The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer
Abstract
:1. Introduction
2. Result and Discussion
2.1. The Probability of the Pore Formation and Membrane Ability to Fluctuate
2.2. The Correlation between the Trans-Membrane Osmotic Pressure Difference and the Proton Flow
3. Discussion
4. Materials and Methods
4.1. Chemicals and Liposome Preparation
4.2. Determination of the Water Flux across the Lipid Bilayer
4.3. The Kinetics of the Transmembrane Proton Flux
4.4. Bending Rigidity Coefficient Determination Using Flicker-Noise Spectroscopy for POPC, POPC/chol 7:3, POPC/lysoPC 7:3 and POPC/DOPE 7:3 Mixtures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Śmigiel, W.M.; Lefrançois, P.; Poolman, B. Physicochemical considerations for bottom-up synthetic biology. Emerg. Top. Life Sci. 2019, 3, 445–458. [Google Scholar] [CrossRef]
- Demaurex, N. pH homeostasis of cellular organelles. News Physiol. Sci. 2002, 17, 1–5. [Google Scholar] [CrossRef]
- Baumgarten, C.M.; Feher, J.J. Osmosis and the regulation of the cell volume. In Cell Physiology Source Book; Sperelakis, N., Ed.; Academic Press: New York, NY, USA, 1995; pp. 180–211. [Google Scholar]
- Maathuis, F.J. Solute Transport: Basic Concepts. Plant. Physiol. Funct. 2017, 1–31. [Google Scholar] [CrossRef]
- Tepper, H.L.; Voth, G.A. Mechanisms of Passive Ion Permeation through Lipid Bilayers: Insights from Simulations. J. Phys. Chem. B 2006, 110, 21327–21337. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.M.J.; Maupin, C.M.; Chen, H.; Petersen, M.K.; Xu, J.; Wu, Y.; Voth, G.A. Proton Solvation and Transport in Aqueous and Biomolecular Systems: Insights from Computer Simulations. J. Phys. Chem. B 2007, 111, 4300–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassolino-Klimas, D.; Alper, H.E.; Stouch, T.R. Mechanism of Solute Diffusion through Lipid Bilayer Membranes by Molecular Dynamics Simulation. J. Am. Chem. Soc. 1995, 117, 4118–4129. [Google Scholar] [CrossRef]
- Cao, Y.; Xiang, T.-X.; Anderson, B.D. Development of Structure−Lipid Bilayer Permeability Relationships for Peptide-like Small Organic Molecules. Mol. Pharm. 2008, 5, 371–388. [Google Scholar] [CrossRef]
- Finkelstein, A. Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 1976, 68, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, F.X.; Sánchez-Magraner, L.; Alonso, A.; Goñi, F.M. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 2010, 584, 1779–1786. [Google Scholar] [CrossRef] [Green Version]
- De Gier, J. Osmotic behaviour and permeability properties of liposomes. Chem. Phys. Lipids 1993, 64, 187–196. [Google Scholar] [CrossRef]
- Haines, T.H. Water transport across biological membranes. FEBS Lett. 1994, 346, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Auger, M. Membrane structure and dynamics as viewed by solid-state NMR spectroscopy. Biophys. Chem. 1997, 68, 233–241. [Google Scholar] [CrossRef]
- Giocondi, M.C.; Yamamoto, D.; Lesniewska, E.; Milhiet, P.E.; Ando, T.; le Grimellec, C. Surface topography of membrane do-mains. Biochim. Biophys. Acta-Biomembr. 2010, 1798, 703–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, M. Lipid domains in biological membranes Current Opinion in Structural Biology. Curr. Opin. Struct. Biol. 1993, 3, 475–481. [Google Scholar] [CrossRef]
- Lipowsky, R. Domains and Rafts in Membranes–Hidden Dimensions of Selforganization. J. Biol. Phys. 2002, 28, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Penič, S.; Mesarec, L.; Fošnarič, M.; Mrówczyńska, L.; Hägerstrand, H.; Kralj-Iglič, V.; Iglič, A. Budding and Fission of Mem-brane Vesicles: A Mini Review. Front. Phys. 2020, 8, 342. [Google Scholar] [CrossRef]
