The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics
Abstract
:1. Introduction
2. Results
2.1. Analysis of Changes in Antibiotic Susceptibility of S. aureus Strains under the Influence of RMF
2.2. Disc Diffusion Test
2.3. Gradient MIC Strips (E-Test)
2.4. Effect of RMF on Release Rate and Diffusion of Antibiotics
2.5. Effect of RMF Coupled with β-Lactam Antibiotic on Integrity of Staphylococcal Cell Walls in the Biofilm Model
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Rotating Magnetic Field Generator
4.3. Analysis of the Impact of RMF on Changes in Antibiotic Susceptibility
4.3.1. Disc Diffusion Method
4.3.2. Gradient MIC Strips (E-Test)
4.4. Analysis of the Impact of RMF on the Diffusion of Antibiotics in the Agar Medium
4.5. Visualization of the Impact of RMF and β-Lactam Antibiotic on the Integrity of Staphylococcal Cell Walls
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef] [PubMed]
- Gerken, T.J.; Roberts, M.C.; Dykema, P.; Melly, G.; Lucas, D.; de Los Santos, V.; Gonzalez, J.; Butaye, P.; Wiegner, T.N. Environmental surveillance and characterization of antibiotic resistant Staphylococcus aureus at coastal beaches and rivers on the Island of Hawai’i. Antibiotics 2021, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (January 2021). Available online: https://www.cdc.gov/mrsa/healthcare/inpatient.html (accessed on 21 January 2021).
- Styers, D.; Sheehan, D.J.; Hogan, P.; Sahm, D.F. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Solis-Velazquez, O.A.; Gutiérrez-Lomelí, M.; Guerreo-Medina, P.J.; Rosas-García, M.d.L.; Iñiguez-Moreno, M.; Avila-Novoa, M.G. Nosocomial pathogen biofilms on biomaterials: Different growth medium conditions and components of biofilms produced in vitro. J. Microbiol. Immunol. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Dastgheyb, S.S.; Otto, M. Staphylococcal adaptation to diverse physiologic niches: An overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol. 2015, 10, 1981–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-H.; Hsieh, Y.-H.; Powers, Z.M.; Kao, C.-Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [Green Version]
- Junka, A.F.; Rakoczy, R.; Szymczyk, P.; Bartoszewicz, M.; Sedghizadeh, P.P.; Fijałkowski, K. Application of rotating magnetic fields increase the activity of antimicrobials against wound biofilm pathogens. Sci. Rep. 2018, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Novickij, V.; Stanevičienė, R.; Vepštaitė-Monstavičė, I.; Gruškienė, R.; Krivorotova, T.; Sereikaitė, J.; Novickij, J.; Servienė, E. Overcoming antimicrobial resistance in bacteria using bioactive magnetic nanoparticles and pulsed electromagnetic fields. Front. Microbiol. 2017, 8, 2678. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, J.; Li, P.; Wang, L.; Zhou, J.; Zhang, G.; Li, X.; Hu, B.; Xing, X. Microenvironment-responsive magnetic nanocomposites based on silver nanoparticles/gentamicin for enhanced biofilm disruption by magnetic field. ACS Appl. Mater. Interfaces 2018, 10, 34905–34915. [Google Scholar] [CrossRef] [PubMed]
- Salmen, S.H.; Alharbi, S.A.; Faden, A.A.; Wainwright, M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J. Biol. Sci. 2018, 25, 105–110. [Google Scholar] [CrossRef]
- Bajpai, I.; Saha, N.; Basu, B. Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1206–1217. [Google Scholar] [CrossRef]
- Brkovic, S.; Postic, S.; Ilic, D. Influence of the magnetic field on microorganisms in the oral cavity. J. Appl. Oral Sci. 2015, 23, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakoczy, R.; Przybył, A.; Kordas, M.; Konopacki, M.; Drozd, R.; Fijałkowski, K. The study of influence of a rotating magnetic field on mixing efficiency. Chem. Eng. Process: Process Intensif. 2017, 112, 1–8. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Nawrotek, P.; Struk, M.; Kordas, M.; Rakoczy, R. The effects of rotating magnetic field on growth rate, cell metabolic activity and biofilm formation by Staphylococcus aureus and Escherichia coli. J. Magn. 2013, 18, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Fijałkowski, K.; Nawrotek, P.; Struk, M.; Kordas, M.; Rakoczy, R. Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria. Electromagn. Biol. Med. 2015, 34, 48–55. [Google Scholar] [CrossRef]
