The Sirenic Links between Diabetes, Obesity, and Bladder Cancer
Abstract
:1. Introduction
2. Methodology
3. Evidence Synthesis
3.1. PLEKHS1 and Bladder Cancer
3.2. PLEKHS1, Diabetes and Obesity
3.3. Obesity and Bladder Cancer Incidence and Outcomes
3.4. Diabetes and Bladder Cancer Incidence and Outcomes
Study Author | Study Year | Total No. of Patients | Total No. of Studies | Study Type | Comments |
---|---|---|---|---|---|
Xu et al. [31] | 2017 | 13,505,643 | 21 (includes studies A–F, H, and I) | Meta-analysis of cohort studies | In sub-group analyses, positive associations have exclusively been seen in men. |
Zhu et al. [32] | 2013 | 14,885,014+ | 29 (includes studies A–F and H) | Meta-analysis of cohort studies | “In stratified analysis, the RRs of bladder cancer were 1.36 (1.05–1.77) for diabetic men and 1.28 (0.75–2.19) for diabetic women, respectively”. |
Zhu et al. [33] | 2013 | 13,670,340+ | 36 (includes studies A–F and H) | Updated meta-analysis of observational studies | “In analysis stratified by study design, diabetes was positively associated with risk of bladder cancer in case–control studies (RR = 1.45, 95% CI 1.13–1.86, p = 0.005, I2 = 63.8%) and cohort studies (RR = 1.35, 95% CI 1.12–1.62, p < 0.001, I2 = 94.3%), but not in cohort studies of diabetic patients (RR = 1.25, 95% CI 0.86–1.81, p < 0.001, I2 = 97.4%). The RRs of bladder cancer were 1.38 (1.08–1.78) for men and 1.38 (0.90–2.10) for women with diabetes, respectively”. |
Larsson et al. [34] | 2006 | 1,558,356 | 16 (includes studies B and G) | Meta-analysis | “Stratification by study design found that diabetes was associated with an increased risk of bladder cancer in case–control studies (RR = 1.37, 95% CI 1.04–1.80, p = 0.005) and cohort studies (RR = 1.43, 95% CI 1.18–1.74, p = 0.17), but not in cohort studies of diabetic patients (RR = 1.01, 95% CI 0.91–1.12, p = 0.35)”. |
Xu et al. [35] | 2013 | 8,009,591 | 15 (includes studies B–F) | Meta-analysis of cohort studies | “When restricting the analysis to studies that had adjusted for cigarette smoking (n = 6) or more than three confounders (n = 7), the RRs were 1.32 (95% CI 1.18–1.49) and 1.20 (95% CI 1.02–1.42), respectively”. |
Fang et al. [36] | 2013 | 9,752,495 | 24 (includes studies A and B–F) | Meta-analysis of observational studies | “Cohort studies showed a lower risk (RR 1.23, 95% CI 1.09–1.37) than case–control studies (odds ratio 1.46, 95% CI 1.20–1.78). The positive association was significant only in women (RR 1.23, 95% CI 1.02–1.49), but not in men (RR 1.07, 95% CI 0.97–1.18)”. |
Yang et al. [37] | 2013 | 5,463,339 | 23 (includes studies A, B, and G) | Meta-analysis | “Analysis of subgroups demonstrated this to be the case in both case–control studies (OR = 1.59, 95% CI 1.28–1.97, I2 = 58%) and cohort studies (RR = 1.70, 95% CI 1.23–2.33, I2 = 96%). There was no gender difference in DM-associated bladder cancer risk. Bladder cancer risk was increased in Asia and the North America region, but not in Europe”. |
Study Author | Study Year | Total No. of Patients | Total No. of Studies | Study Type | Comments |
---|---|---|---|---|---|
Xu et al. [31] | 2017 | 13,506,643 | 21 | Meta-analysis of cohort studies | “The pooled analysis results for men indicated that the comparison of DM versus non-DM individuals showed a harmful effect (RR: 1.23; 95% CI: 1.06–1.42; p = 0.005, whereas there was no significant difference in women (RR: 1.24; 95% CI: 0.95–1.61; p = 0.119)”. |
