QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation
Abstract
:1. Introduction
2. Results
2.1. Clinicopathological Characteristics of the Study Cohort and AR Status
2.2. QNBCs Exhibit High Levels of CNAs
2.3. QNBC Present a Higher Level of Alterations in CA20 and CIN25 Signature Genes
2.4. QNBC and TNBC Tissues Present Significant Differences in Global miRNA Expression Patterns
2.5. Concordance of miRNA Expression Levels and CNAs in QNBC
2.6. miRNAs and Their mRNA Targets Potentially Affected by CNAs Are Involved in Cancer-Associated Signaling Pathways and Genomic Instability Functions
2.7. The Eight miRNAs Present a High Power in Discriminating QNBC from TNBC
2.8. The Eight miRNAs Are Associated with Distant Metastasis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Cohort
4.3. Immunohistochemistry
4.4. DNA and RNA Isolation
4.5. Array Comparative Genomic Hybridization
4.6. Copy Number Analysis of Genes in the Centrosome Amplification (CA20) and Chromosome Instability (CIN25) Signatures
4.7. Expression Analysis of Genes in the CA 20 and CIN 25 Signatures in the TCGA Database
4.8. miRNA Expression Analysis
4.9. Integrated Analysis of Array-CGH and miRNA Data
4.10. Biological Function and Pathway Analyses
4.11. Analysis of Interactions between miRNAs and Target Genes
4.12. Correlation of miRNA Expression and Clinical Data
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, P. Triple-negative breast cancer: Epidemiological considerations and recommendations. Ann. Oncol. 2012, 23 (Suppl. S6), vi7–vi12. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, C.; Azim, H.A., Jr.; Schouten, P.C.; Linn, S.C.; Sotiriou, C. Understanding the biology of triple-negative breast cancer. Ann. Oncol. 2012, 23 (Suppl. S6), vi13–vi18. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [Green Version]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the California cancer Registry. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef]
- Niikura, N.; Hayashi, N.; Masuda, N.; Takashima, S.; Nakamura, R.; Watanabe, K.; Kanbayashi, C.; Ishida, M.; Hozumi, Y.; Tsuneizumi, M.; et al. Treatment outcomes and prognostic factors for patients with brain metastases from breast cancer of each subtype: A multicenter retrospective analysis. Breast Cancer Res. Treat. 2014, 147, 103–112. [Google Scholar] [CrossRef]
- Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.; Rida, P.C.G.; Aneja, R. Tackling intra- and inter-tumor heterogeneity to combat triple negative breast cancer. Front. Biosci. 2017, 22, 1549–1580. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 2016, 11, e0157368. [Google Scholar] [CrossRef] [PubMed]
- Hon, J.D.; Singh, B.; Sahin, A.; Du, G.; Wang, J.; Wang, V.Y.; Deng, F.M.; Zhang, D.Y.; Monaco, M.E.; Lee, P. Breast cancer molecular subtypes: From TNBC to QNBC. Am. J. Cancer Res. 2016, 6, 1864–1872. [Google Scholar]