- Mega-Tiber, P.; Aksu, B.; Inhan-Garip, A. The effect of ELF EMF on bacterial growth; correlation with ROS. In Cell Membranes and Free Radical Research, Proceedings of the 2nd International Congress on Cell Membrane and Oxidative Stress, Isparta, Turkey, 25–28 June; Society of Cell Membranes and Free Radical Research: Isparta, Turkey, 2008; Volume 1, pp. 28–29. [Google Scholar]
- Khoury, A.E.; Lam, K.; Ellis, B.; Costerton, J.W. Prevention and control of bacterial infections associated with medical devices. ASAIO J. 1992, 38, M174–M178. [Google Scholar] [CrossRef]
- Costerton, J.W.; Ellis, B.; Lam, K.; Johnson, F.; Khoury, A.E. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob. Agents Chemother. 1994, 38, 2803–2809. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.S.; Wattanakaroon, W.; Goodrum, L.; Fortun, S.M.; McLeod, B.R. Electrolytic generation of oxygen partially explains electrical enhancement of tobramycin efficacy against Pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 1999, 43, 292–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golberg, A.; Broelsch, G.F.; Vecchio, D.; Khan, S.; Hamblin, M.R.; Austen, W.G.; Sheridan, R.L.; Yarmush, M.L. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field. Technology 2014, 2, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagourti, J.; El May, A.; Aloui, A.; Chatti, A.; Ben Aissa, R.; Landoulsi, A. Static magnetic field increases the sensitivity of Salmonella to gentamicin. Ann. Microbiol. 2010, 60, 519–522. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 11.0. 2021 (January 2021). Available online: http://www.eucast.org (accessed on 29 January 2021).
- Anand, K.B.; Agrawal, P.; Kumar, S.; Kapila, K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J. Med. Microbiol. 2009, 27, 27–29. [Google Scholar] [CrossRef]
- Tehrani, K.H.M.E.; Martin, N.I. β-lactam/β-lactamase inhibitor combinations: An update. MedChemComm 2018, 9, 1439–1456. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Zervosen, A.; Sauvage, E.; Frère, J.-M.; Charlier, P.; Luxen, A. Development of new drugs for an old target: The penicillin binding proteins. Molecules 2012, 17, 12478–12505. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.N.; Hauryliuk, V.; Atkinson, G.C.; O’Neill, A.J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 2020, 18, 637–648. [Google Scholar] [CrossRef]
- Borovinskaya, M.A.; Pai, R.D.; Zhang, W.; Schuwirth, B.S.; Holton, J.M.; Hirokawa, G.; Kaji, H.; Kaji, A.; Cate, J.H.D. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat. Struct. Mol. Biol. 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Champney, W.S.; Tober, C.L. Specific inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells by 16-membered macrolide, lincosamide, and streptogramin B antibiotics. Curr. Microbiol. 2000, 41, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Fojt, L.; Strasák, L.; Vetterl, V.; Smarda, J. Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 2004, 63, 337–341. [Google Scholar] [CrossRef]
- Torgomyan, H.; Ohanyan, V.; Blbulyan, S.; Kalantaryan, V.; Trchounian, A. Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: Changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiol. Lett. 2012, 329, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, S.B.; Adlan, T.A.; Khalafalla, N.A.; Abdalla, N.I.; Ali, Z.S.; Munir Ka, A.; Hassan, M.M.; Elnour, M.-A.B. Proteomics and docking study targeting penicillin-binding protein and penicillin-binding protein2a of methicillin-resistant Staphylococcus aureus strain SO−1977 isolated from Sudan. Evol. Bioinform. 2019, 15, 1176934319864945. [Google Scholar] [CrossRef] [Green Version]
- Selby, D.G.; Mather, L.E.; Runciman, W.B. Effects of propofol and of thiopentone anaesthesia on the renal clearance of cefoxitin in the sheep. Br. J. Anaesth. 1990, 65, 360–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelon, C.; Nestorovich, E.M.; Winterhalter, M.; Ceccarelli, M.; Bezrukov, S.M. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 2006, 90, 1617–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, P.; Yarlagadda, V.; Ghosh, C.; Haldar, J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm 2017, 8, 516–533. [Google Scholar] [CrossRef]
- Harrison, E.M.; Ba, X.; Coll, F.; Blane, B.; Restif, O.; Carvell, H.; Köser, C.U.; Jamrozy, D.; Reuter, S.; Lovering, A.; et al. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat. Microbiol. 2019, 4, 1680–1691. [Google Scholar] [CrossRef] [Green Version]
