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Abstract: Tumors exist in a complex milieu where interaction with their associated microenvironment
significantly contributes to disease progression. Cancer-associated fibroblasts (CAFs) are the primary
component of the tumor microenvironment and participate in complex bidirectional communication
with tumor cells. CAFs support the development of various hallmarks of cancer through diverse
processes, including direct cell–cell contact, paracrine signaling, and remodeling and deposition of
the extracellular matrix. Calcium signaling is a key second messenger in intra- and inter-cellular
signaling pathways that contributes to cancer progression; however, the links between calcium
signaling and CAFs are less well-explored. In this review, we put into context the role of calcium
signaling in interactions between cancer cells and CAFs, with a focus on migration, proliferation,
chemoresistance, and genetic instability.
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1. Introduction
1.1. Cancer and the Tumor Microenvironment

Cancer is a highly heterogeneous disease and is one of the primary causes of death
worldwide. Many studies and comprehensive reviews have linked calcium (Ca2+) signaling
with cancer progression [1] and detailed the role of Ca2+ in intercellular communication,
primarily in the nervous system [2,3] but also in cancer [4,5]. The interplay between cancer
cells and their surrounding environment, termed the tumor microenvironment (TME),
and especially cancer associated fibroblasts (CAFs), has been of growing interest over
the past decade. Despite published evidence for the role of Ca2+ signaling in this crucial
TME compartment [6–8], there are no reviews on Ca2+ signaling in CAFs. This review
discusses the association between CAFs and cancer cells in the context of Ca2+ signaling,
as well as Ca2+ signaling in CAFs, and how these impact both cancer progression and the
development of CAF properties.

1.2. Cancer-Associated Fibroblasts

There has been a growing focus on understanding the communication and interplay
between cancer cells and the TME and how these interactions contribute to tumor pro-
gression [9,10]. The TME consists of diverse cell types, including fibroblasts, adipocytes,
immune cells, and endothelial cells, as well as the extracellular matrix (ECM) [9]. Together,
the TME significantly affects most, if not all, of the hallmarks of cancer [11]; hence, under-
standing the role of the TME in tumor progression has clear prognostic and therapeutic
implications.

Of the TME components, the most studied, and often the most abundant, are CAFs [12].
CAFs can arise from a variety of cell types, including fibroblasts, adipocytes, and endothe-
lial cells that, through signals from the tumor, are transformed from a tumor-suppressive
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to a tumor-promoting CAF phenotype [13]. As CAFs are derived from distinct cellular
populations, there is no single CAF marker; however, there are common markers, such
as α-smooth muscle actin (αSMA), fibroblast activation protein (FAP), fibroblast-specific
protein 1 (FSP1), and the platelet-derived growth factor receptor (PDGFR), that are often
expressed by CAFs but not by their normal counterparts [14].

CAFs contribute to numerous cancer hallmarks through a variety of mechanisms, in-
cluding paracrine factor secretion, modifying the ECM, and direct physical contact [14]. As
well as the broad contributions of CAFs towards cancer progression, chemoresistance [15],
proliferation [16], migration [17], CAF differentiation [18], and genetic instability [19] are
linked with Ca2+ signaling in CAFs and cancer. To date, the literature has focused on
the role of Ca2+ signaling in migration for CAF–cancer cell interactions. However, given
the extensive links of Ca2+ signaling in diverse cancer phenotypes, we suggest it is likely
that additional roles for Ca2+ signaling in CAF–cancer interactions will be revealed as the
field matures.