- Ayca, G.; Sara, T.; Steven, J.I.; James, N.I.; Minetta, C.L.; Lisa, A.C.; Kimberly, B.; Hope, R.; Lisle, N.; Andres, F.; et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin. Cancer Res. 2013, 19, 5505–5512. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, D.R.; Bernales, S.; Jacobsen, B.M.; Cittelly, D.M.; Howe, E.N.; D’Amato, N.C.; Nicole, S.S.; Susan, M.E.; Annie, J.; Javier, G.; et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014, 16, R7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, V.N.; D’Amato, N.C.; Gordon, M.A.; Christenson, J.L.; Elias, A.; Richer, J.K. Androgen Receptor Biology in Triple Negative Breast Cancer: A Case for Classification as AR+ or Quadruple Negative Disease. Horm. Cancer 2015, 6, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Caiazza, F.; Murray, A.; Madden, S.F.; Synnott, N.C.; Ryan, E.J.; O’Donovan, N.; Crown, J.; Duffy, M.J. Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells. Endocr. Relat. Cancer 2016, 23, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Traina, T.A.; Miller, K.; Yardley, D.A.; Eakle, J.; Schwartzberg, L.S.; O’Shaughnessy, J.; Gradishar, W.; Schmid, P.; Winer, E.; Kelly, C.; et al. Enzalutamide for the Treatment of Androgen Receptor-Expressing Triple-Negative Breast Cancer. J. Clin. Oncol. 2018, 36, 884–890. [Google Scholar] [CrossRef]
- Doane, A.S.; Danso, M.; Lal, P.; Donaton, M.; Zhang, L.; Hudis, C.; Gerald, W.L. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 2006, 25, 3994–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Lee, A.H.; Robertson, J.F.; Ellis, I.O. Prognostic markers in triple-negative breast cancer. Cancer 2007, 109, 25–32. [Google Scholar] [CrossRef]
- Gucalp, A.; Traina, T.A. Triple-negative breast cancer: Role of the androgen receptor. Cancer J. 2010, 16, 62–65. [Google Scholar] [CrossRef]
- Luo, X.; Shi, Y.X.; Li, Z.M.; Jiang, W.Q. Expression and clinical significance of androgen receptor in triple negative breast cancer. Chin. J. Cancer 2010, 29, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Niu, Y.; Liu, N.; Zhang, J.Z.; Liu, T.J.; Zhang, R.J.; Wang, S.L.; Ding, X.M.; Xiao, X.Q. Expression of androgen receptor in breast cancer and its significance as a prognostic factor. Ann. Oncol. 2011, 22, 1288–1294. [Google Scholar] [CrossRef]
- He, J.; Peng, R.; Yuan, Z.; Wang, S.; Peng, J.; Lin, G.; Jiang, X.; Qin, T. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: A retrospective analysis based on a tissue microarray. Med. Oncol. 2012, 29, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell. Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Giam, M.; Rancati, G. Aneuploidy and chromosomal instability in cancer: A jackpot to chaos. Cell Div. 2015, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.F.R.; Fulton, R.; McLellan, M.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.; Fulton, L.; Dooling, D.; Ding, L.; Mardis, E.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.; Chin, S.F.; Rueda, O.M.; Vollan, H.K.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.J.; et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.C.; Korkut, A.; Kanchi, R.S.; Hegde, A.M.; Lenoir, W.; Liu, W.; Liu, Y.; Fan, H.; Shen, H.; Ravikumar, V.; et al. A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 2018, 33, 690–705.e9. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, X.; Hou, C.; Zhou, Y.; Chen, J.; Cai, H.; Ye, Y.; Liu, J.; Huang, N. Comprehensive identification and characterization of somatic copy number alterations in triple-negative breast cancer. Int. J. Oncol. 2020, 56, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Chekulaeva, M.; Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 2009, 21, 452–460. [Google Scholar] [CrossRef]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, J.; Yang, N.; Greshock, J.; Megraw, M.S.; Giannakakis, A.; Liang, S.; Naylor, T.L.; Barchetti, A.; Ward, M.R.; et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 9136–9141. [Google Scholar] [CrossRef] [Green Version]