- Nawrotek, P.; Fijałkowski, K.; Struk, M.; Kordas, M.; Rakoczy, R. Effects of 50 Hz rotating magnetic field on the viability of Escherichia coli and Staphylococcus aureus. Electromagn. Biol. Med. 2014, 33, 29–34. [Google Scholar] [CrossRef]
- Ahmed, I.; Istivan, T.; Cosic, I.; Pirogova, E. Evaluation of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococcus aureus. EPJ Nonlinear Biomed. Phys. 2013, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Dunca, S.; Creanga, D.-E.; Ailiesei, O.; Nimitan, E. Microorganisms growth with magnetic fluids. J. Magn. Magn. Mater. 2005, 289, 445–447. [Google Scholar] [CrossRef]
- Del Re, B.; Garoia, F.; Mesirca, P.; Agostini, C.; Bersani, F.; Giorgi, G. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 2003, 42, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Del Re, B.; Bersani, F.; Agostini, C.; Mesirca, P.; Giorgi, G. Various effects on transposition activity and survival of Escherichia coli cells due to different ELF-MF signals. Radiat. Environ. Biophys. 2004, 43, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Lv, H.; Liu, J.; Huang, Q.; Liu, Y.; Liu, Q.; Li, M. Dynamic changes of Staphylococcus aureus Susceptibility to vancomycin, teicoplanin, and linezolid in a Central Teaching Hospital in Shanghai, China, 2008–2018. Front. Microbiol. 2020, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-C.; Lin, Y.-C.; Huang, Y.-C. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine 2016, 95, e5060. [Google Scholar] [CrossRef] [PubMed]
- Lowman, W. Vancomycin versus teicoplanin in the treatment of serious Gram-positive infections: What do the minimum inhibitory concentration data tell us? Afr. J. Infect. Dis. 2014, 29, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Fijałkowski, K.; Żywicka, A.; Drozd, R.; Junka, A.F.; Peitler, D.; Kordas, M.; Konopacki, M.; Szymczyk, P.; El Fray, M.; Rakoczy, R. Increased yield and selected properties of bacterial cellulose exposed to different modes of a rotating magnetic field. Eng. Life Sci. 2016, 16, 483–493. [Google Scholar] [CrossRef]
- Oncul, S.; Cuce, E.M.; Aksu, B.; Inhan Garip, A. Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int. J. Radiat. Biol. 2016, 92, 42–49. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-B.; Shin, H.-U.; Bak, Y. Basic control of AC motor drives. In Control of Power Electronic Converters and Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 301–329. ISBN 9780128052457. [Google Scholar]
- Yan, J.; Bassler, B.L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Brodie, G. Energy transfer from electromagnetic fields to materials. In Electromagnetic Fields and Waves; Ho Yeap, K., Hirasawa, K., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-78923-955-3. [Google Scholar]
- Bahamondez-Canas, T.F.; Heersema, L.A.; Smyth, H.D.C. Current status of in vitro models and assays for susceptibility testing for wound biofilm infections. Biomedicines 2019, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtinen, S.; Blanquart, F.; Croucher, N.J.; Turner, P.; Lipsitch, M.; Fraser, C. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl. Acad. Sci. USA 2017, 114, 1075–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellini, L.; Grande, R.; Di Campli, E.; Di Bartolomeo, S.; Di Giulio, M.; Robuffo, I.; Trubiani, O.; Mariggiò, M.A. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 2008, 29, 302–311. [Google Scholar] [CrossRef]
- László, J.; Kutasi, J. Static magnetic field exposure fails to affect the viability of different bacteria strains. Bioelectromagnetics 2010, 31, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Konopacki, M.; Rakoczy, R. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem. Eng. J. 2019, 141, 259–267. [Google Scholar] [CrossRef]
- Pawlicka, A.; Donoso, J.P. Polymer electrolytes based on natural polymers. In Polymer Electrolytes; Elsevier: Amsterdam, The Netherlands, 2010; pp. 95–128. ISBN 9781845697723. [Google Scholar]
- Crowle, A.J. General information. In Immunodiffusion; Elsevier: Amsterdam, The Netherlands, 1973; pp. 65–206. ISBN 9780121981563. [Google Scholar]
- Urish, K.L.; Cassat, J.E. Staphylococcus aureus osteomyelitis: Bone, bugs, and surgery. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing-Version 9.0 (January 2021). Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/ (accessed on 29 January 2021).