1.3. Ca2+ Signal

Ca2+ is a ubiquitous second messenger that controls diverse cellular functions in
both physiological and pathological settings [1,20]. Ca2+ signaling can be initiated by
endogenous and exogenous mechanisms and, consequently, is frequently involved in
intercellular communication either through direct transfer of Ca2+ through gap junctions
and nanotubes [21–23] or by signal transduction pathways, such as G protein-coupled
receptors (GPCRs) or tyrosine kinase receptors (TKRs) [3,24]. The Ca2+ gradient in cells
is tightly controlled, with dramatically different concentrations across subcellular com-
partments and the extra-cellular fluid. Resting cytoplasmic Ca2+ concentration ([Ca2+]CYT)
is ~100 nM, while the extra-cellular fluid is >1 mM [1], with the primary intracellular
store of the endoplasmic reticulum falling between these at 100–800 µM [25,26]. As a
result of these significant concentration gradients, Ca2+ can enter the cytoplasm through
open channels and facilitated diffusion, while it requires energy to be actively pumped
from the cytoplasm into other cellular organelles by Ca2+ ATPases, such as those of the
Sarcoplasmic/Endoplasmic Reticulum or out of the cell by plasma membrane Ca2+ AT-
Pases [1]. In addition to calcium entry into the cytoplasm, intra-organelle communication
is an emerging field and is one area that should be the focus of future studies. To date,
studies have primarily been conducted on cancer cells [27], while fewer have been done
on CAFs.

Three key pathways for cytoplasmic Ca2+ entry include voltage-gated calcium chan-
nels (VGCC), transient receptor potential calcium channels (TRP), and store-operated cal-
cium entry (SOCE) [2]. VGCCs are activated by depolarized membrane potentials [28,29],
while TRP channels have a wide variety of activators ranging from temperature to me-
chanical stimuli to endogenous and exogenous chemicals [30–32]. Compared to these
channels, SOCE is activated by a two-step process: first the internal endoplasmic reticulum
(ER) stores are released, typically downstream of GPCR or TKR activation, and then this
depletion of ER calcium is detected by stromal interaction molecule 1 (STIM1), which
activates the ORAI1 channel, resulting in Ca2+ entry [1]. The ER stores are then refilled
by the Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA). Of these three
pathways, SOCE is the predominant pathway of calcium signaling in non-excitatory cells.

Depending on the strength and temporal and spatial resolution of the signal, increases
in [Ca2+]CYT can result in a myriad of outcomes, including gene transcription and protein
degradation, proliferation, and cell death [1]. These crucial and varied roles for Ca2+ in
cellular physiology have been thoroughly demonstrated in cancer, with Ca2+ signaling
being critical in cancer proliferation [33], apoptosis [34,35], and chemoresistance [24,32].
Despite these extensive findings on Ca2+ signaling in cancer, studies on the role of Ca2+

signaling in that most crucial of stromal components, CAFs, are few and fragmented. Here,
we consolidate current research on the bidirectional interactions between CAFs and cancer
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cells through the lens of Ca2+ signaling in the context of phenotypic changes in cancer cells
and CAFs.

2. CAF–Tumor Ca2+ Signaling

CAFs are well-established as modulators of tumor phenotype through a variety of
mechanisms [9]. This section presents a comprehensive summary of the current liter-
ature on Ca2+-mediated CAF–cancer communication. We cover two broad categories:
chemoresistance and proliferation, migration, invasion, and metastasis (Figure 1).
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Figure 1. CAF-induced Ca2+-mediated phenotypic changes in cancer cells. (A), Prostate CAF TRPA1 can be activated by TCS
or resveratrol, increasing secretion of VEGF. VEGFR activation in prostate cancer cells induces an increase in cytoplasmic
calcium that promotes chemoresistance. (B), Breast, endometrial, and colon CAFs secrete SDF-1, which activates CXCR4 in
cancer cells and induces an increase in [Ca2+]CYT that promotes migration and invasion. (C), Breast CAFs secrete MMP1
and cleave and activate PAR1, leading to increased [Ca2+]CYT and enhanced migration, invasion, and tumor growth in
breast cancer cells. (D), Breast CAFs degrade TIAM1 in a Ca2+-dependent manner. This increases levels of the secreted
factor OPN1, which activates an unknown receptor in breast cells and promotes migration and invasion.