- Cava, C.; Bertoli, G.; Ripamonti, M.; Mauri, G.; Zoppis, I.; Della Rosa, P.A.; Gilardi, M.C.; Castiglioni, I. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS ONE 2014, 9, e97681. [Google Scholar] [CrossRef]
- Sugita, B.; Gill, M.; Mahajan, A.; Duttargi, A.; Kirolikar, S.; Almeida, R.; Regis, K.; Oluwasanmi, O.L.; Marchi, F.; Marian, C.; et al. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 2016, 7, 79274–79291. [Google Scholar] [CrossRef] [Green Version]
- Soh, J.; Cho, H.; Choi, C.H.; Lee, H. Identification and Characterization of MicroRNAs Associated with Somatic Copy Number Alterations in Cancer. Cancers 2018, 10, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugita, B.M.; Pereira, S.R.; de Almeida, R.C.; Gill, M.; Mahajan, A.; Duttargi, A.; Kirolikar, S.; Fadda, P.; de Lima, R.S.; Urban, C.A.; et al. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget 2019, 10, 6184–6203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, L.; Mao, X.; Shi, P.; He, B.; Xu, K.; Zhang, S.; Wang, J. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine 2017, 96, e7085. [Google Scholar] [CrossRef]
- Adhami, M.; Haghdoost, A.A.; Sadeghi, B.; Malekpour Afshar, R. Candidate miRNAs in human breast cancer biomarkers: A systematic review. Breast Cancer 2018, 25, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yao, F.; Xiao, Z.; Sun, Y.; Ma, L. MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 2018, 37, 5–15. [Google Scholar] [CrossRef]
- Ding, L.; Gu, H.; Xiong, X.; Ao, H.; Cao, J.; Lin, W.; Yu, M.; Lin, J.; Cui, Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019, 8, 1492. [Google Scholar] [CrossRef] [Green Version]
- Piasecka, D.; Braun, M.; Kordek, R.; Sadej, R.; Romanska, H. MicroRNAs in regulation of triple-negative breast cancer progression. J. Cancer Res. Clin. Oncol. 2018, 144, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Gupta, G.; Lee, C.D.; Guye, M.L.; Van Sciver, R.E.; Lee, M.P.; Lafever, A.C.; Pang, A.; Tang-Tan, A.M.; Winston, J.S.; Samli, B.; et al. Unmet Clinical Need: Developing Prognostic Biomarkers and Precision Medicine to Forecast Early Tumor Relapse, Detect Chemo-Resistance and Improve Overall Survival in High-Risk Breast Cancer. Ann. Breast Cancer Ther. 2020, 4, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Baggerly, K.A.; Wang, Y.; Zhang, Y.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F.; Valero, V.; Lehmann, B.D.; Pietenpol, J.A.; Hortobagyi, G.N.; et al. Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes. Clin. Cancer Res. 2013, 19, 5533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.Q.; Chen, W.L.; Ma, H.G.; Jiang, K. Androgen receptor expression identifies patient with favorable outcome in operable triple negative breast cancer. Oncotarget 2017, 8, 56364–56374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuenen-Boumeester, V.; Van der Kwast, T.H.; Claassen, C.C.; Look, M.P.; Liem, G.S.; Klijn, J.G.; Henzen-Logmans, S.C. The clinical significance of androgen receptors in breast cancer and their relation to histological and cell biological parameters. Eur. J. Cancer 1996, 32a, 1560–1565. [Google Scholar] [CrossRef] [Green Version]