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drozd, R.; Szymańska, M.; Żywicka, A.; Kowalska, U.; Rakoczy, R.; Kordas, M.; Konopacki, M.; Junka, A.F.; Fijałkowski, K. Exposure to non-continuous rotating magnetic field induces metabolic strain-specific response of Komagataeibacter xylinus. Biochem. Eng. J. 2021, 166, 107855. [Google Scholar] [CrossRef]
Culture Conditions | Staphylococcal Strain | ||||||||
---|---|---|---|---|---|---|---|---|---|
ATTC 33591 | ATTC 6538 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Cefoxitin—β-Lactams—Methicillin Resistance Indicator | |||||||||
Control | 12 | 27 | 6 | 7 | 6 | 7 | 9 | 13 | 6 |
RMF (5 Hz) | 18 a | 27 | 16 a | 21 a | 18 a | 16 a | 15 a | 16 a | 16 a |
RMF (50 Hz) | 15 b | 27 | 14 b | 15 b | 9 b | 11 b | 10 b | 13 b | 13 b |
Amoxicillin—β-lactams | |||||||||
Control | 6 | 15 | 6 | 6 d | 6 | 6 | 6 | 6 | 6 |
RMF (5 Hz) | 8 b | 15 | 8 b | 8 a | 9 b | 9 a | 9 b | 8 a | 8 a |
RMF (50 Hz) | 9 a | 15 | 10 a | 8 a | 10 a | 9 a | 10 a | 8 a | 8 a |
Amoxicillin + Clavulanic Acid—β-lactams + inhibitor of β-lactamases | |||||||||
Control | 10 | 32 | 11 | 6 d | 11 | 13 | 13 | 15 | 9 |
RMF (5 Hz) | 15 b | 32 | 17 b | 13 b | 19 a | 19 b | 20 a | 18 b | 17 a |
RMF (50 Hz) | 16 a | 32 | 19 a | 17 a | 19 a | 20 a | 20 a | 19 a | 14 b |
Erythromycin—macrolides | |||||||||
Control | 25 | 27 | 6 c | 6 c | 6 c | 6 c | 6 c | 6 c | 10 c |
RMF (5 Hz) | 25 | 29 a | 6 c | 6 c | 6 c | 6 c | 6 | 6 c | 12 ac |
RMF (50 Hz) | 25 | 27 | 6 c | 6 c | 6 | 6 c | 6 c | 6 c | 10 c |
Clindamycin—lincosamides | |||||||||
Control | 27 | 25 | 6 c | 6 c | 6 c | 6 c | 6 c | 27 | 6 c |
RMF (5 Hz) | 27 | 27 a | 6 c | 6 c | 6 c | 6 c | 6 c | 27 | 6 c |
RMF (50 Hz) | 27 | 27 a | 6 c | 6 c | 6 c | 6 c | 6 c | 27 | 6 c |
Ciprofloxacin—fluoroquinolones | |||||||||
Control | 26 c | 28 | 6 c | 6 c | 6 c | 6 c | 6 c | 27 c | 6 c |
RMF (5 Hz) | 26 c | 28 | 6 c | 6 c | 6 c | 6 c | 6 c | 27 c | 6 c |
RMF (50 Hz) | 26 c | 28 | 6 c | 6 c | 6 c | 6 c | 6 c | 27 c | 6 c |
Tetracycline—tetracyclines | |||||||||
Control | 30 | 29 | 32 | 30 | 30 | 30 | 31 | 12 c | 15 c |
RMF (5 Hz) | 30 | 29 | 36 a | 30 | 30 | 32 a | 31 | 12 c | 15 c |
RMF (50 Hz) | 30 | 29 | 32 | 30 | 30 | 30 | 31 | 12 c | 15 c |
Gentamicin—aminoglycosides | |||||||||
Control | 25 | 23 | 27 | 23 | 26 | 25 | 26 | 23 | 6 c |
RMF (5 Hz) | 25 | 23 | 27 | 25 a | 28 a | 27 a | 26 | 25 a | 6 c |
RMF (50 Hz) | 25 | 23 | 27 | 23 | 26 | 25 | 26 | 23 | 6 c |
