- Mioc, M.; Soica, C.; Bercean, V.; Avram, S.; Balan-Porcarasu, M.; Coricovac, D.; Ghiulai, R.; Muntean, D.; Andrica, F.; Dehelean, C.; et al. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Int. J. Oncol. 2017, 50, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehelean, C.A.; Soica, C.; Peev, C.; Gruia, A.T.; Seclaman, E. Physico-chemical and Molecular Analysis of Antitumoral Pentacyclic Triterpenes in Complexation with Gamma-cyclodextrin. Rev. Chim. 2008, 59, 887–890. [Google Scholar]
- Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: A problem-centric review. AAPS J. 2012, 14, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.F.; Czabotar, P.E.; Smith, B.J.; Deshayes, K.; Zobel, K.; Colman, P.M.; Fairlie, W.D. Crystal structure of ABT-737 complexed with Bcl-xL: Implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 2007, 14, 1711–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adewole, K.E.; Ishola, A.A. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: An in-silico study. J. Recept. Signal Transduct. Res. 2019, 39, 87–97. [Google Scholar] [CrossRef]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018, 8, 533–548. [Google Scholar] [CrossRef]
- Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2017, 70, 97–101. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett. 2014, 346, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yue, P.Y.K.; Wang, S.-R.; Huo, L.; Zhao, Y.; Xie, S.; Kringelum, J.V.; Lund, O.; Taboureau, O.; Zhou, J.; et al. Synthesis and Biological Evaluations of Cytotoxic and Antiangiogenic Triterpenoids-Jacaranone Conjugates. Med. Chem. 2016, 12, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Rounds, B.V.; Bore, L.; Finlay, H.J.; Favaloro, F.G.J.; Suh, N.; Wang, Y.; Sporn, M.B.; Gribble, G.W. Synthetic oleanane and ursane triterpenoids with modified rings A and C: A series of highly active inhibitors of nitric oxide production in mouse macrophages. J. Med. Chem. 2000, 43, 4233–4246. [Google Scholar] [CrossRef]
- Lombrea, A.; Scurtu, A.D.; Avram, S.; Pavel, I.Z.; Turks, M.; Lugiņina, J.; Peipiņš, U.; Dehelean, C.A.; Soica, C.; Danciu, C. Anticancer Potential of Betulonic Acid Derivatives. Int. J. Mol. Sci. 2021, 22, 3676. [Google Scholar] [CrossRef]
- Abdelkader, H.; Pierscionek, B.; Carew, M.; Wu, Z.; Alany, R.G. Critical appraisal of alternative irritation models: Three decades of testing ophthalmic pharmaceuticals. Br. Med. Bull. 2015, 113, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) ICCVAM-Recommended Test Method Protocol: Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) Test Method. ICCVAM Test Method Eval. Rep. 2010, 13, B30–B38. [CrossRef] [Green Version]
- Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 1985, 23, 287–291. [Google Scholar] [CrossRef]
- Sahu, N.P.; Mahato, S.B.; Banerji, N.; Chakravarti, R.N. Cadambagenic acid: A new triterpenic acid from Anthocephalus cadamba Miq. Indian J. Chem. 1974, 12, 284–286. [Google Scholar]
- Ryu, S.Y.; Lee, C.-K.; Ahn, J.W.; Lee, S.H.; Zee, O.P. Antiviral activity of triterpenoid derivatives. Arch. Pharm. Res. 1993, 16, 339–342. [Google Scholar] [CrossRef]
- Gheorgheosu, D.; Jung, M.; Oren, B.; Schmid, T.; Dehelean, C.; Muntean, D.; Brune, B. Betulinic acid suppresses NGAL-induced epithelial-to-mesenchymal transition in melanoma. Biol. Chem. 2013, 394, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Ghiulai, R.; Avram, S.; Stoian, D.; Pavel, I.Z.; Coricovac, D.; Oprean, C.; Vlase, L.; Farcas, C.; Mioc, M.; Minda, D.; et al. Lemon Balm Extracts Prevent Breast Cancer Progression in Vitro and in Ovo on Chorioallantoic Membrane Assay. Evid.-Based Complement. Altern. Med. 2020, 2020, 6489159. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.D.; Steck, W.F. A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem. Toxicol. 2000, 38, 867–872. [Google Scholar] [CrossRef]
- Kishore, A.S.; Surekha, P.A.; Sekhar, P.V.R.; Srinivas, A.; Murthy, P.B. Hen egg chorioallantoic membrane bioassay: An in vitro alternative to draize eye irritation test for pesticide screening. Int. J. Toxicol. 2008, 27, 449–453. [Google Scholar] [CrossRef]
- Coricovac, D.; Farcas, C.; Nica, C.; Pinzaru, I.; Simu, S.; Stoian, D.; Soica, C.; Proks, M.; Avram, S.; Navolan, D.; et al. Ethinylestradiol and levonorgestrel as active agents in normal skin, and pathological conditions induced by UVB exposure: In vitro and in ovo assessments. Int. J. Mol. Sci. 2018, 19, 3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianu, C.; Stoin, D.; Cocan, I.; David, I.; Pop, G.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Muntean, D.; et al. In Silico and In Vitro Evaluation of the Antimicrobial and Antioxidant Potential of Mentha × smithiana R. GRAHAM Essential Oil from Western Romania. Foods 2021, 10, 815. [Google Scholar] [CrossRef]
- Oprean, C.; Mioc, M.; Csányi, E.; Ambrus, R.; Bojin, F.; Tatu, C.; Cristea, M.; Ivan, A.; Danciu, C.; Dehelean, C.; et al. Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins. Biomed. Pharmacother. 2016, 83, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
Compound (NSC) | 60 Cell Lines Assay in 1 Dose 10 µM Concentration | |||||
---|---|---|---|---|---|---|
