Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells
Abstract
:1. Introduction
2. Cell Therapy Strategies for CRC Treatment
CAR-T Cell Therapy
3. Molecular Targets of CAR-T Cells against CRC
4. Preclinical Studies on CAR-T Cells Directed against CRC
Target | Gen. | Co-st. | Vector | Cell Line | Ratio (Effector: Target) | Results | Ref. |
---|---|---|---|---|---|---|---|
CD133 | 2nd | 4-1BB | LV | SW620 | 1:1; 5:1 | Significant elimination of target cells (% C (5:1): ~40%). | [84,85] |
CEA | 2nd | 4-1BB | LV | HT29 | 4:1; 2:1; 1:1; 1:2; 1:4 | % C (2:1): ~75%, that significantly increases with rhIL-12 (% C (2:1): ~90%) and releases a higher concentration of IL-2 and IFN-γ. | [73] |
2nd | CD28 | RV | LS174T | 1:2:0.02 (MSC) | % C: ~60%, significantly increased in combination with IL7/IL12 expressing MSCs (% C: ~80%). | [79] | |
CEA CD30/CEA CD25/CEA | 2nd | CD28 | RV | LS174T | 3:1; 2:1; 1:2; 1:5 | CD30/CEA-CAR-T cells induce higher cytotoxicity (% C (1:2): ~70%) than CEA-CAR-T and CD30-CAR-T. CD25/CEA-CAR-T has similar cytotoxic effects to CEA-CAR-T (% C (1:5): ~15%). Only CD30/CEA CAR-T enhanced the release of perforin and especially granzyme B. | [77] |
EGFRvIII | 3rd | CD28 4-1BB | LV | DLD-1, HCT116 | 30:1; 10:1; 3:1; 1:1 | % C (10:1): ~80% DLD-1 and 65% HCT116, and increase in caspase 3/7 proteins release. Combination with miR-153 (that inhibits IDO1 expression) enhances CAR-T antitumor activity. | [54] |
EpCAM | 3rd | CD28 4-1BB | LV | SW480, HT29 | 2.5:1; 5:1; 10:1 | % C (10:1): ~50% SW480 and HT29. ↑ Release of IFN-γ and TNF-α. | [74] |
2nd | 4-1BB | LV | SW620, SW480, HCT116, HT29, LoVo, | 0.5:1, 1:1, 2:1, 4:1, 8:1;16:1 | % C (16:1): ~60% SW620, 55% SW480, 50% HCT116, 40% LoVo and HT29. ↑ Release of IFN-γ, IL-2 and IL-6. | [86] | |
3rd | CD28 4-1BB | mRNA | HRT-18G | 1:1; 2.5:1; 5:1; 10:1; 20:1 | % C (10:1): ~45%. ↑ Release of IFN-γ and granzyme B. | [72] | |
GUCY2C | 3rd | CD28 4-1BB | RV | T84 | 5:1; 10:1 | % C (10:1): ~65%. ↑ Release of IFN- γ, TNF-α and IL-2. | [48] |
HER2 | 2nd | 4-1BB | LV | HCT116 | 0.3:1; 3:1; 9:1; 27:1 | % C (1:9): ~50%. ↑ Release of IFN-γ, TNF-α, IL-2 and granzyme B. | [78] |
MSLN | 3rd | CD28 4-1BB | LV | HCT116 | 2.5:1 | Complete elimination of MSLN+ tumour cells (~0 of normalised cell index). ↑ Release of IFN-γ and TNF-α. | [82] |
NKG2DL | 3rd | CD28 4-1BB | Minic. DNA | HCT116, LS174T | 5:1; 10:1; 20:1 | CAR-T cells significantly reduce the target cells (% C (10:1): ~30% HCT116 and 25% LS174) and also produce significant amounts of IFN-γ and IL-2. | [75] |
PLAP | 2nd | CD28 | LV | LoVo, Caco-2, LS123 | 10:1 | High cytotoxic effect and ↑ release of IFN-γ. Combination with α-PD-1, α-PD-L1 or α-LAG3 significantly increased C (% C: LoVo cells (CAR-T: ~65%; CAR-T + α-PD-1: 70%; CAR-T + α-LAG3: 80%); LS123 cells (CAR-T: ~65%; CAR-T + α-PD-1: 75%; CAR-T + α-PD-L1: 80%) and IFN-γ release. | [64] |
TAG-72 CD30/TAG-72 | 2nd | CD28 | RV | LS-C | 1:5; 1:3; 1:2.5; 1:1.2 | CD30/TAG-72-CAR-T cells show significantly higher C (% C (1:1.2): ~70%) in comparison with TAG-72-CAR-T cells | [77] |