2.1. Tumor Chemoresistance and the Importance of Stroma

Apoptosis and chemotherapeutic screens are often initially performed in vitro and
can provide valuable information on novel therapeutic targets. However, a significant
number of lead compounds fail upon in vivo studies. This mismatch between in vitro
and in vivo assays is partially associated with over-simplified in vitro systems that assess
cancer cells in monoculture. An intermediate step between monoculture in vitro studies
and more relevant in vivo assays is to use a co-culture system that incorporates some of
the complexity present in vivo.

One example of a potential therapeutic that has differing roles in vivo and in vitro is
resveratrol. In vitro resveratrol inhibits tumorigenesis in various cancer types, including
breast, prostate, and colon cancer [36–38]. When resveratrol is administered in vivo, how-
ever, results are ambiguous, and responses vary based on route of administration, dose,
tumor model, species, and other factors that can be difficult to identify [39]. An in vitro
study that focused on the interactions between prostate cancer cells and CAFs identified
that resveratrol activates the TRPA1 calcium channel in CAFs and leads to a strong Ca2+
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influx and secretion of VEGF and HGF [8] (Figure 1A). TRPA1 activation significantly
reduces prostate cancer cell death by 40% in a co-culture model. Use of HC-030031, a
TRPA1 inhibitor, significantly reduced the Ca2+ influx and VEGF and HGF secretion in
CAFs and blocked the protective effect on prostate cancer [8]. This study highlights the
value of using co-culture alongside monoculture models for assessing chemotherapeu-
tics and potential roles for Ca2+. Ongoing work is improving simple co-culture models
to more accurately reflect the complexity observed in vivo by using microfluidics and
patient-derived samples [40], as well as in vivo models examining the roles of CAFs on
chemoresistance through interactions with other components of the TME [41].

2.2. Tumor Proliferation, Migration, Invasion, and Metastasis

Calcium signaling is an established driver of tumor proliferation, migration, invasion,
and metastasis [1]. Studies examining CAF–cancer interactions have revealed that CAFs
effect changes on these same properties in a Ca2+-dependent manner, as described below.

Environmental factors are well-known to contribute to cancer progression [41]. Tri-
closan (TCS) is an antimicrobial agent widely used in personal care products that can
deregulate hormone production [4]. Like resveratrol, TCS can induce TRPA1-mediated
Ca2+ influx in prostate cancer-derived CAFs, leading to increased secretion of VEGF
(Figure 1A). VEGF secretion and Ca2+ influx were blocked by the TRPA1 inhibitors HC-
030031, AP-18, and A967079 [4]. Treatment of prostate adenocarcinoma PC3 cells with
TCS-induced CAF-conditioned media promoted PC3 proliferation, and this phenotype
was also blocked by TRPA1 inhibitors. These studies provide further support for a gen-
eral role for TRPA1-mediated VEGF secretion in CAFs promoting tumor growth in a
Ca2+-dependent manner.

C-X-C chemokine receptor type 4 (CXCR4) is a well-studied chemokine receptor
that contributes to migration and invasion in diverse settings in a Ca2+-dependent man-
ner [42,43]. CXCR4 is canonically activated by Stromal Cell Derived Factor 1 (SDF-1),
including CAF-secreted SDF-1 [44–46]. CXCR4 activation in cancer cells promotes Ca2+-
dependent migration [44–46], possibly through PI3K/Akt and MAPK/Erk signaling [44].
Three studies have linked CAF-secreted SDF-1 with activation of CXCR4 and increased
migration and invasion in endometrial and breast cancer (Figure 1B) [44–46]. While these
papers do not directly show a role for Ca2+ in CXCR4 signaling, Chao et al. [47] found
that CAFs had elevated expression of SDF-1 and that exogenous SDF-1 activates a Ca2+

response and increases anchorage-independent growth in CD133+/CXCR4+ colon cancer
cells. However, this study did not show that CAF-secreted SDF-1 could produce this
outcome and used exogenous addition of SDF-1. Combined, these findings show that
(A) CAFs produce and secrete SDF-1, which promotes migration and invasion in cancer
cells, and (B) SDF-1 produces a Ca2+ response that is required for the migration phenotype
(Figure 1B).