Mean Growth, % | Range of Growth, % | Most Sensitive Cell Lines | Growth % of the Most Sensitive Cell Lines | Positive Cytostatic Effect a | Positive Cytotoxic Effect b | |
3 (D-811947/1) | 46.01 | −35.82 to 80.36 | HL-60(TB) (Leukemia) | −35.82 | 5/59 | 7/59 |
4 (D-811946/1) | −10.47 | −85.67 to −41.54 | MALME-3M (Melanoma) LOXINVI (Melanoma) | −85.67 −85.17 | 60/60 | 60/60 |
5 (D-818127/1) | 86.73 | 49.25 to 115.49 | CAKI-1 (Renal cancer) | 49.25 | 0/59 | 0/59 |
6 (D-818136/1) | 23.36 | −91.03 to 83.75 | SK-MEL-5 | −91.03 | 30/60 | 4/60 |
U251 (CNS cancer) | −88.15 | |||||
7 (D-818138/1) | 78.38 | 16.53 to 109.58 | HL-60(TB) (Leukemia) | 16.53 | 1/59 | 1/59 |
8 (D-8181948/1) | 92.36 | 74.76 to 107.55 | LOXIMVI (Melanoma) | 74.76 | 0/59 | 0/59 |
9 (D-811949/1) | 25.33 | −38.20 to 65.71 | HL-60 (Luekemia) | −38.20 | 33/59 | 5/59 |
10 (D-811951/1) | 68.42 | 31.17 to 106.80 | SR (Leukemia) | 31.17 | 2/59 | 2/59 |
PC-3 (CNS Cancer) | 32.08 |
Panel/Cell Line | Compound 4 | Compound 6 | Compound 9 | DRB | 5-FU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GI50 a, µM | TGI b, µM | LC50 c, µM | GI50 a, µM | TGI b, µM | LC50 c, µM | GI50 a, µM | TGI b, µM | LC50 c, µM | GI50 a, µM | GI50 a, µM | |
Leukemia | |||||||||||
CCRF-CEM | |||||||||||
HL-60(TB) | 0.976 | 2.74 | >50.0 | 2.10 | 9.02 | >100 | 2.78 | 8.97 | >100 | 0.08 | 9.97 |
K-562 | 0.980 | 2.18 | 4.84 | 0.443 | 3.34 | >100 | 2.08 | 5.00 | >100 | 0.19 | 2.30 |
MOLT-4 | 0.994 | 2.90 | >50.0 | 1.43 | >100 | >100 | 2.63 | 7.44 | >100 | NT | 3.58 |
RPMI-8226 | 0.809 | 1.99 | 4.90 | 1.03 | 5.20 | >100 | 2.45 | 7.38 | >100 | 0.03 | 0.35 |
SR | - | - | - | 0.959 | 5.13 | >100 | 2.18 | 6.35 | >100 | 0.08 | 0.04 |
MG_MID d | - | - | - | 0.706 | 5.10 | >100 | 2.38 | 7.09 | >100 | 0.03 | NT |
NSC lung cancer | |||||||||||
A549/ATCC | 1.47 | 5.98 | 21.8 | 2.62 | 13.4 | >100 | 3.15 | 16.8 | >100 | 0.06 | 0.18 |
EKVX | 0.916 | 2.42 | 8.95 | 1.90 | 6.48 | 43.5 | 2.17 | 7.32 | 61.7 | 0.41 | NT |
HOP-62 | 1.38 | 3.09 | >50.0 | 1.88 | 3.75 | 7.47 | 2.43 | 5.86 | >100 | 0.07 | 0.39 |
HOP-92 | 0.713 | 2.06 | 8.22 | 1.06 | 3.26 | 10.1 | 1.57 | 5.73 | 38.8 | 0.10 | 77.9 |
NCI-H226 | 1.78 | 7.01 | 28.7 | 1.76 | 3.80 | - | 1.89 | 4.07 | 8.78 | 0.05 | 54.7 |
NCI-H23 | 1.08 | 2.90 | 11.6 | 2.10 | 5.85 | 27.8 | 2.13 | 5.91 | 31.8 | 0.15 | 0.33 |
NCI-H322M | 1.57 | 5.43 | 16.8 | 2.87 | 9.25 | 33.9 | 2.28 | 8.27 | 28.8 | NT | NT |
NCI-H460 | 0.913 | 1.75 | 3.27 | 1.39 | 2.93 | 6.20 | 1.78 | 3.45 | 6.69 | 0.02 | 0.05 |
NCI-H522 | 0.831 | 1.75 | 3.69 | 1.61 | 3.75 | 8.73 | 1.66 | 3.86 | - | 0.03 | 7.27 |
MG_MID | 1.18 | 3.60 | 17.00 | 1.91 | 5.83 | 29.71 | 2.12 | 6.81 | 47.07 | 0.11 | 20.12 |