- Moinfar, F.; Okcu, M.; Tsybrovskyy, O.; Regitnig, P.; Lax, S.F.; Weybora, W.; Ratschek, M.; Tavassoli, F.A.; Denk, H. Androgen receptors frequently are expressed in breast carcinomas: Potential relevance to new therapeutic strategies. Cancer 2003, 98, 703–711. [Google Scholar] [CrossRef]
- Park, S.; Koo, J.; Park, H.S.; Kim, J.H.; Choi, S.Y.; Lee, J.H.; Park, B.W.; Lee, K.S. Expression of androgen receptors in primary breast cancer. Ann. Oncol. 2010, 21, 488–492. [Google Scholar] [CrossRef]
- Thike, A.A.; Yong-Zheng Chong, L.; Cheok, P.Y.; Li, H.H.; Wai-Cheong Yip, G.; Huat Bay, B.; Tse, G.M.; Iqbal, J.; Tan, P.H. Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Mod. Pathol. 2014, 27, 352–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera-Badillo, F.E.; Templeton, A.J.; de Gouveia, P.; Diaz-Padilla, I.; Bedard, P.L.; Al-Mubarak, M.; Seruga, B.; Tannock, I.F.; Ocana, A.; Amir, E. Androgen receptor expression and outcomes in early breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, djt319. [Google Scholar] [CrossRef]
- Bhattarai, S.; Klimov, S.; Mittal, K.; Krishnamurti, U.; Li, X.B.; Oprea-Ilies, G.; Wetherilt, C.S.; Riaz, A.; Aleskandarany, M.A.; Green, A.R.; et al. Prognostic Role of Androgen Receptor in Triple Negative Breast Cancer: A Multi-Institutional Study. Cancers 2019, 11, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, Y.; Kashiwagi, S.; Goto, W.; Tanaka, S.; Morisaki, T.; Takashima, T.; Noda, S.; Onoda, N.; Ohsawa, M.; Hirakawa, K.; et al. Expression and Clinical Significance of Androgen Receptor in Triple-Negative Breast Cancer. Cancers 2017, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zack, T.I.; Schumacher, S.E.; Carter, S.L.; Cherniack, A.D.; Saksena, G.; Tabak, B.; Lawrence, M.S.; Zhsng, C.Z.; Wala, J.; Mermel, C.H.; et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013, 45, 1134–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hieronymus, H.; Murali, R.; Tin, A.; Yadav, K.; Abida, W.; Moller, H.; Berney, D.; Scher, H.; Carver, B.; Scardino, P.; et al. Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. Elife 2018, 7, e37294. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Kucherlapati, M.; Chen, F.; Hadjipanayis, A.; Pantazi, A.; Bristow, C.A.; Lee, E.A.; Mahadeshwar, H.S.; Tang, J.; et al. A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Rearrangement across More Than 1,400 Cases. Cell Rep. 2018, 24, 515–527. [Google Scholar] [CrossRef] [Green Version]
- King, L.; Flaus, A.; Holian, E.; Golden, A. Survival outcomes are associated with genomic instability in luminal breast cancers. PLoS ONE 2021, 16, e0245042. [Google Scholar] [CrossRef]
- Han, W.; Jung, E.M.; Cho, J.; Lee, J.W.; Hwang, K.T.; Yang, S.J.; Kang, J.J.; Bae, J.Y.; Jeon, Y.K.; Park, I.A.; et al. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer 2008, 47, 490–499. [Google Scholar] [CrossRef]