CAF-secreted matrix metalloproteases (MMP) are well-established as extra-cellular ma-
trix re-modelers and correlate significantly with poor prognosis [6,48,49]. Protease-activated
receptors (PARs) are tethered-ligand receptors that, upon proteolytic cleavage of their extra-
cellular domains, release their tethered ligand into the cytoplasm, which triggers multiple
signaling pathways, including Ca2+ influx. CAF-secreted MMP-1 cleaves PAR1 present in
breast cancer cells and generates Ca2+ signals that promote migration (Figure 1C) [50]. Inhibi-
tion of either MMP-1 or PAR1 significantly decreases tumor growth, implicating CAF-secreted
MMP-1 and PAR1-mediated Ca2+ influx in breast cancer progression.

CAFs are routinely generated either through surgical extraction from cancer pa-
tients [51] or by activation of normal fibroblasts using agents such as TGFβ1 [52] or comple-
ment [53]. Liu et al. [54] used a different approach and converted mammary reduction fi-
broblasts into senescent fibroblasts using hydrogen peroxide. With the rationale that cancer
incidence increases with age and is typically associated with increased genetic instability in
precancerous cells, there may also be changes in TME cells that have undergone senescence,
in turn promoting tumorigenesis. Senescent fibroblasts degrade T-Lymphoma Invasion
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and Metastasis-Inducing Protein 1 (TIAM1) in a Ca2+-dependent manner (Figure 1D) [54].
TIAM1 degradation increases levels of secreted osteopontin (OPN), which increases mi-
gration and invasion in human mammary epithelial cells (Figure 1D) [47]. Senescent
fibroblasts can thus facilitate the onset of cancer hallmarks in normal mammary cells in a
Ca2+-dependent manner.

3. Tumor–CAF Ca2+ Signaling

CAFs modulate cancer cell properties, and, conversely, tumor cells modify their
microenvironment as a critical part of tumor progression, leading to the development of
CAFs [9]. Here we describe the effects of tumor-mediated Ca2+ signaling in CAFs in four
areas: differentiation; proliferation, migration, and invasion; genetic instability; and wound
healing (Figure 2).
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Figure 2. Ca2+-mediated phenotypic changes in CAFs. (A), TGFβ1-induced breast CAF differentiation is partially mediated
by L and T-type VGCCs. (B), PDAC-conditioned media activate CAF TRPC3, and the Ca2+ influx promotes CAF migration.
(C), CRC-secreted 12(S)-HETE activates the CAF BLT2 receptor and induces an increase in [Ca2+]CYT. (D), Breast cancer-
secreted estrogen activates CAF GPER, increasing [Ca2+]CYT and promoting CAF migration and proliferation. (E), Irradiated
glioma-conditioned media activate CAF L-type VGCCs, and the Ca2+ influx promotes genetic instability and micronuclei
formation. (F), Breast CAFs can phagocytose breast cancer apoptotic bodies in a Ca2+-dependent manner; this promotes
horizontal gene transfer and malignant transformation in CAFs.

3.1. CAF Differentiation

CAFs are routinely derived from normal fibroblasts using a variety of activators, prin-
cipally TGFβ1 [13,52]. To uncover a potential role for Ca2+ signaling in TGFβ1 mediated
differentiation, we examined functional Ca2+ signaling and calcium channel expression
levels in CAFs [18]. Store-operated calcium entry (SOCE) is a major mechanism for refill-
ing internal Ca2+ stores and can induce a wide range of transcriptional and phenotypic
changes. SOCE-mediated Ca2+ flux was significantly reduced following induction of a CAF
phenotype in breast fibroblast cells [18]. Additionally, two voltage-gated calcium channels,
CaV1.2 and CaV3.2, were upregulated in both our in vitro CAF model and in a group
of patient-derived breast CAFs. Pharmacological or siRNA inhibition of these channels
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significantly impaired CAF activation in vitro (Figure 2A) [18]. While these studies did not
use cancer cell-secreted TGFβ, this is a commonly secreted signaling molecule in breast
cancer [55], indicating this transformation is likely to occur in vivo.