Colon Cancer | |||||||||||
COLO 205 | 1.02 | 2.37 | 14.5 | 1.89 | 4.74 | >100 | 2.19 | 5.12 | >100 | 0.18 | 0.15 |
HCC-2998 | 0.922 | 1.82 | 3.60 | 1.58 | 3.12 | 6.17 | 1.55 | 3.00 | 5.79 | 0.26 | 0.05 |
HCT-116 | 0.798 | 1.57 | 3.09 | 1.01 | 2.22 | 4.89 | 1.69 | 3.55 | 7.43 | 0.08 | 0.22 |
HCT-15 | 0.977 | 2.39 | 7.41 | 1.08 | 2.71 | 6.79 | 1.66 | 3.26 | 6.41 | 6.46 | 0.11 |
HT29 | 0.913 | 2.05 | 4.59 | 1.71 | 4.67 | 44.5 | 1.93 | 5.36 | >100 | 0.12 | 0.17 |
KM12 | 1.03 | 2.22 | 4.79 | 1.58 | 3.26 | 6.75 | 1.75 | 3.56 | 7.23 | 0.27 | 0.21 |
SW-620 | 0.902 | 1.76 | 3.44 | 1.78 | 3.88 | 8.46 | 1.90 | 4.14 | 9.05 | 0.09 | 0.92 |
MG_MID | 0.94 | 2.03 | 5.92 | 1.52 | 3.51 | 25.37 | 1.81 | 4.00 | 33.70 | 1.06 | 0.26 |
CNS cancer | |||||||||||
SF-268 | 1.77 | 6.49 | 24.6 | 1.59 | 4.79 | 85.7 | 1.77 | 4.02 | 9.15 | 0.10 | 1.62 |
SF-295 | 0.820 | 1.59 | 3.08 | 1.66 | 3.15 | 5.97 | 1.63 | 3.05 | 5.70 | 0.10 | NT |
SF-539 | 0.843 | 1.54 | 2.80 | 1.62 | 3.00 | 5.55 | 1.66 | 3.05 | 5.58 | 0.12 | 0.06 |
SNB-19 | 0.849 | 1.72 | 3.47 | 1.68 | 3.46 | 7.12 | 1.79 | 3.74 | 7.82 | 0.04 | 3.81 |
SNB-75 | 1.03 | 3.82 | 17.2 | - | - | - | 1.57 | 8.91 | 39.9 | 0.07 | 78.7 |
U251 | 0.854 | 1.85 | 4.00 | 1.58 | 3.11 | 6.13 | 1.82 | 3.67 | - | 0.04 | 0.92 |
MG_MID | 1.028 | 2.84 | 8.69 | 1.63 | 3.50 | 22.09 | 1.71 | 4.41 | 13.63 | 0.08 | 17.02 |
Melanoma | |||||||||||
LOX IMVI | 0.821 | 1.52 | 2.80 | 1.36 | 2.73 | 5.45 | 1.58 | 3.06 | 5.91 | 0.07 | 0.24 |
MALME-3M | 0.807 | 1.51 | 8.84 | 1.53 | 2.91 | 5.54 | 1.40 | 2.75 | 5.39 | 0.12 | 0.05 |
M14 | 0.794 | 1.61 | 3.28 | 1.60 | 3.15 | 6.20 | - | - | - | 0.18 | 0.98 |
MDA-MB-435 | 1.05 | 2.30 | 5.22 | 1.48 | 3.11 | 6.52 | 1.70 | 3.49 | 7.18 | 0.25 | 0.07 |
SK-MEL-2 | 1.29 | 3.33 | 16.2 | 1.93 | 3.96 | 8.16 | 2.12 | 4.76 | 65.5 | 0.17 | 56.7 |
SK-MEL-28 | 0.889 | 1.70 | 3.27 | 1.48 | 2.83 | 5.41 | 1.74 | 3.15 | 5.69 | 0.21 | 1.03 |
SK-MEL-5 | 0.888 | 1.60 | 2.89 | 1.63 | 3.00 | 5.54 | 1.75 | 3.14 | 5.63 | 0.08 | 0.46 |
UACC-257 | 0.985 | 2.19 | 4.88 | 1.61 | 4.29 | 33.8 | 2.21 | 5.95 | >100 | 0.14 | 3.55 |
UACC-62 | 0.835 | 1.61 | 3.09 | 1.28 | 2.83 | 6.23 | 1.51 | 2.96 | 5.80 | 0.12 | 0.52 |
MG_MID | 0.93 | 1.93 | 4.94 | 1.54 | 3.21 | 9.20 | 1.56 | 3.66 | 25.14 | 0.15 | 7.07 |
Ovarian cancer | |||||||||||
IGROV1 | 1.04 | 4.85 | 19.1 | 1.91 | 4.16 | 9.10 | 1.89 | 3.87 | 7.94 | 0.17 | 1.22 |
OVCAR-3 | 1.10 | 2.44 | 6.52 | 1.51 | 2.95 | 5.73 | 1.65 | 3.19 | 6.17 | 0.39 | 0.01 |
OVCAR-4 | 1.26 | 4.74 | 18.0 | 2.17 | 7.85 | 47.8 | 2.57 | 7.36 | 36.6 | 0.37 | 4.43 |