- Bogdanov, M.; Dowhan, W. Lipid-assisted Protein Folding. J. Biol. Chem. 1999, 274, 36827–36830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahn, R.; Lang, T.; Südhof, T.C. Membrane fusion. Cell 2003, 112, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Tamm, L.K.; Crane, J.; Kiessling, V. Membrane fusion: A structural perspective on the interplay of lipids and proteins. Curr. Opin. Struct. Biol. 2003, 13, 453–466. [Google Scholar] [CrossRef]
- Chen, Y.; Arriaga, E.A. Individual Electrophoretic Mobilities of Liposomes and Acidic Organelles Displaying pH Gradients Across Their Membranes. Langmuir 2007, 23, 5584–5590. [Google Scholar] [CrossRef] [PubMed]
- Barzykin, A.V.; Tachiya, M. Interpretation of passive permeability measurements on lipid-bilayer vesicles Effect of fluctua-tions. Biochim. Biophys. Acta-Biomembr. 1997, 1330, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, S.M. Functional consequences of lipid packing stress. Curr. Opin. Colloid Interface Sci. 2000, 5, 237–243. [Google Scholar] [CrossRef]
- Tieleman, D.P.; Marrink, S.J. Lipids out of equilibrium: Energetics of desorption and pore mediated flip-flop. J. Am. Chem. Soc. 2006, 128, 12462–12467. [Google Scholar] [CrossRef] [Green Version]
- Gurtovenko, A.; Onike, O.I.; Anwar, J. Chemically Induced Phospholipid Translocation Across Biological Membranes. Langmuir 2008, 24, 9656–9660. [Google Scholar] [CrossRef]
- Helfrich, W. Blocked Lipid Exchange in Bilayers and its Possible Influence on the Shape of Vesicles. Zeitschrift für Naturforschung C 1974, 29, 510–515. [Google Scholar] [CrossRef]
- Chabanon, M.; Rangamani, P. Gaussian curvature directs the distribution of spontaneous curvature on bilayer membrane necks. Soft Matter 2018, 14, 2281–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 2015, 185, 11–45. [Google Scholar] [CrossRef] [PubMed]
- Heimburg, T. Lipid ion channels. Biophys. Chem. 2010, 150, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Fošnarič, M.; Kralj-Iglič, V.; Bohinc, K.; Iglič, A.; May, S. Stabilization of Pores in Lipid Bilayers by Anisotropic Inclusions. J. Phys. Chem. B 2003, 107, 12519–12526. [Google Scholar] [CrossRef]
- Kandušer, M.; Fošnarič, M.; Šentjurc, M.; Kralj-Iglič, V.; Hägerstrand, H.; Iglič, A.; Miklavčič, D. Effect of surfactant polyoxyeth-ylene glycol (C12E8) on electroporation of cell line DC3F, Colloids Surfaces a Physicochem. Eng. Asp. 2003, 214, 205–217. [Google Scholar] [CrossRef]
- Langner, M.; Hui, S.W. Iodide penetration into lipid bilayers as a probe of membrane lipid organization. Chem. Phys. Lipids 1991, 60, 127–132. [Google Scholar] [CrossRef]
- Langner, M.; Hui, S.W. Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamel-lar-hexagonal transition of phosphatidylethanolamine bilayers. Biochim. Biophys. Acta-Biomembr. 1999, 1415, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Papahadjopoulos, D.; Jacobson, K.; Nir, S.; Isac, I. Phase transitions in phospholipid vesicles Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta (BBA)-Biomembr. 1973, 311, 330–348. [Google Scholar] [CrossRef]
- Clerc, S.G.; Thompson, T.E. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer mem-branes with coexisting gel and liquid-crystalline phases. Biophys. J. 1995, 68, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- Gurtovenko, A.A.; Vattulainen, I. Molecular Mechanism for Lipid Flip-Flops. J. Phys. Chem. B 2007, 111, 13554–13559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, H.J.C.; Marrink, S. Molecular dynamics of water transport through membranes: Water from solvent to solute. Pure Appl. Chem. 1993, 65, 2513–2520. [Google Scholar] [CrossRef] [Green Version]
- Fernández, M.L.; Marshall, G.; Sagués, F.; Reigada, R. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 2010, 114, 6855–6865. [Google Scholar] [CrossRef] [PubMed]
- Ashrafuzzaman; Andersen, O.; McElhaney, R. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 2814–2822. [Google Scholar] [CrossRef] [Green Version]