Zhu et al. [32] | 2013 | 14,885,014+ | 29 | Meta-analysis of cohort studies | “The positive association was observed for both men (RR 1.54, 95% CI: 1.30–1.82) and women (RR 1.50, 95% CI: 1.05–2.14)”. “In analysis stratified by study design, the summary RR was 1.29 (95% CI 1.20–1.39) in cohort studies. However, diabetes was not associated with mortality from bladder cancer in cohort studies of diabetic patients (RR 1.19, 95% CI 0.58–2.43)”. |
3.5. The Insulin-Like Growth Factor Axis (IGF Axis)
3.6. Bladder Cancer and the IGF Axis
3.6.1. IGF-1R
3.6.2. IGF-I and IGF-II
3.6.3. IGFBP-2
3.6.4. IGFBP-3
3.6.5. IGFBP-5
3.6.6. PLEKHS1 and the IGF Axis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCa | Bladder cancer; |
T2DM | Type 2 diabetes mellitus; |
PLEKHS1 | Pleckstrin homology domain containing S1; |
IGF | Insulin-like growth factor; |
NMIBC | Non-muscle invasive bladder cancer; |
MIBC | Muscle invasive bladder cancer; |
IGF-I | Insulin-like growth factor I; |
IGF-II | Insulin-like growth factor II; |
IGF1R | Insulin-like growth factor 1 receptor; |
IGF2R | Insulin-like growth factor 2 receptor; |
IGFBP | Insulin-like growth factor binding protein; |
IR | Insulin receptor; |
ALS | Acid labile sub-unit; |
RR | Risk Ratio; |
CI | Confidence Interval; |
OR | Odds Ratio; |
P | p-value; |
I² | Measure of heterogeneity; |
HR | Hazard Ratio; |
BMI | Body mass index; |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Van Osch, F.H.; Jochems, S.H.; van Schooten, F.J.; Bryan, R.T.; Zeegers, M.P. Quantified relations between exposure to tobacco smoking and bladder cancer risk: A meta-analysis of 89 observational studies. Int. J. Epidemiol. 2016, 45, 857–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Lotan, Y.; Pang, K.; Silverman, D.T.; et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babjuk, M.; Burger, M.; Comperat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Comperat, E.M.; Cowan, N.C.; Gakis, G.; Hernandez, V.; Linares Espinos, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; Rodriguez, O.; Hernandez, V.; Turturica, D.; Bauerova, L.; Bruins, H.M.; Brundl, J.; van der Kwast, T.H.; Brisuda, A.; Rubio-Briones, J.; et al. European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel. Eur. Urol. 2021, 79, 480–488. [Google Scholar] [CrossRef]
- Herbert, A.; Winters, S.; McPhail, S.; Elliss-Brookes, L.; Lyratzopoulos, G.; Abel, G.A. Population trends in emergency cancer diagnoses: The role of changing patient case-mix. Cancer Epidemiol. 2019, 63, 101574. [Google Scholar] [CrossRef]
- Cantiello, F.; Cicione, A.; Salonia, A.; Autorino, R.; De Nunzio, C.; Briganti, A.; Gandaglia, G.; Dell’Oglio, P.; Capogrosso, P.; Damiano, R. Association between metabolic syndrome, obesity, diabetes mellitus and oncological outcomes of bladder cancer: A systematic review. Int. J. Urol. 2015, 22, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Filipova, E.; Uzunova, K.; Kalinov, K.; Vekov, T. Pioglitazone and the Risk of Bladder Cancer: A Meta-Analysis. Diabetes Ther. 2017, 8, 705–726. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.B.; Cui, Y.; Zhu, Y.W.; Ren, W.B.; Zhou, X.; Liu, L.F.; Chen, H.Q.; Zu, X.B. Association of metformin intake with bladder cancer risk and oncologic outcomes in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Medicine 2018, 97, e11596. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Liao, Z. Diabetes and cancer: Epidemiological and biological links. World J. Diabetes 2020, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, N.; Jacobsen, A.; Schultz, N.; Sander, C.; Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 2014, 46, 1160–1165. [Google Scholar] [CrossRef]