Target | Gen. | Co-st. | Mouse Model | CAR-T Cell Treatment | Efficacy | Safety | Ref. |
---|---|---|---|---|---|---|---|
CEA | 2nd | 4-1BB | HT29-RFP xenografts (female BALB/c nude mice) | 5 × 106 and 1 × 107 cells (IV/2ds) +/− rhIL-12 | Tumour reduction (day 21) and elimination (day 28) when combined with rhIL-12. ↑ Serum IL-2, IFN-γ and TNF-α. | No obvious body weight loss. | [73] |
2nd | CD28 | LS174T xenografts (NSG mice) | 2 × 106 cells with 4 × 105 IL7/IL12-expressing MSCs (SC/1d) | Improved tumour suppression and prolonged survival after combined treatment with CAR-T cells and IL7/IL12-expressing MSCs, co-inoculated with the tumour cells. | NR | [79] | |
2nd | CD28 | LS174 xenografts (Rag2−/−cɣ−/− mice) | 5 × 106 cells (SC/1d) | Significant inhibition of tumour formation after CAR-T cell treatment co-inoculated with the target tumour cells. | NR | [77] | |
EGFRvIII | 3rd | CD28 4-1BB | DLD-1 or miR-153-overexpressing DLD-1 xenografts (NSG mice) | 2 × 106 cells (IV/1d) | CAR-T cells eradicated the tumour in 3/5 DLD-1 xenografts and in 5/5 miR-153-overexpressing DLD-1 xenografts. | Little weight change. | [54] |
EpCAM | 3rd | CD28 4-1BB | HT29 or SW480 xenografts (female NOD/SCID BALB/c mice) | 2 × 107 cells (SC/1d) | Delay in tumour formation after CAR-T cell treatment co-inoculated with the target tumour cells. | No GvHD and no toxic changes in main organs. | [74] |
3rd | CD28 4-1BB | HRT-18G xenografts (NSG mice) | 1 × 107 cells (IP/8ds) | Transient (mRNA) CAR-T cells significantly increase survival of late-stage CRC mouse models. | NR | [72] | |
GUCY2C | 3rd | CD284-1BB | CT26.hGUCY2C syngeneic mouse model (BALB/c mice) and T84. FLuc xenografts (NSG mice) | 1 × 107 murine CD8+ CAR-T cells (IP/1d) | Murine CAR-T cells induced tumour reduction in both mouse models. | No intestinal toxicity due to cross-reactions. | [48] |
HER2 | 2nd | 4-1BB | PDX model (SCID-NPG mice) | 2 × 106 cells (IV/1d) | Complete tumour eradication after 2 months and elimination of tumour re-inoculation. ↑Persistence (16% of CD3+ cells are CAR-T cells at day 28). | NR | [78] |
MSLN | 3rd | CD28 4-1BB | HCT116 xenografts (NCG mice) and PDX model (PDX-col0092 mice) | 2.5 × 106 cells (IV/1d) | Xenograft model: tumour reduction and durable response (until the endpoint); persistence (7.5% of CD3+ cells are CAR-T cells at day 10). PDX model: reduction in large (1000 mm3) and small (50 mm3) tumours; MSLN-CAR detected in serum at endpoint. | No significant body weight changes. GvHD: significant hair loss after 120 days in 1/5 PDX mice. | [82] |
NKG2DL | 3rd | CD28 4-1BB | HCT116-Luc xenografts (male NOD/SCID mice) | 1 × 107 CD8+ CAR-T cells (IV/2ds) | Tumour growth suppression and persistence (NKG2D-CAR detected in the tumour sections after 25 days). | Gradual loss of body weight. No toxicity in healthy tissues. | [75] |
1st | - | HCT116-Luc xenografts (NGS mice) | 1x107 CAR-γδ T cells (IP/6ds) | Transient (mRNA) CAR-γδ T cells delayed tumour growth, but tumours regrowth after treatment. | NR | [87] | |