Teicoplanin—glycopeptide | |||||||||
Control | 18 | 20 | 18 | 19 | 19 | 19 | 18 | 16 | 18 |
RMF (5 Hz) | 20 a | 22 a | 21 a | 21 a | 19 | 19 | 18 | 16 | 18 |
RMF (50 Hz) | 20 a | 22 a | 21 a | 21 a | 21 a | 19 | 18 | 16 | 18 |
Culture Conditions | Staphylococcal Strain | ||||||||
---|---|---|---|---|---|---|---|---|---|
ATTC 33591 | ATTC 6538 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Cefoxitin—β-Lactams—Methicillin Resistance Indicator | |||||||||
Control | 24 | 3 | 256 | 256 | 256 | 96 | 96 | 32 | 256 |
RMF (5 Hz) | 16 a | 3 | 24 a | 6 a | 12 a | 16 a | 16 a | 16 a | 64 b |
RMF (50 Hz) | 16 a | 3 | 24 a | 16 b | 12 a | 24 b | 24 b | 24 b | 48 a |
Amoxicillin—β-lactam | |||||||||
Control | 8 | 0.32 | 24 | 24d | 24 | 16 | 16 | 6 | 32 |
RMF (5 Hz) | 6 a | 0.32 | 6 a | 12 a | 4 b | 8 b | 6 b | 2 a | 24 a |
RMF (50 Hz) | 4 a | 0.32 | 6 a | 12 a | 2 a | 6 a | 4 a | 3 b | 24 a |
Amoxicillin + Clavulanic Acid—β-lactams; aminopenicillins + inhibitor of β-lactamases | |||||||||
Control | 2 | 0.23 | 16 | 24 d | 16 | 12 | 12 | 3 | 16 |
RMF (5 Hz) | 1.5 b | 0.23 | 4 a | 8 b | 3 a | 4 a | 4 b | 1 a | 12 a |
RMF (50 Hz) | 0.75 a | 0.23 | 4 a | 4 a | 2 b | 4 a | 3 a | 2 b | 12 a |
Erythromycin—macrolides | |||||||||
Control | 0.5 | 0.25 | 256 c | 256 c | 256 c | 256 c | 256 c | 256 c | 64 |
RMF (5 Hz) | 0.38 a | 0.19 a | 256 c | 256 c | 256 c | 256 c | 256 c | 256 c | 48 a |
RMF (50 Hz) | 0.5 | 0.25 | 256 c | 256 c | 256 c | 256 c | 256 c | 256 c | 64 |
Clindamycin—lincosamides | |||||||||
Control | 0.125 | 0.94 | 256 c | 256 c | 256 c | 256 c | 256 c | 0.125 | 0.125 |
RMF (5 Hz) | 0.94 | 0.64 a | 256 c | 256 c | 256 c | 256 c | 256 c | 0.125 | 0.125 |
RMF (50 Hz) | 0.94 | 0.64 a | 256 c | 256 c | 256 c | 256 c | 256 c | 0.094 a | 0.125 |
Ciprofloxacin—fluoroquinolones | |||||||||
Control | 0.19 | 0.19 | 32 c | 32 c | 32 c | 4 c | 32 c | 0.125 | 32 c |
RMF (5 Hz) | 0.19 | 0.19 | 32 c | 32 c | 32 c | 4 c | 32 c | 0.094 a | 32 c |
RMF (50 Hz) | 0.19 | 0.19 | 32 c | 32 c | 32 c | 4 c | 32 c | 0.125 | 32 c |
Tetracycline—tetracyclines | |||||||||
Control | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.047 | 48 | 16 |
RMF (5 Hz) | 0.125 | 0.125 | 0.094 a | 0.125 | 0.125 | 0.094 a | 0.047 | 48 | 16 |
RMF (50 Hz) | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.023 a | 48 | 16 |
Gentamicin—aminoglycosides | |||||||||
Control | 0.25 | 0.19 | 0.125 | 0.38 | 0.19 | 0.19 | 0.19 | 0.125 | 256 c |