- Kotoh, J.; Sasaki, D.; Matsumoto, K.; Maeda, A. Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat. J. Vet. Med. Sci. 2016, 78, 1683–1691. [Google Scholar] [CrossRef] [Green Version]
- Shanmugalingam, T.; Crawley, D.; Bosco, C.; Melvin, J.; Rohrmann, S.; Chowdhury, S.; Holmberg, L.; Van Hemelrijck, M. Obesity and cancer: The role of vitamin D. BMC Cancer 2014, 14, 712. [Google Scholar] [CrossRef] [Green Version]
- Pignot, G.; Le Goux, C.; Vacher, S.; Schnitzler, A.; Radvanyi, F.; Allory, Y.; Lallemand, F.; Delongchamps, N.B.; Zerbib, M.; Terris, B.; et al. PLEKHS1: A new molecular marker predicting risk of progression of non-muscle-invasive bladder cancer. Oncol. Lett. 2019, 18, 3471–3480. [Google Scholar] [CrossRef] [Green Version]
- Jeeta, R.R.; Gordon, N.S.; Baxter, L.; Goel, A.; Noyvert, B.; Ott, S.; Boucher, R.H.; Humayun-Zakaria, N.; Arnold, R.; James, N.D.; et al. Non-Coding Mutations in Urothelial Bladder Cancer: Biological and Clinical Relevance and Potential Utility as Biomarkers. Bladder Cancer 2019, 5, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.C.; Schroers-Martin, J.; Lazzareschi, D.V.; Shi, W.Y.; Chen, S.B.; Esfahani, M.S.; Trivedi, D.; Chabon, J.J.; Chaudhuri, A.A.; Stehr, H.; et al. Detection and Surveillance of Bladder Cancer Using Urine Tumor DNA. Cancer Discov. 2019, 9, 500–509. [Google Scholar] [CrossRef]
- Sun, J.W.; Zhao, L.G.; Yang, Y.; Ma, X.; Wang, Y.Y.; Xiang, Y.B. Obesity and risk of bladder cancer: A dose-response meta-analysis of 15 cohort studies. PLoS ONE 2015, 10, e0119313. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, J.L.; Liss, M.A.; Parsons, J.K. Obesity, Physical Activity and Bladder Cancer. Curr. Urol. Rep. 2015, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, R.J.; van der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.; Kurth, K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 2006, 49, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Xu, X.; Wang, X.; Zheng, X.Y. Obesity and risk of bladder cancer: A meta-analysis of cohort studies. Asian Pac. J. Cancer Prev. 2013, 14, 3117–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, S.B.; Freedland, S.J. Influence of obesity on the incidence and treatment of genitourinary malignancies. Urol. Oncol. 2011, 29, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tian, X.; Duan, X.; Ye, Y.; Sun, M.; Huang, J. Association of body mass index with bladder cancer risk: A dose-response meta-analysis of prospective cohort studies. Oncotarget 2017, 8, 33990–34000. [Google Scholar] [CrossRef] [Green Version]
- Eggers, H.; Kuczyk, M.A.; Schrader, A.J.; Steffens, S. Influence of obesity on urological malignancies. Urol. A 2013, 52, 1270–1275. [Google Scholar] [CrossRef]