- Turner, N.; Lambros, M.B.; Horlings, H.M.; Pearson, A.; Sharpe, R.; Natrajan, R.; Geyer, F.C.; van Kouwenhove, M.; Kreike, B.; Mackay, A.; et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 2010, 29, 2013–2023. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi-Koike, R.; Nagasaka, K.; Tsuda, H.; Ishii, Y.; Sakamoto, M.; Kikuchi, Y.; Fukui, S.; Miyagawa, Y.; Hiraike, H.; Kobayashi, T.; et al. Array comparative genomic hybridization analysis discloses chromosome copy number alterations as indicators of patient outcome in lymph node-negative breast cancer. BMC Cancer 2019, 19, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, G.C.; Zielenska, M.; Prasad, M.; Squire, J.A. Chromosome 6p amplification and cancer progression. J. Clin. Pathol. 2007, 60, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Richard, F.; Pacyna-Gengelbach, M.; Schlüns, K.; Fleige, B.; Winzer, K.J.; Szymas, J.; Dietel, M.; Petersen, I.; Schwendel, A. Patterns of chromosomal imbalances in invasive breast cancer. Int. J. Cancer 2000, 89, 305–310. [Google Scholar] [CrossRef]
- Seute, A.; Sinn, H.P.; Schlenk, R.F.; Emig, R.; Wallwiener, D.; Grischke, E.M.; Hohaus, S.; Döhner, H.; Haas, R.; Bentz, M. Clinical relevance of genomic aberrations in homogeneously treated high-risk stage II/III breast cancer patients. Int. J. Cancer 2001, 93, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Vincent, K.; Pichler, M.; Lee, G.W.; Ling, H. MicroRNAs, genomic instability and cancer. Int. J. Mol. Sci. 2014, 15, 14475–14491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, D.A.; Slack, F.J. MicroRNAs in mutagenesis, genomic instability, and DNA repair. Semin. Oncol. 2011, 38, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Bennett, P.E.; Bemis, L.; Norris, D.A.; Shellman, Y.G. miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genom. 2013, 45, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Balkrishna, A.; Mittal, R.; Arya, V. Unveiling Role of MicroRNAs as Treatment Strategy and Prognostic Markers in Triple Negative Breast Cancer. Curr. Pharm. Biotechnol. 2020, 21, 1569–1575. [Google Scholar] [CrossRef]
- Li, D.; Xia, H.; Li, Z.Y.; Hua, L.; Li, L. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling. Biomed. Res. Int. 2015, 2015, 746970. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.; Zhou, Y.; Zhang, R.; Zhao, N.; Yan, Z.; Zhang, Q.; Zhang, S.; Qiu, F.; Xu, Y. An integrated approach to reveal miRNAs’ impacts on the functional consequence of copy number alterations in cancer. Sci. Rep. 2015, 5, 11567. [Google Scholar] [CrossRef] [Green Version]
- Alles, M.C.; Gardiner-Garden, M.; Nott, D.J.; Wang, Y.; Foekens, J.A.; Sutherland, R.L.; Musgrove, E.A.; Ormandy, C.J. Meta-Analysis and Gene Set Enrichment Relative to ER Status Reveal Elevated Activity of MYC and E2F in the “Basal” Breast Cancer Subgroup. PLoS ONE 2009, 4, e4710. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bi, L.; Wang, Q.; Wen, M.; Li, C.; Ren, Y.; Jiao, Q.; Mao, J.H.; Wang, C.; Wei, G.; et al. miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2018, 37, 3426–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Li, P.; Wang, D.; Yan, H. Dysregulation of serum miR-1204 and its potential as a biomarker for the diagnosis and prognosis of breast cancer. Rev. Assoc. Médica Bras. 2020, 66, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Xu, R.; Hao, L.; Zhang, Y. MicroRNA-613: A novel tumor suppressor in human cancers. Biomed. Pharm. 