OVCAR-5 | 0.907 | 1.87 | 3.87 | 1.56 | 3.35 | 7.19 | 1.54 | 2.93 | 5.57 | 0.41 | 10.9 |
OVCAR-8 | 1.10 | 2.89 | 30.1 | 2.14 | 5.54 | >100 | 2.32 | 6.29 | >100 | 0.10 | 1.74 |
NCI/ADR-RES | 1.08 | 3.24 | 18.3 | 1.57 | 3.46 | 7.60 | 1.59 | 3.31 | 6.91 | 7.16 | 0.31 |
SK-OV-3 | 1.15 | 4.83 | 17.2 | 4.19 | 1.68 | 76.1 | 2.70 | 9.02 | 90.1 | 0.22 | 21.8 |
MG_MID | 1.19 | 3.55 | 16.16 | 2.15 | 4.14 | 36.22 | 2.04 | 5.16 | 36.18 | 1.26 | 5.77 |
Ranal cancer | |||||||||||
786-0 | 0.814 | 1.70 | 3.56 | 1.60 | 3.08 | 5.91 | 1.98 | 4.37 | - | 0.13 | 0.72 |
A498 | 0.927 | 2.42 | 7.92 | 1.66 | 3.53 | 7.48 | 1.90 | 4.05 | 8.65 | 0.10 | 0.35 |
ACHN | 1.33 | 4.38 | 14.8 | 2.60 | 10.5 | 32.4 | 2.46 | 6.45 | 22.6 | 0.08 | 0.27 |
CAKI-1 | 0.946 | 2.96 | 11.2 | 2.08 | 11.8 | 45.3 | 2.12 | 11.8 | 41.9 | 0.95 | 0.07 |
RXF 393 | 0.822 | 1.74 | 3.69 | 1.42 | 2.77 | 5.41 | 1.45 | 2.83 | 5.53 | 0.10 | 2.61 |
SN12C | 0.776 | 1.48 | 2.81 | 1.22 | 2.54 | 5.30 | 1.61 | 3.01 | 5.66 | 0.07 | 0.49 |
TK-10 | 1.27 | 4.14 | 20.3 | 3.86 | 15.4 | 54.1 | 2.87 | 9.40 | 59.3 | NT | 1.12 |
UO-31 | 0.726 | 1.42 | 2.79 | 1.35 | 2.67 | 5.32 | 1.36 | 2.65 | 5.19 | 0.49 | 1.42 |
MG_MID | 0.95 | 2.53 | 8.38 | 1.97 | 6.54 | 20.15 | 1.97 | 5.57 | 21.26 | 0.27 | 0.88 |
Prostate cancer | |||||||||||
PC-3 | 0.875 | 3.17 | 18.3 | 1.00 | 2.79 | 7.78 | 1.49 | 3.85 | 9.92 | 0.32 | 2.36 |
DU-145 | 1.67 | 5.62 | 18.6 | 1.83 | 3.88 | 8.23 | 2.08 | 4.21 | 8.53 | 0.11 | 0.36 |
MG_MID | 1.27 | 4.40 | 18.45 | 1.42 | 3.34 | 8.01 | 1.79 | 5.96 | 9.23 | 0.21 | 1.36 |
Breast cancer | |||||||||||
MCF7 | 0.892 | 2.03 | 4.63 | 1.40 | 3.07 | 6.71 | 1.64 | 3.42 | 7.14 | 0.03 | 0.07 |
MDA-MB-31/ATCC | 0.779 | 1.50 | 2.88 | 1.40 | 2.84 | 5.78 | 1.75 | 3.59 | 7.39 | 0.51 | 6.60 |
HS 578T | 1.07 | 2.68 | 26.5 | 1.83 | 5.37 | >100 | 1.91 | 4.77 | >100 | 0.33 | 9.77 |
BT-549 | 0.833 | 1.58 | 3.00 | 1.47 | 2.88 | 5.66 | 1.69 | 3.59 | - | 0.23 | 10.6 |
T-47D | 1.33 | 3.89 | >50.0 | 2.61 | 13.7 | >100 | 2.79 | 13.4 | >100 | 0.06 | 8.12 |
MDA-MB-468 | 0.931 | 2.32 | 9.27 | 1.28 | 3.94 | 19.7 | 1.65 | 3.43 | 7.1 | 0.05 | NT |
MG_MID | 0.97 | 2.33 | 16.05 | 1.67 | 5.30 | 39.64 | 1.91 | 5.37 | 36.94 | 0.19 | 7.03 |
MG_MID60 e | 1.03 | 2.74 | 12.31 | 1.53 | 6.29 | 32.37 | 1.93 | 5.29 | 37.95 | 0.38 | 6.97 |
Panel | Compound 4 | Compound 6 | Compound 9 | DRB | 5-FU | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SI (GI50) | SI (TGI) | SI (LC50) | SI (GI50) | SI (TGI) | SI (LC50) | SI (GI50) | SI (TGI) | SI (LC50) | SI (GI50) | SI (GI50) | |
Leukemia | 1.10 | 1.12 | 0.45 | 1.38 | 0.30 | 0.32 | 0.80 | 0.75 | 0.38 | 4.75 | 2.14 |
NSCL cancer | 0.87 | 0.76 | 0.72 | 0.80 | 1.08 | 1.09 | 0.91 | 0.78 | 0.81 | 3.45 | 0.35 |