RMF (5 Hz) | 0.19 a | 0.19 | 0.094 a | 0.25 a | 0.125 a | 0.125 a | 0.19 | 0.094 a | 256 c |
RMF (50 Hz) | 0.19 a | 0.19 | 0.094 a | 0.25 a | 0.19 | 0.19 | 0.19 | 0.125 | 256 c |
Teicoplanin—glycopeptide | |||||||||
Control | 0.75 | 0.38 | 0.75 | 0.5 | 0.75 | 0.75 | 0.5 | 1.0 | 0.75 |
RMF (5 Hz) | 0.38 a | 0.25 a | 0.5 a | 0.38 a | 0.5 a | 0.5 a | 0.5 | 1.0 | 0.75 |
RMF (50 Hz) | 0.38 a | 0.25 a | 0.5 a | 0.38 a | 0.5 a | 0.75 | 0.38 a | 1.0 | 0.75 |
Antibiotic | Mode of Action | Resistance Mechanism |
---|---|---|
Β-lactams, Glycopeptides | Interference with cell wall synthesis | Reduced permeability Reduced affinity for antibiotic target Antibiotic hydrolysis |
Macrolides Lincosamides | Inhibition of protein synthesis (binding to 50S ribosomal subunit) | Reduced affinity for antibiotic target Antibiotic hydrolysis Reduced uptake into cells |
Aminoglycosides, Tetracyclines | Inhibition of protein synthesis (binding to 30S ribosomal subunit) | Inactivation of antibiotic by enzymatic modification Altered cell permeability Active efflux from cells |
Fluoroquinolones | Inhibition of DNA synthesis | Alternation in antibiotic target Decreased cell permeability |
Antibiotic | Character |
---|---|
Cefoxitin | anionic |
Teicoplanin | |
Erythromycin | cationic |
Clindamycin | |
Gentamicin | |
Amoxicillin | zwitterionic |
Tetracycline | |
Ciprofloxacin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woroszyło, M.; Ciecholewska-Juśko, D.; Junka, A.; Wardach, M.; Chodaczek, G.; Dudek, B.; Fijałkowski, K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. Int. J. Mol. Sci. 2021, 22, 11551. https://doi.org/10.3390/ijms222111551
Woroszyło M, Ciecholewska-Juśko D, Junka A, Wardach M, Chodaczek G, Dudek B, Fijałkowski K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. International Journal of Molecular Sciences. 2021; 22(21):11551. https://doi.org/10.3390/ijms222111551
Chicago/Turabian StyleWoroszyło, Marta, Daria Ciecholewska-Juśko, Adam Junka, Marcin Wardach, Grzegorz Chodaczek, Bartłomiej Dudek, and Karol Fijałkowski. 2021. "The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics" International Journal of Molecular Sciences 22, no. 21: 11551. https://doi.org/10.3390/ijms222111551
APA StyleWoroszyło, M., Ciecholewska-Juśko, D., Junka, A., Wardach, M., Chodaczek, G., Dudek, B., & Fijałkowski, K. (2021). The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. International Journal of Molecular Sciences, 22(21), 11551. https://doi.org/10.3390/ijms222111551