- Westhoff, E.; Witjes, J.A.; Fleshner, N.E.; Lerner, S.P.; Shariat, S.F.; Steineck, G.; Kampman, E.; Kiemeney, L.A.; Vrieling, A. Body Mass Index, Diet-Related Factors, and Bladder Cancer Prognosis: A Systematic Review and Meta-Analysis. Bladder Cancer 2018, 4, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Gild, P.; Ehdaie, B.; Kluth, L.A. Effect of obesity on bladder cancer and renal cell carcinoma incidence and survival. Curr. Opin. Urol. 2017, 27, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, Y.; Wu, Q.; Jin, H.; Ma, G.; Liu, H.; Wang, M.; Zhang, Z.; Chu, H. Association between obesity and bladder cancer recurrence: A meta-analysis. Clin. Chim. Acta 2018, 480, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Shi, W.; Fu, S.; Wang, T.; Zhai, S.; Song, Y.; Han, J. Pioglitazone and bladder cancer risk: A systematic review and meta-analysis. Cancer Med. 2018, 7, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, M.; Wang, F.; Shi, J.; Wang, K. Association between pioglitazone use and the risk of bladder cancer among subjects with diabetes mellitus: A dose-response meta-analysis. Int. J. Clin. Pharm. Ther. 2017, 55, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; van Hattum, J.W.; Brummelhuis, I.S.; Oddens, J.R.; Savci-Heijink, C.D.; Boeve, E.R.; van der Meer, S.A.; Witjes, J.F.; Pollak, M.N.; de Reijke, T.M.; et al. Study protocol of a phase II clinical trial of oral metformin for the intravesical treatment of non-muscle invasive bladder cancer. BMC Cancer 2019, 19, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Huo, R.; Chen, X.; Yu, X. Diabetes mellitus and the risk of bladder cancer: A PRISMA-compliant meta-analysis of cohort studies. Medicine 2017, 96, e8588. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, X.; Shen, Z.; Zhong, S.; Wang, X.; Lu, Y.; Xu, C. Diabetes mellitus and risk of bladder cancer: A meta-analysis of cohort studies. PLoS ONE 2013, 8, e56662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Wang, X.; Shen, Z.; Lu, Y.; Zhong, S.; Xu, C. Risk of bladder cancer in patients with diabetes mellitus: An updated meta-analysis of 36 observational studies. BMC Cancer 2013, 13, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, S.C.; Orsini, N.; Brismar, K.; Wolk, A. Diabetes mellitus and risk of bladder cancer: A meta-analysis. Diabetologia 2006, 49, 2819–2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wu, J.; Mao, Y.; Zhu, Y.; Hu, Z.; Xu, X.; Lin, Y.; Chen, H.; Zheng, X.; Qin, J.; et al. Diabetes mellitus and risk of bladder cancer: A meta-analysis of cohort studies. PLoS ONE 2013, 8, e58079. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Yao, B.; Yan, Y.; Xu, H.; Liu, Y.; Tang, H.; Zhou, J.; Cao, L.; Wang, W.; Zhang, J.; et al. Diabetes mellitus increases the risk of bladder cancer: An updated meta-analysis of observational studies. Diabetes Technol. Ther. 2013, 15, 914–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.Q.; Xu, C.; Sun, Y.; Han, R.F. Diabetes mellitus increases the risk of bladder cancer: An updated meta-analysis. Asian Pac. J. Cancer Prev. 2013, 14, 2583–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst-Hensch, N.M.; Wang, H.; Goh, V.H.; Seow, A.; Lee, H.P.; Yu, M.C. Determinants of circulating insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations in a cohort of Singapore men and women. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cospons. Am. Soc. Prev. Oncol. 2003, 12, 739–746. [Google Scholar]
- Zhao, H.; Grossman, H.B.; Spitz, M.R.; Lerner, S.P.; Zhang, K.; Wu, X. Plasma levels of insulin-like growth factor-1 and binding protein-3, and their association with bladder cancer risk. J. Urol. 2003, 169, 714–717. [Google Scholar] [CrossRef]