- Benachir, T.; LaFleur, M. Osmotic and pH transmembrane gradients control the lytic power of melittin. Biophys. J. 1996, 70, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Lis, M.; Wizert, A.; Przybyło, M.; Langner, M.; Swiatek, J.; Jungwirth, P.; Cwiklik, L. The effect of lipid oxidation on the water permeability of phospholipids bilayers. Phys. Chem. Chem. Phys. 2011, 13, 17555–17563. [Google Scholar] [CrossRef]
- Zeidel, M.L.; Albalak, A.; Grossman, E.; Carruthers, A. Role of glucose carrier in human erythrocyte water permeability. Biochemistry 1992, 31, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Hannesschlaeger, C.; Horner, A.; Pohl, P. Intrinsic Membrane Permeability to Small Molecules. Chem. Rev. 2019, 119, 5922–5953. [Google Scholar] [CrossRef]
- Iglič, A.; Brumen, M.; Svetina, S. Determination of the inner surface potential of the erythrocyte membrane. Bioelectrochem. Bioenerg. 1997, 43, 97–103. [Google Scholar] [CrossRef]
- Mathai, J.C.; Tristram-Nagle, S.; Nagle, J.F.; Zeidel, M.L. Structural determinants of water permeability through the lipid mem-brane. J. Gen. Physiol. 2008, 131, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Jansen, M.; Blume, A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospho-lipids with different head groups and fatty acyl chains. Biophys. J. 1995, 68, 997–1008. [Google Scholar] [CrossRef] [Green Version]
- Gongadze, E.; Velikonja, A.; Perutkova, Š.; Kramar, P.; Maček-Lebar, A.; Kralj-Iglič, V.; Iglič, A. Ions and water molecules in an electrolyte solution in contact with charged and dipolar surfaces. Electrochim. Acta 2014, 126, 42–60. [Google Scholar] [CrossRef]
- White, G.; Pencer, J.; Nickel, B.; Wood, J.; Hallett, F. Optical changes in unilamellar vesicles experiencing osmotic stress. Biophys. J. 1996, 71, 2701–2715. [Google Scholar] [CrossRef] [Green Version]
- Graziani, Y.; Livne, A. Water permeability of bilayer lipid membranes: Sterol-lipid interaction. J. Membr. Biol. 1972, 7, 275–284. [Google Scholar] [CrossRef]
- Ohno, M.; Hamada, T.; Takiguchi, K.; Homma, M. Dynamic Behavior of Giant Liposomes at Desired Osmotic Pressures. Langmuir 2009, 25, 11680–11685. [Google Scholar] [CrossRef]
- Small, E.F.; Dan, N.R.; Wrenn, S.P. Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bi-layers. Langmuir 2012, 28, 14364–14372. [Google Scholar] [CrossRef]
- Manna, M.; Mukhopadhyay, C. Cause and Effect of Melittin-Induced Pore Formation: A Computational Approach. Langmuir 2009, 25, 12235–12242. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Marčelja, S.; Horn, R.G. Physical principles of membrane organization. Q. Rev. Biophys. 1980, 13, 121–200. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J.M.; Adams, J.A.; Ikura, M.; Tsien, R.Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nat. Cell Biol. 1997, 388, 882–887. [Google Scholar] [CrossRef]
- Alwarawrah, M.; Dai, J.; Huang, J. A Molecular View of the Cholesterol Condensing Effect in DOPC Lipid Bilayers. J. Phys. Chem. B 2010, 114, 7516–7523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missner, A.; Horner, A.; Pohl, P. Cholesterol’s decoupling effect on membrane partitioning and permeability revisited: Is there anything beyond Fick’s law of diffusion? Biochim. Biophys. Acta (BBA)-Biomembr. 2008, 1778, 2154–2156. [Google Scholar] [CrossRef] [Green Version]
- Marrink, S.; Jähnig, F.; Berendsen, H. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys. J. 1996, 71, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Fyles, T.M. Bilayer membranes and transporter models. Curr. Opin. Chem. Biol. 1997, 1, 497–505. [Google Scholar] [CrossRef]
- Marsh, D. Lateral Pressure Profile, Spontaneous Curvature Frustration, and the Incorporation and Conformation of Proteins in Membranes. Biophys. J. 2007, 93, 3884–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méléard, P.; Pott, T.; Bouvrais, H.; Ipsen, J. Advantages of statistical analysis of giant vesicle flickering for bending elasticity measurements. Eur. Phys. J. E 2011, 34, 1–14. [Google Scholar] [CrossRef]