PLAP | 2nd | CD28 | LoVo xenografts (male NSG mice) | 1 × 107 cells (IV/3ds) | Decrease in tumour growth and persistence (CAR-T cells detected in blood after 16 days). | No decrease body weight and no changes in serum AST, ALT and amylase. | [64] |
5. Clinical Trials of CAR-T Cells for CRC Patients
Target | Gen. | Co-st. | Use | CRC Subtype | ID | Ph. | n | CAR-T Cell Treatment | Results | Adverse Events | Status | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CD133 | 1st | - | Au. | CRC | NCT02541370 | I/II | 20 | 0.5–2 × 106 cells/kg (2 ds) | NA for CRC patients (only reported for HCC patients). | NA for CRC patients (only reported for HCC patients). | C | [98] |
CEA | 2nd | CD28 | Au. | CEA+ Liver met. | NCT02416466 | I | 8 | 1 × 1010 cells/d (3 ds) with IL-2 followed by SIRT | (n = 6) 67% PD and 33% SD in the liver, and 17% ND and 83% PD in the extrahepatic. | G 3 (n = 6): 33% colitis, 33% fever and 38% reduction in K+. No CRS or neurotoxicity. | C | [90] |
2nd | CD28 | Au. | CRC | NCT02349724 | I | 75 | 5 DL: 105–108 CAR+ cells/kg (split d: 10%, 30% and 60% per day) | (n = 10) 70% SD, 20% PD and 10% NE. | G 2 (n = 10): 20% fever (CAR-T related). G 3/4: lymphodepletion related. Minor CRS after high doses of CAR-T cells. | unk | [44] | |
2nd | CD28 | Au. | CEA+ Liver met. | NCT02850536 | I | 5 | 1 × 1010 cells/d (3 ds) with IL-2 | (n = 1) Complete metabolic response within the liver over 13 months. | G 3 (n = 1): dehydration, fever, hyperglycaemia, hypertension, hypokalaemia, hyponatraemia, and hypophosphataemia. No on-target/off-tumour SAEs. | ANR | [91] | |
NA | NA | Au. | mCRC | NCT02959151 | I/II | 20 | 1.25–4 × 107 CAR+ T cells/cm3 tumour bulk (1 d) | NA | NA | unk | NA | |
NA | NA | Au. | CRC | NCT03682744 | I | 18 | NA | NA | NA | ANR | NA | |
NA | NA | Au. | CRC | NCT04348643 | I/II | 40 | NA | NA | NA | R | NA | |
NA | NA | Au. | Stage III Liver met. | NCT04513431 | eI | 18 | NA | NA | NA | NyR | NA | |
C-Met | NA | NA | Au. | CRC | NCT03638206 | I/II | 73 | NA | NA | NA | R | NA |
EGFR | 3rd | CD28 4-1BB | Au. | EGFR+ mCRC | NCT03152435 | I/II | 20 | NA | NA | NA | unk | NA |
4th | CD28 4-1BB | Au. | mCRC | NCT03542799 | I | 20 | NA | NA | NA | unk | NA | |
EpCAM | 2nd | CD28 | Au. | Colon Cancer | NCT03013712 | I/II | 60 | 1–10 × 106 CAR+ T cells/kg (1 d) | NA | NA | unk | NA |
HER2 | NA | NA | Au. | CRC | NCT02713984 | I/II | 0 | NA | Reformed CAR structure due to safety considerations. | NA | W | NA |
NA | NA | Au. | CRC | NCT03740256 | I | 45 | 7 DL: 1–100 × 106 cells (1 d) and oncolytic adenovirus CadVEC | NA | NA | R | NA | |
MSLN | 4th | NA | Au. | CRC | NCT04503980 | eI | 10 | 4 DL: 1 × 105–3 × 106 cells/kg (1 d) | NA | NA | R | NA |
MUC1 | NA | NA | Au. | CRC | NCT02617134 | I/II | 20 | NA | NA | NA | unk | NA |
NKG2DL | NKR-2 | End. DAP10 | Au. | Liver met. | NCT03310008 | I | 36 | 3 DL: 108–109 cells/d (3 ds) and FOLFOX | NA | NA | ANR | [99] |