3.2. CAF Proliferation, Migration, and Invasion

Similar to cancer cells displaying aberrant proliferation, migration, and invasion phe-
notypes compared to their normal counterparts, these properties change during fibroblast
differentiation into CAFs. Here we present examples on how cancer cells can induce these
changes in CAFs through Ca2+ signaling.

Pancreatic stellate cells (PSCs) are the most common CAF subtype in pancreatic ductal
adenocarcinomas (PDAC), and their presence correlates with poor survival [56]. Like other
CAF types, PSCs often display increased migration after exposure to PDACs [57] and
can co-migrate with PDAC cells, similar to the behavior of squamous cell carcinoma [58].
Mechanistically, this increased migration in PSCs after culture with PDAC-conditioned
media is through the activation and cooperation of a potassium channel (KCa3.1) and a
calcium channel (TRPC3). PDAC-conditioned media significantly increase migration and
Ca2+ influx in PSCs, and either pharmacological inhibition of KCa3.1 or siRNA knockdown
of TRPC3 blocked this migration, indicating that both TRPC3 and KCa3.1 channels and
Ca2+ influx were required for PDAC-mediated migration in PSCs (Figure 2B) [57].

The “endothelial retraction factor”, 12(S)-HETE [59], facilitates neutrophil and mono-
cyte transmigration through endothelial cell barriers by downregulating VE-cadherin
expression. In cancer, it has a similar role and facilitates the migration of breast and colon
cancer cells through endothelial barriers, promoting metastasis [60,61]. CAFs present
a different type of barrier that cancer cells must overcome to successfully disseminate.
Interestingly, a similar phenomenon to this endothelial retraction was demonstrated with
colorectal cancer cells and CAFs. Colorectal cancer cells secrete 12(S)-HETE, which pro-
motes CAF retraction from colorectal cancer spheroids by activating myosin light chain 2
(MLC2) through Ca2+/RHO/ROCK signaling axis, facilitating colorectal cancer cell migra-
tion into the stroma and surrounding regions (Figure 2C) [7]. This demonstrates a novel
12(S)-HETE signaling pathway that promotes retraction through MLC2 without affecting
VE-cadherin. Two additional studies demonstrated a role for MLC2 in CAF-mediated ECM
remodeling and contractility through RHO/ROCK signaling [62,63] but did not examine
the potential role of calcium.

Estrogen is commonly secreted in physiological and pathological breast tissue, and the
presence of the estrogen receptor is critical for prognosis and treatment [64]. While most
studies have focused on the canonical receptor and its expression in cancer cells, recent
research has shown that breast CAFs express the G-protein-coupled estrogen receptor
(GPER) [65,66]. CAFs expressing GPER exposed to estrogen or the GPER agonist G1
display increased intracellular Ca2+ and increased proliferation and migration through
GPER/EGFR/ERK signaling. This provides circumstantial evidence for a link between
GPER-mediated Ca2+ signaling and proliferation and migration in CAFs (Figure 2D).
While these studies did not directly assess the effect of increased intracellular Ca2+ on
CAF migration and proliferation, the requirement of Ca2+ signaling for these processes is
well-documented [20].