- Gonzalez-Roibon, N.; Kim, J.J.; Faraj, S.F.; Chaux, A.; Bezerra, S.M.; Munari, E.; Ellis, C.; Sharma, R.; Keizman, D.; Bivalacqua, T.J.; et al. Insulin-like growth factor-1 receptor overexpression is associated with outcome in invasive urothelial carcinoma of urinary bladder: A retrospective study of patients treated using radical cystectomy. Urology 2014, 83, 1441.E1–1444.E6. [Google Scholar] [CrossRef] [PubMed]
- Baxter, R.C. IGF binding proteins in cancer: Mechanistic and clinical insights. Nat. Rev. Cancer 2014, 14, 329–341. [Google Scholar] [CrossRef]
- Liang, P.-I.; Wang, Y.-H.; Wu, T.-F.; Wu, W.-R.; Liao, A.C.; Shen, K.-H.; Hsing, C.-H.; Shiue, Y.-L.; Huang, H.-Y.; Hsu, H.-P.; et al. IGFBP-5 overexpression as a poor prognostic factor in patients with urothelial carcinomas of upper urinary tracts and urinary bladder. J. Clin. Pathol. 2013, 66, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, M.P.; Hofmann, M.H.; Garin-Chesa, P.; Schweifer, N.; Wernitznig, A.; Fischer, S.; Jeschko, A.; Meyer, R.; Moll, J.; Pecina, T.; et al. The IGF1R/INSR Inhibitor BI 885578 Selectively Inhibits Growth of IGF2-Overexpressing Colorectal Cancer Tumors and Potentiates the Efficacy of Anti-VEGF Therapy. Mol. Cancer Ther. 2017, 16, 2223–2233. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Kim, J.; Nguyen, C.; Wheeler, T.M.; Lerner, S.P.; Slawin, K.M. Correlation of preoperative levels of IGF-I and IGFBP-3 with pathologic parameters and clinical outcome in patients with bladder cancer. Urology 2003, 61, 359–364. [Google Scholar] [CrossRef]
- Lin, C.; Travis, R.C.; Appleby, P.N.; Tipper, S.; Weiderpass, E.; Chang-Claude, J.; Gram, I.T.; Kaaks, R.; Kiemeney, L.A.; Ljungberg, B.; et al. Pre-diagnostic circulating insulin-like growth factor-I and bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 2018, 143, 2351–2358. [Google Scholar] [CrossRef]
- Long, X.; Xiong, W.; Zeng, X.; Qi, L.; Cai, Y.; Mo, M.; Jiang, H.; Zhu, B.; Chen, Z.; Li, Y. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis. 2019, 10, 375. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Deng, Z.; Wang, Z.; Zhang, W.; Su, J. MTHFR C677T polymorphisms are associated with aberrant methylation of the IGF-2 gene in transitional cell carcinoma of the bladder. J. Biomed. Res. 2012, 26, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Gakis, G.; Stenzl, A.; Renninger, M. Evolution of the concept of androgen-sensitive bladder cancer. Scand. J. Urol. 2013, 47, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Gakis, G.; Stenzl, A. Gender-specific differences in muscle-invasive bladder cancer: The concept of sex steroid sensitivity. World J. Urol. 2013, 31, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Gillatt, D.; Rowe, E.; Koupparis, A.; Holly, J.M.P.; Perks, C.M. IGFBP-2 acts as a tumour suppressor and plays a role in determining chemosensitivity in bladder cancer cells. Oncotarget 2019, 10, 7043–7057. [Google Scholar] [CrossRef] [PubMed]
- Christoph, F.; Weikert, S.; Kempkensteffen, C.; Krause, H.; Schostak, M.; Miller, K.; Schrader, M. Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder. Int. J. Cancer 2006, 119, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- European Genome-Phenome Archive. RNA-Sequencing of Non-Muscle Invasive Bladder Cancer. Available online: https://ega-archive.org/studies/EGAS00001004358.
- RNA-Sequencing of Non-Muscle Invasive Bladder Cancer (NMIBC)—EGA European Genome-Phenome Archive. Available online: Ega-archive.org.
- Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Author | Study Year | Total No. of Patients | Total No. of Studies | Study Type | Comments |
---|---|---|---|---|---|
Qin et al. [21] | 2013 | 8,718,502 | 11 (includes studies A–J) | Meta-analysis of cohort studies | “When stratifying by gender, the summary RRs with 95% CIs were 1.10 (95% CI 1.05–1.16; p = 0.334 for heterogeneity; I2 =12.3%) for male, and 1.15 (95% CI 1.02–1.29; p = 0.190 for heterogeneity; I2 =29.8%) for female”. “Among the 9 studies that controlled for cigarette smoking, the pooled RR was 1.09 (95% CI 1.01–1.17; p = 0.131 for heterogeneity; I2 = 35.9%)”. |
Noguchi et al. [19] | 2015 | 8,920,237 | 16 (includes studies A–F, and I–K) | Review | “The single largest study identified a null association of obesity with bladder cancer incidence”. |
Stewart et al. [22] | 2011 | Not applicable | N/A | Review | “Although, a relationship between obesity and the natural course of bladder cancer may be present, due to the mixed and minimal observations within the literature, no firm conclusions can be drawn at this time”. |
Zhao et al. [23] | 2017 | 5,640,760 | 14 (includes studies A–K) | Meta-analysis | “There was evidence of heterogeneity among studies for obesity category (p = 0.003, I2 = 58.5%)”. |
Sun et al. [18] | 2015 | 14,201,500 | 15 (includes studies A–H, J, and K) | Meta-analysis of cohort studies | “Stronger associations between BMI and bladder cancer risk were found if BMI was assessed by self-reported, and if the average age of participants was greater than 50 years old. No significant effect differences were observed for duration of follow-up and for the gender of participants”. |
Eggers et al. [24] | 2013 | Not applicable | N/A | Review | “Conflicting literature points to an unclear, but possible relation between obesity and bladder tumors”. |
Study Author | Study Year | Total No. of Patients | Total No. of Studies | Study Type | Comments |
---|---|---|---|---|---|
Noguchi et al. [19] | 2015 | 8,920,237 | 7 | Review | “In two studies that also examined bladder cancer progression or recurrence, both (100%) noted strong associations of obesity with these outcomes”. |
Westhoff et al. [25] | 2018 | 16,198 | 13 (includes studies A and B) | Systematic review and meta-analysis | “No association of BMI with risk of progression was found. Results for BMI and prognosis in muscle-invasive or in all stages series were inconsistent.” |
Gild et al. [26] | 2017 | Not applicable | N/A | Review | “With regard to the impact of obesity on survival, no final conclusion can be drawn at this time, because past publications have yielded controversial results.” |
Lin et al. [27] | 2018 | 6452 | 11 (includes studies A and B) | Meta-analysis | “We did not observe a difference in the rate of cancer overall survival associated with obesity. However, obese patients were prone to shorter overall survival. The summary HR and 95% CI were 1.21 (0.97–1.52), p = 0.679.” |
UICC Stage | No. | WHO (1973) Grade | EAU NMIBC Risk Group | Sex | Age (yrs) | Progression to MIBC | PFS (yrs) | Death | Smoking status | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Grade 1 | Grade 2 | Grade 3 | Low | Intermediate | High | Male | Female | Median | Yes | No | Median | Yes | No | Non-Smoker | Current | Ex-Smoker | Unavailable | |
pTa | 29 | 17 | 4 | 8 | 9 | 8 | 12 | 24 | 5 | 71.42 | 11 | 18 | 3.91 | 6 | 23 | 2 | 6 | 18 | 3 |
pT1 | 49 | 0 | 1 | 48 | 0 | 0 | 49 | 43 | 6 | 73.82 | 19 | 30 | 4.47 | 19 | 30 | 12 | 7 | 29 | 1 |
T2+ | 7 | 0 | 0 | 7 | NA | NA | NA | 6 | 1 | 76.51 | NA | NA | NA | 6 | 1 | 1 | 0 | 6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, E.; Sandhu, G.; Ward, D.G.; Perks, C.M.; Bryan, R.T. The Sirenic Links between Diabetes, Obesity, and Bladder Cancer. Int. J. Mol. Sci. 2021, 22, 11150. https://doi.org/10.3390/ijms222011150
Gill E, Sandhu G, Ward DG, Perks CM, Bryan RT. The Sirenic Links between Diabetes, Obesity, and Bladder Cancer. International Journal of Molecular Sciences. 2021; 22(20):11150. https://doi.org/10.3390/ijms222011150
Chicago/Turabian StyleGill, Emily, Gurimaan Sandhu, Douglas G. Ward, Claire M. Perks, and Richard T. Bryan. 2021. "The Sirenic Links between Diabetes, Obesity, and Bladder Cancer" International Journal of Molecular Sciences 22, no. 20: 11150. https://doi.org/10.3390/ijms222011150
APA StyleGill, E., Sandhu, G., Ward, D. G., Perks, C. M., & Bryan, R. T. (2021). The Sirenic Links between Diabetes, Obesity, and Bladder Cancer. International Journal of Molecular Sciences, 22(20), 11150. https://doi.org/10.3390/ijms222011150