- Drabik, D.; Przybyło, M.; Chodaczek, G.; Iglič, A.; Langner, M. The modified fluorescence based vesicle fluctuation spectrosco-py technique for determination of lipid bilayer bending properties. Biochim. Biophys. Acta-Biomembr. 2016, 1858, 244–252. [Google Scholar] [CrossRef]
- Przybyło, M.; Drabik, D.; Łukawski, M.; Langner, M. Effect of Monovalent Anions on Water Transmembrane Transport. J. Phys. Chem. B 2014, 118, 11470–11479. [Google Scholar] [CrossRef]
- Cossins, B.P.; Jacobson, M.P.; Guallar, V. A New View of the Bacterial Cytosol Environment. PLoS Comput. Biol. 2011, 7, e1002066. [Google Scholar] [CrossRef] [Green Version]
- Kaczyński, M.; Borowik, T.; Przybyło, M.; Langner, M. Dilution thermodynamics of the biologically relevant cation mixtures. Thermochim. Acta 2014, 575, 269–275. [Google Scholar] [CrossRef]
- Langner, M.; Cafiso, D.; Marcelja, S.; McLaughlin, S. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. Biophys. J. 1990, 57, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Lebar, A.M.; Velikonja, A.; Kramar, P.; Iglič, A. Internal configuration and electric potential in planar negatively charged lipid head group region in contact with ionic solution. Bioelectrochemistry 2016, 111, 49–56. [Google Scholar] [CrossRef]
- Jurkiewicz, P.; Sýkora, J.; Olzyńska, A.; Humpolíčková, J.; Hof, M. Solvent relaxation in phospholipid bilayers: Principles and recent applications. J. Fluoresc. 2005, 15, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Kubica, K.; Langner, M.; Gabrielska, J. The dependence of Fluorescein-PE fluorescence intensity on lipid bilayer state Evaluat-ing the interaction between the probe and lipid molecules. Cell. Mol. Biol. Lett. 2003, 8, 943–954. [Google Scholar] [PubMed]
- Wraight, C.A. Chance and design—Proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006, 1757, 886–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langner, M.; Pruchnik, H.; Kubica, K. The effect of the lipid bilayer state on fluorescence intensity of fluorescein-PE in a satu-rated lipid bilayer. Zeitschrift Fur Naturforsch.-Sect. C J. Biosci. 2000, 55, 418–424. [Google Scholar] [CrossRef]
- Campelo, F.; Arnarez, C.; Marrink, S.J.; Kozlov, M.M. Helfrich model of membrane bending: From Gibbs theory of liquid inter-faces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 2014, 208, 25–33. [Google Scholar] [CrossRef]
- Ryu, H.; Mushtaq, A.; Park, E.; Kim, K.; Chang, Y.K.; Han, J.I. Dynamical modeling of water flux in forward osmosis with mul-tistage operation and sensitivity analysis of model parameters. Water 2020, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Gillmor, S.D.; Weiss, P. Dimpled Vesicles: The Interplay between Energetics and Transient Pores. J. Phys. Chem. B 2008, 112, 13629–13634. [Google Scholar] [CrossRef]
- Ramakrishnan, N.; Kumar, P.S.; Radhakrishnan, R. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins. Phys. Rep. 2014, 543, 1–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesarec, L.; Drab, M.; Penič, S.; Kralj-Iglič, V.; Iglič, A. On the role of curved membrane nanodomains, and passive and active skeleton forces in the determination of cell shape and membrane budding. Int. J. Mol. Sci. 2021, 22, 2348. [Google Scholar] [CrossRef]
- Marquardt, D.; Geier, B.; Pabst, G. Asymmetric Lipid Membranes: Towards More Realistic Model Systems. Membranes 2015, 5, 180–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvrais, H. Bending Rigidities of Lipid Bilayers Their Determination and Main Inputs in Biophysical Studies. In Advances in Planar Lipid Bilayers and Liposomes; Academic Press: Cambridge, MA, USA, 2012; pp. 1–75. [Google Scholar]
- Bouvrais, H.; Duelund, L.; Ipsen, J.H. Buffers Affect the Bending Rigidity of Model Lipid Membranes. Langmuir 2014, 30, 13–16. [Google Scholar] [CrossRef]