2020, 123, 109799. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Han, B. miR-613 Suppresses Chemoresistance and Stemness in Triple-Negative Breast Cancer by Targeting FAM83A. Cancer. Manag. Res. 2020, 12, 12623–12633. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Yan, T.; Zhang, W.; Shi, F.; Jiang, X.; Wang, X.; Li, S.; Chen, Y.; Chen, C.; Zhu, Y. miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell Signal 2018, 44, 33–42. [Google Scholar] [CrossRef]
- Ramus, S.J.; Song, H.; Dicks, E.; Tyrer, J.P.; Rosenthal, A.N.; Intermaggio, M.P.; Fraser, L.; Gentry-Maharaj, A.; Hayward, J.; Philpott, S.; et al. Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J. Natl. Cancer Inst. 2015, 107, djv214. [Google Scholar] [CrossRef]
- da Costa E Silva Carvalho, S.; Cury, N.M.; Brotto, D.B.; de Araujo, L.F.; Rosa, R.; Texeira, L.A.; Plaça, J.R.; Marques, A.A.; Peronni, K.C.; Ruy, P.C.; et al. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: Analysis of a 21 gene panel in the Brazilian population. BMC Med. Genom. 2020, 13, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, A.; Hussain, S.A.; Ghori, Q.; Naeem, N.; Fazil, A.; Giri, S.; Sathian, B.; Mainali, P.; Al Tamimi, D.M. The spectrum of genetic mutations in breast cancer. Asian Pac. J. Cancer Prev. 2015, 16, 2177–2185. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.T.; Holub, A.S.; Husbands, A.Y.; Petreaca, R.C. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers 2020, 12, 3794. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, P.; Papasotiriou, I. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer 2017, 9, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Torresan, C.; Oliveira, M.M.; Pereira, S.R.; Ribeiro, E.M.; Marian, C.; Gusev, Y.; Lima, R.S.; Urban, C.A.; Berg, P.E.; Haddad, B.R.; et al. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet. 2014, 207, 177–187. [Google Scholar] [CrossRef]
- Lupicki, K.; Elifio-Esposito, S.; Fonseca, A.S.; Weber, S.H.; Sugita, B.; Langa, B.C.; Pereira, S.R.F.; Govender, D.; Panieri, E.; Hiss, D.C.; et al. Patterns of copy number alterations in primary breast tumors of South African patients and their impact on functional cellular pathways. Int. J. Oncol. 2018, 53, 2745–2757. [Google Scholar] [CrossRef] [Green Version]
- Carter, S.L.; Eklund, A.C.; Kohane, I.S.; Harris, L.N.; Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 2006, 38, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Ogden, A.; Rida, P.C.G.; Aneja, R. A novel prognostic signature based on centrosome amplification-based genes to predict clinical outcomes in breast tumors. J. Clin. Oncol. 2017, 35, 11604. [Google Scholar] [CrossRef]
- Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 2016, 375, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | QNBC | TNBC | p-Value | |
---|---|---|---|---|---|
(n = 53) | (n = 33) | (n = 20) | |||
Age, mean (SD) | 51.75 (10.22) | 51.53 (10.42) | 52.13 (10.13) | 0.837 | |
Race, n (%) | AA | 17 (41.46) | 8 (30.77) | 9 (60.00) | 0.067 |
EA | 24 (58.54) | 18 (69.23) | 6 (40.00) | ||
Missing | 12 | 7 | 5 | ||
Grade, n (%) | 1 | 0 (0) | 0 (0) | 0 (0) | 0.661 |
2 | 6 (11.32) | 03 (9.09) | 03 (15.00) | ||
3 | 47 (88.68) | 30 (90.91) | 17 (85.00) | ||