Colon Cancer | 1.10 | 1.35 | 2.08 | 1.01 | 1.99 | 1.28 | 1.07 | 1.32 | 1.13 | 0.36 | 26.81 |
CNS cancer | 1.00 | 0.96 | 1.41 | 0.94 | 1.80 | 1.46 | 1.13 | 1.20 | 2.78 | 4.75 | 0.41 |
Melanoma | 1.11 | 1.42 | 2.49 | 0.99 | 1.96 | 3.52 | 0.60 | 1.45 | 1.51 | 2.53 | 0.99 |
Ovarian Cancer | 0.86 | 0.77 | 0.76 | 0.71 | 1.52 | 0.89 | 0.95 | 1.02 | 1.05 | 0.30 | 1.21 |
Renal Cancer | 1.08 | 1.08 | 1.47 | 0.77 | 0.96 | 1.61 | 0.98 | 0.95 | 1.78 | 1.41 | 7.92 |
Prostate cancer | 0.81 | 0.62 | 0.67 | 1.08 | 1.89 | 4.04 | 1.08 | 0.89 | 2.11 | 1.81 | 5.13 |
Breast cancer | 1.06 | 1.17 | 0.77 | 0.92 | 1.17 | 0.82 | 1.01 | 0.98 | 1.03 | 2.00 | 0.99 |
Sample | Bcl-XL | Bcl-2 | BAK | BAX | ||||
---|---|---|---|---|---|---|---|---|
A375 | ||||||||
Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | |
DMSO 1 | 4.550 | (2.694) | 2.216 | (0.485) | 5.200 | (0.085) | 4.063 | (0.644) |
Compound 4 | 0.500 * | (0.292) | 0.7366 ** | (0.133) | 0.706 *** | (0.255) | 0.270 *** | (0.069) |
Compound 6 | 0.300 | (0.265) | 1.166 | (0.683) | 0.516 *** | (0.231) | 0.590 *** | (0.157) |
RPMI | ||||||||
DMSO 1 | 18.563 | (6.786) | 4.063 | (0.374) | 4.163 | (0.710) | 3.040 | (0.723) |
Compound 4 | ND | ND | 1.483 * | (1.165) | 156.243 *** | (23.330) | 0.460 ** | (0.324) |
Compound 6 | 1.050 * | (0.900) | 0.236 *** | (0.185) | 11.853 ** | (1.789) | 0.640 ** | (0.310) |
SK-Mel-28 | ||||||||
DMSO 1 | 4.730 | (0.353) | 2.573 | (1.015) | 1.383 | (0.249) | 2.086 | (0.322) |
Compound 4 | 0.086 *** | (0.066) | 0.083 * | (0.056) | 101.820 ** | (37.304) | 0.023 *** | (0.011) |
Compound 6 | 0.003 *** | (0.005) | 0.083 ** | (0.032) | 91.283 *** | (14.461) | 0.140 *** | (0.117) |
Target PDB ID | Binding Free Energy ∆G (kcal/mol) | ||
---|---|---|---|
Co-Crystalized Ligand | Compound 4 | Compound 6 | |
2W3L | −10.3 | −6.5 | −6.7 |
2YXJ | −10.7 | −8.5 | −9.2 |
3EQG | −8.8 | −6.7 | 1.8 |
4FA6 | −9.3 | 8.7 | 24.2 |
4JT5 | −8.5 | 3.1 | 24.7 |
4OQ5 | −12.2 | −2.8 | 37.3 |
Test Compound and Controls | Irritation Score | Type of Effect |
---|---|---|
Distillate water | 0 | Non-irritant |
SLS 0.5% | 17.03 | Strong irritant |
DMSO 0.5% | 0.68 | Non-irritant |
Compound 4 | 0 | Non-irritant |
Compound 6 | 0 | Non-irritant |
PDB ID | Protein | Grid Box Size | Grid Box Center Coordinates | Conformers |
---|---|---|---|---|
2YXJ | Apoptosis regulator Bcl-X (Bcl-XL) | size_x = 18.8213065002 size_y = 30.6345174449 size_z = 10.2997599705 | center_x = −10.2573467499 center_y = −18.1808412775 center_z = 9.46376920765 | 8 |