- Raffy, S.; Teissie, J. Control of Lipid Membrane Stability by Cholesterol Content. Biophys. J. 1999, 76, 2072–2080. [Google Scholar] [CrossRef] [Green Version]
- Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 2014, 208, 225–234. [Google Scholar] [CrossRef]
- Neumann, E.; Toensing, K.; Kakorin, S.; Budde, P.; Frey, J. Mechanism of Electroporative Dye Uptake by Mouse B Cells. Biophys. J. 1998, 74, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, N.; Cribier, S.; Pincet, F. Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2006, 74, 061902. [Google Scholar] [CrossRef] [Green Version]
- Mathias, R.; Wang, H. Local Osmosis and Isotonic Transport. J. Membr. Biol. 2005, 208, 39–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrink, S.J.; de Vries, A.H.; Tieleman, D.P. Lipids on the move: Simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Mulkidjanian, A.Y.; Heberle, J.; Cherepanov, D. Protons @ interfaces: Implications for biological energy conversion. Biochim. Biophys. Acta (BBA)-Bioenerg. 2006, 1757, 913–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahn, D.; Brickmann, J. Quantum–classical simulation of proton transport via a phospholipid bilayer. Phys. Chem. Chem. Phys. 2001, 3, 848–852. [Google Scholar] [CrossRef]
- Daleke, D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 2003, 44, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Benga, G. Birth of water channel proteins—the aquaporins. Cell Biol. Int. 2003, 27, 701–709. [Google Scholar] [CrossRef]
- Tieleman, D.P.; Leontiadou, H.; Mark, A.A.E.; Marrink, S.-J. Simulation of Pore Formation in Lipid Bilayers by Mechanical Stress and Electric Fields. J. Am. Chem. Soc. 2003, 125, 6382–6383. [Google Scholar] [CrossRef] [Green Version]
- Hope, M.J.; Bally, M.B.; Webb, G.; Cullis, P.R. Production of large unilamellar vesicles by a rapid extrusion procedure Charac-terization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta (BBA)-Bioenerg. 1985, 812, 55–65. [Google Scholar] [CrossRef]
- Hashizaki, K.; Taguchi, H.; Sakai, H.; Abe, M.; Saito, Y.; Ogawa, N. Carboxyfluorescein leakage from poly(ethylene gly-col)-grafted liposomes induced by the interaction with serum. Chem. Pharm. Bull. 2006, 54, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Marrink, S.; Berendsen, H.J.C. Simulation of water transport through a lipid membrane. J. Phys. Chem. 1994, 98, 4155–4168. [Google Scholar] [CrossRef] [Green Version]
- Przybyło, M.; Olzyńska, A.; Han, S.; Ozyhar, A.; Langner, M. A fluorescence method for determining transport of charged compounds across lipid bilayer. Biophys. Chem. 2007, 129, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deamer, D.W.; Akeson, M. Role of Water in Proton Conductance across Model and Biological Membranes. In Biomembrane Electrochemistry; American Chemical Society: Washington, DC, USA, 1994; pp. 41–54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybyło, M.; Drabik, D.; Doskocz, J.; Iglič, A.; Langner, M. The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer. Int. J. Mol. Sci. 2021, 22, 11099. https://doi.org/10.3390/ijms222011099
Przybyło M, Drabik D, Doskocz J, Iglič A, Langner M. The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer. International Journal of Molecular Sciences. 2021; 22(20):11099. https://doi.org/10.3390/ijms222011099
Chicago/Turabian StylePrzybyło, Magdalena, Dominik Drabik, Joanna Doskocz, Aleš Iglič, and Marek Langner. 2021. "The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer" International Journal of Molecular Sciences 22, no. 20: 11099. https://doi.org/10.3390/ijms222011099
APA StylePrzybyło, M., Drabik, D., Doskocz, J., Iglič, A., & Langner, M. (2021). The Effect of the Osmotically Active Compound Concentration Difference on the Passive Water and Proton Fluxes across a Lipid Bilayer. International Journal of Molecular Sciences, 22(20), 11099. https://doi.org/10.3390/ijms222011099