Tumor size, mean (SD) | Mean | 2.96 (1.82) | 2.79 (1.72) | 3.27 (2.02) | 0.401 |
Missing | 2 | ||||
Lymph node status, n (%) | Negative | 22 (56.64) | 13 (56.52) | 09 (56.25) | 0.987 |
Positive | 17 (43.59) | 10 (43.48) | 07 (43.75) | ||
Missing | 14 | 10 | 4 | ||
Distant metastasis, n (%) | No | 32 (76.19) | 21 (80.77) | 11 (68.75) | 0.465 |
Yes | 10 (23.81) | 05 (19.23) | 05 (31.25) | ||
Missing | 11 | 7 | 4 | ||
Recurrence, n (%) | Yes | 5 (11.90) | 02 (7.69) | 03 (81.25) | 0.352 |
No | 37 (88.10) | 24 (92.31) | 13 (18.75) | ||
Missing | 11 | 7 | 4 |
Cytoband | CNA | QNBC (%) | TNBC (%) | All Genes | Protein Coding | lncRNA | miRNA | Others |
---|---|---|---|---|---|---|---|---|
1q21.1-q44 | Gain | 63.2 | 35.7 | 2548 | 961 | 640 | 70 | 877 |
2p25.3-p11.1 | Gain | 36.8 | 7.14 | 1633 | 466 | 523 | 40 | 604 |
3q11.1-q29 | Gain | 42.1 | 42.9 | 1787 | 561 | 512 | 46 | 668 |
4p16.3-p12 | Loss | 42.1 | 21.4 | 693 | 216 | 215 | 20 | 242 |
5p15.33-p12 | Gain | 36.8 | 14.3 | 705 | 151 | 262 | 15 | 277 |
6p25.3-p12.1 | Gain | 63.2 | 28.6 | 1485 | 595 | 347 | 38 | 505 |
6q11.1-q27 | Gain | 42.1 | 7.14 | 1526 | 425 | 465 | 28 | 608 |
8p12-p11.11 | Gain | 47.4 | 21.4 | 281 | 79 | 93 | 5 | 104 |
8q11.1-q24.3 | Gain | 78.9 | 64.3 | 1501 | 409 | 529 | 55 | 508 |
9p24.3-p13.1 | Gain | 63.2 | 14.3 | 655 | 200 | 161 | 16 | 278 |
10p15.3-p11.1 | Gain | 52.6 | 21.4 | 667 | 153 | 235 | 22 | 257 |
12p13.33-p11.1 | Gain | 57.9 | 14.3 | 841 | 280 | 260 | 10 | 291 |
13q14.3-q34 | Gain | 36.8 | 21.4 | 679 | 129 | 289 | 26 | 235 |
18q11.2-q23 | Gain | 42.1 | 7.1 | 813 | 185 | 326 | 26 | 276 |
20q11.11-q13.33 | Gain | 36.8 | 28.6 | 812 | 311 | 242 | 29 | 230 |
Xp22.33-p11.21 | Loss | 42.1 | 21.4 | 895 | 319 | 136 | 36 | 404 |
Total | 17521 | 5440 | 5235 | 482 | 6364 |
miRNA | Log2FC | p-Value | FDR |
---|---|---|---|
hsa-miR-219-5p | −0.738 | 0.0003 | 0.13 |
hsa-miR-127-3p | −2.302 | 0.001 | 0.13 |
hsa-let-7c | −1.953 | 0.001 | 0.13 |
hsa-miR-4455 | −1.504 | 0.001 | 0.13 |
hsa-miR-152 | −1.208 | 0.001 | 0.13 |
hsa-miR-335-5p | −1.191 | 0.001 | 0.13 |
hsa-miR-628-3p | −1.062 | 0.001 | 0.13 |
hsa-miR-503 | −0.872 | 0.001 | 0.13 |
hsa-miR-643 | 1.691 | 0.001 | 0.13 |
hsa-miR-548b-3p | 1.497 | 0.0011 | 0.13 |
hsa-miR-199b-5p | −2.586 | 0.002 | 0.13 |
hsa-miR-140-5p | −1.788 | 0.002 | 0.13 |
hsa-miR-375 | −1.177 | 0.002 | 0.13 |
hsa-miR-518b | −1.146 | 0.002 | 0.13 |
hsa-miR-384 | −1.027 | 0.002 | 0.13 |
KEGG Pathway | p-Value | # Genes | # miRNAs |
---|---|---|---|
Proteoglycans in cancer | 2.54 × 10−11 | 163 | 78 |
Axon guidance | 9.09 × 10−8 | 106 | 73 |
Hippo signaling pathway | 9.09 × 10−8 | 125 | 79 |
Pathways in cancer | 9.09 × 10−8 | 310 | 88 |
ErbB signaling pathway | 5.13 × 10−7 | 77 | 78 |
Rap1 signaling pathway | 1.86 × 10−6 | 170 | 81 |
N-glycan biosynthesis | 2.96 × 10−6 | 40 | 51 |
Ras signaling pathway | 3.34 × 10−6 | 178 | 79 |
Renal cell carcinoma | 6.50 × 10−6 | 59 | 75 |
Glioma | 7.94 × 10−6 | 55 | 78 |
Adherens junction | 9.14 × 10−6 | 64 | 70 |
Signaling pathways regulating pluripotency of stem cells | 2.37 × 10−5 | 112 | 81 |
Arrhythmogenic right ventricular cardiomyopathy | 5.41 × 10−5 | 57 | 70 |
Wnt signaling pathway | 5.41 × 10−5 | 113 | 80 |
TGF-beta signaling pathway | 6.46 × 10−5 | 64 | 68 |
miRNA | Gene Targets |