3EQG | Dual specificity mitogen-activated protein kinase kinase 1 (MEK1) | size_x = 14.6058170561 size_y = 16.2060321551 size_z = 8.70490192182 | center_x = −4.16588471722 center_y = 59.3845284049 center_z = 34.6388482191 | 8 |
2W3L | Apoptosis regulator Bcl-2 (Bcl-2) | size_x = 15.4649240353 size_y = 13.2408048336 size_z = 13.3102000528 | center_x = 37.1927426166 center_y = 26.8056607992 center_z = −12.8141402336 | 8 |
4OQ5 | Induced myeloid leukemia cell differentiation protein (Mcl-1) | size_x = 15.5072934727 size_y = 13.9772309154 size_z = 10.4111215841 | center_x = 11.6262580805 center_y = 3.65908070556 center_z = 7.90001930158 | 8 |
4JT5 | Mammalian target of rapamycin-target of rapamycin complex subunit LST8 (mTOR-LST8) | size_x = 16.0737519631 size_y = 11.2048088799 size_z = 10.5072207821 | center_x = 51.5677297505 center_y = −1.9363339261 center_z = −48.4627944976 | 8 |
4FA6 | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform (PI3Kγ) | size_x = 14.3022779071 size_y = 10.3234871012 size_z = 8.72203337452 | center_x = 44.8020362414 center_y = 13.746321532 center_z = 30.3837942752 | 8 |
Forward | Reverse | |
---|---|---|
BAK | 5′ ATGGTCACCTTACCTCTGCAA 3′ | 5′TCATAGCGTCGGTTGATGTCG 3′ |
BCL-XL | 5′ GATCCCCATGGCAGCAGTAAAGCAAG 3′ | 5′CCCCATCCCGGAAGAGTTCATTCACT 3′ |
Bax | 5′ GCCGGGTTGTCGCCCTTTT 3′ | 5′CCGCTCCCGGAGGAAGTCCA 3′ |
Bcl-2 | 5′-CGGGAGATGTCGCCCCTGGT-3′ | 5′-GCATGCTGGGGCCGTACAGT-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazakova, O.; Mioc, A.; Smirnova, I.; Baikova, I.; Voicu, A.; Vlaia, L.; Macașoi, I.; Mioc, M.; Drăghici, G.; Avram, Ş.; et al. Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. Int. J. Mol. Sci. 2021, 22, 10967. https://doi.org/10.3390/ijms222010967
Kazakova O, Mioc A, Smirnova I, Baikova I, Voicu A, Vlaia L, Macașoi I, Mioc M, Drăghici G, Avram Ş, et al. Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. International Journal of Molecular Sciences. 2021; 22(20):10967. https://doi.org/10.3390/ijms222010967
Chicago/Turabian StyleKazakova, Oxana, Alexandra Mioc, Irina Smirnova, Irina Baikova, Adrian Voicu, Lavinia Vlaia, Ioana Macașoi, Marius Mioc, George Drăghici, Ştefana Avram, and et al. 2021. "Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation" International Journal of Molecular Sciences 22, no. 20: 10967. https://doi.org/10.3390/ijms222010967
APA StyleKazakova, O., Mioc, A., Smirnova, I., Baikova, I., Voicu, A., Vlaia, L., Macașoi, I., Mioc, M., Drăghici, G., Avram, Ş., Dehelean, C., & Şoica, C. (2021). Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation. International Journal of Molecular Sciences, 22(20), 10967. https://doi.org/10.3390/ijms222010967