3.3. CAF Genetic Instability

Microbeam irradiation technique is a major advance that allows a selected fraction
of cells within a population to be targeted at specific subcellular locations with a precise
dose of radiation [67]. Targeted irradiation is particularly helpful for cancers affecting the
CNS, as it can limit the damage to surrounding cells. A potential complication from irra-
diation therapy is genetic instability arising from the bystander effect. Genetic instability
can contribute to metastasis and chemoresistance by increasing genetic diversity within
a tumor population [68]. Microbeam irradiation has been used to study the bystander
effect, where cells that are near irradiated cells may undergo phenotypic changes [69]. The
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bystander effect in glioma cells and their associated fibroblasts was studied by selectively
irradiating glioma or fibroblast cells in a co-culture model or using a conditioned medium
from irradiated cells [70]. In all scenarios, a Ca2+ influx was triggered in both fibroblasts
and glioma that was associated with the formation of micronuclei (Figure 2E). Micronuclei
formation was dependent on Ca2+ signaling through VGCCs as treatment with calciclu-
dine, an L-type VGCC blocker, inhibited the formation of micronuclei. Increased genetic
instability in neighboring CAFs and glioma post microbeam irradiation highlights the
importance of selective targeting.

Apoptosis is common in tumors and can be induced by internal and external stim-
uli [71]. The resulting apoptotic bodies can be cleared by both tumor cells engulfing the
apoptotic bodies and by stromal cells through a process termed efferocytosis [72]. Effero-
cytosis is enabled by both professional phagocytes, such as macrophages and mast cells,
and non-professional phagocytes, including fibroblasts [72]. Human papillomavirus (HPV)
is primarily associated with the onset of cervical cancer but is also a risk factor for breast
cancer [73], and infection with HPV can cause apoptosis. Fibroblasts clearing apoptotic
breast cancer cells infected with human papillomaviruses can uptake genetic material
from these [74] in a Ca2+-dependent manner [19] (Figure 2F). The horizontal gene transfer
between papillomavirus-infected cells and fibroblasts leads to significant changes in the
fibroblasts, including increased colony formation ability and proliferation, resulting in
malignant transformation of the fibroblasts [74]. While this nomenclature differs from
the transformation of fibroblasts into CAFs, the properties are similar, and it is possible
that these two cell types partially overlap. Additionally, a mechanism for horizontal gene
transfer between cancer cells and fibroblasts is of note, as it promotes genetic instability in
fibroblasts and may contribute to CAF formation.

3.4. Wound Healing

Fibroblasts in aberrant wound healing have been recognized as congruent with fibrob-
lasts in tumors for decades [75]. In both scenarios, fibroblasts undergo activation, leading
to increased proliferation; expression of shared markers, such as αSMA; and secretion
of ECM components, including collagen and fibronectin [75,76]. Given this overlap, it is
worth exploring the role of calcium signaling in wound healing and particularly fibrotic,
aberrant wound healing.

Hypertrophic scar (HS) formation is a type of aberrant wound healing that is heavily
dependent on fibroblast activation [77,78]. A recent study showed that the mechanosen-
sitive calcium channel Piezo1 was overexpressed in HS tissue and was critical for the
activation of fibroblasts and the formation of HS [78]. Inhibiting Piezo1 with either siRNA
or the pharmacological inhibitor GsMTx4 significantly reduced proliferation, [Ca2+]CYT,
αSMA, and collagen protein expression in vitro. Additionally, GsMTx4 reduced the size
of HS, collagen, and αSMA expression in a mouse model, leading to the hypothesis that
Piezo1 may be important in CAF activation in tumor models, particularly given the dra-
matic changes in matrix stiffness that accompany tumorigenesis, although this has not yet
been explored.

4. Conclusions

Cancer cells and CAFs exist in a complex and reciprocal signaling environment
where cues from one cell compartment have dramatic effects on the growth and survival
of the niche as a whole. The studies highlighted in this review demonstrate diverse
roles for Ca2+ signaling in promoting tumor growth, as well as in the development of
CAF features. Diverse mechanisms have been revealed in CAF–cancer Ca2+ signaling;
however, TRPA1-mediated VEGF secretion has emerged as a consistent contributor to
disease progression. Given the availability of pharmacological inhibitors, this channel is
a potential therapeutic target, particularly in the treatment of prostate cancer. We also
presented evidence supporting the transition from monoculture to co-culture models that
more closely replicate the in vivo setting. There remain many unexplored avenues for Ca2+
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signaling in CAF–cancer interactions that will continue to be revealed to the extent that
CAFs remain at the forefront of TME research.
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