---|---|
miR-1204 | SRC |
miR-1265 | AKT3, BCL2, DCC |
miR-1267 | EPHB1, ITGA10, LIFR, ROCK2, RPS6KA3, SMAD2 |
miR-23c | ACTN2, ARNT, ATP6V1C1, B3GNT5, B4GALT4, BCL2, CBLB, CHST7, CPEB2, DNM3, EML4, FBXO32, FUT9, GALNT1, GJA1, JARID2, MAP3K5, MEIS1, PAK2, PIK3CB, PPP1CB, ST8SIA1, STK4, TGFA |
miR-548ai | ACER2, ANK1, ARNT, B3GNT5, B4GALT5, BCL2, CPEB2, EPHB1, EZR, GABARAPL1, GRIN2B, IRS2, ITPR3, KRAS, LIFR, PAK2, PCK1, PPP1CB, SGK3 |
miR-567 | AKT3M DCC, FUT9, PPP1CB, ROCK2, RPS6KA3, SMAD4, TNFSF10, VEGFA |
miR-613 | ACER2, CALM2, CERS2, E2F5, EFNB2, EML4, EPHB1, FUT9, GJA1, JARID2, KAT6A, KRAS, MEIS1, NFATC2, NRP1, RICTOR, UST, VEGFA, YWHAQ, YWHAZ |
miR-943 | CALM2, FUT9, JARID2, SGK3, SMAD2, SRC, VEGFA |
miRNA | Cellular Response to DNA Damage Stimulus | Cell Cycle |
---|---|---|
miR-1204 | No gene | No gene |
miR-1265 | ALKBH1, BCL2, CBX3, CDKN2AIP, CUL4B, EGLN3, JMY, NIPBL, TRIP12M UCHL5, ZMPSTE24 | No gene |
miR-1267 | CBX5, FANCC, FMR1, HIPK2, INTS3, KAT7, MCMDC2, RAD17, RAD54B, SETX, SIRT4, SMC1A, UBE2D3, UCHL5, VCPIP1, YY1, ZBTB1, ZDHHC16 | CDC14A, CDC16, CDK1, SMAD2, SMC1A, STAG1 |
miR-23c | ATMIN, BCL2, CBX5, CCND1, CEP63, DCUN1D5, DYRK2, EYA1, FMR1, FNIP2, INO80D, NUAK1M NUCKS1, OTUB1, RAD17, RAD21, RAD23B, RAD51AP1, RBBP6, RNF168. SETD2, TAOK1, TAOK3, TLK1, TOPBP1, TRIP12, UBA6, UBE2D3, VCPIP1, XIAP, ZBTB1 | CDC23, CCND1, CCNH, CREBBP, GSK3B, MCM4, RAD21, RBL2, SMAD3, TGFB2, WEE1, YWHAG |
miR-548ai | ACER2, ACTL6A, BARD1, BCL2, CBX1, CDKN2AIP, CLOCK, DTL, FAN1, FNIP2, HIPK2, IKBKE, MLH3, NBN, NUCKS1, PSEN1, RNF8, SAMHD1, SHPRH, SMC5, SMG1, SMUG1, TAOK1, TP63, UBE2B, UBE2W, VCPIP1, YAP1 | CCNA2, CDC14A, CDC23, CDC27, CDK6, CDKN1B, SMAD2, WEE1 |
miR-567 | ASCC1, BRIP1, CBX5, CLOCK, PARPBP, PSEN1, UBE2N, UBE2W, ZMAT3 | GSK3B, SKP2, SMAD4, SMC1B |
miR-613 | ACER2, ATF2, CBL, CCND1, CLOCK, EYA4, FBXW7, FOXP1, MAPK1, MAPK3, NFATC2, NUCKS1, RNF111, RNF138, TAOF3, TDP1, UBR5, WDR48, ZBTB4, ZMAT3 | CCND1, CCND2, CDK6, E2F5, STAG2, YWHAQ, YWHAZ |
miR-943 | BCCIP, HEK2, CLOCK, FBXW7, FNIP2, GNL1, HIPK2, MAEL, MAPK1, MCM8, NEK4, RIF1, RNF111, RPA2, USP28, VCPIP1, WDR48 | CHEK2, HDAC2, MCM4, SMAD2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, S.; Sugita, B.M.; Bortoletto, S.M.; Fonseca, A.S.; Cavalli, L.R.; Aneja, R. QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation. Int. J. Mol. Sci. 2021, 22, 11548. https://doi.org/10.3390/ijms222111548
Bhattarai S, Sugita BM, Bortoletto SM, Fonseca AS, Cavalli LR, Aneja R. QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation. International Journal of Molecular Sciences. 2021; 22(21):11548. https://doi.org/10.3390/ijms222111548
Chicago/Turabian StyleBhattarai, Shristi, Bruna M. Sugita, Stefanne M. Bortoletto, Aline S. Fonseca, Luciane R. Cavalli, and Ritu Aneja. 2021. "QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation" International Journal of Molecular Sciences 22, no. 21: 11548. https://doi.org/10.3390/ijms222111548
APA StyleBhattarai, S., Sugita, B. M., Bortoletto, S. M., Fonseca, A. S., Cavalli, L. R., & Aneja, R. (2021). QNBC Is Associated with High Genomic Instability Characterized by Copy Number Alterations and miRNA Deregulation. International Journal of Molecular Sciences, 22(21), 11548. https://doi.org/10.3390/ijms222111548