NKR-2 | End. DAP10 | Au. | Liver met. | NCT03370198 | I | 1 | 3 DL: 3 × 108–3 × 109 cells/d (3 ds) | NA | NA | ANR | [100] | |
1st | - | All. | Unresec. mCRC | NCT03692429 | I | 49 | 3 DL: 1 × 108–1 × 109 cells/d (3 ds) and FOLFOX | Refractory unresec. mCRC (n = 15): 13% PR, 60% SD and 27% PD. | No treatment-related G ≥ 3 adverse events or GvHD. | R | [97] | |
NKR-2 | End. DAP10 | Au. | CRC | NCT03018405 | I | 146 | 3 DL: 1–3 × 109 cells/d (3 ds) | NA | No dose-limiting toxicity. | unk | [94] | |
NA | - | All. | CRC | NCT04107142 | I | 10 | 3 DL: 3 × 108–3 × 109 CAR-γδ T cells/d (4 ds) | NA | NA | unk | NA | |
2nd | 4-1BB | Au. | Colon Cancer | NCT04270461 | I | 0 | 1–10 × 106 cells/kg | Study withdrawn because of administrative reasons. | NA | W | NA | |
2nd | 4-1BB | Au. | CRC | NCT04550663 | I | 10 | NA | NA | NA | NyR | [101] | |
PSMA | 2nd | CD28 | Au. | CRC | NCT04633148 | I | 35 | UniCAR02-T cells with recombinant antibody derivative TMpPSMA | NA | NA | R | [102] |
6. Current Limitations and Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- de León, J.; Pareja, A. Inmunología del cáncer I: Bases moleculares y celulares de la respuesta inmune antitumoral. Horiz. Médico 2018, 18, 80–89. [Google Scholar] [CrossRef]
- Styczyński, J. A brief history of CAR-T cells: From laboratory to the bedside. Acta Haematol. Pol. 2020, 51, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- El Bali, M.; Bakkach, J.; Bennani Mechita, M. Colorectal cancer: From genetic landscape to targeted therapy. J. Oncol. 2021, 2021, 9918116. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 2009, 361, 2449–2460. [Google Scholar] [CrossRef] [Green Version]
- Gómez-España, M.A.; Gallego, J.; González-Flores, E.; Maurel, J.; Páez, D.; Sastre, J.; Aparicio, J.; Benavides, M.; Feliu, J.; Vera, R. SEOM clinical guidelines for diagnosis and treatment of metastatic colorectal cancer (2018). Clin. Transl. Oncol. 2019, 21, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashanth, R.; Tagore, S.; Adam, B. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Meyerhardt, J.A.; Mayer, R.J. Drug Therapy: Systemic therapy for colorectal cancer. Arch. Oncol. 2005, 352, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Wolpin, B.M.; Mayer, R.J. Systemic treatment of colorectal cancer. Gastroenterology 2008, 134, 1296–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, S.; Delbue, S.; Signorini, L.; Setola, E.; Bagliani, A.; Della Valle, A.; Galli, A.; Ferrante, P.; Bregni, M. Generation of tumor-specific cytotoxic T-lymphocytes from the peripheral blood of colorectal cancer patients for adoptive T-cell transfer. J. Cell. Physiol. 2015, 230, 1457–1465. [Google Scholar] [CrossRef]
- Ishikawa, T.; Okayama, T.; Sakamoto, N.; Ideno, M.; Oka, K.; Enoki, T.; Mineno, J.; Yoshida, N.; Katada, K.; Kamada, K.; et al. Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int. J. Cancer 2018, 142, 2599–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, X.; Zou, Z.; He, C.; Hu, Z.; Liang, K.; Liang, W.; Wang, Y.; Du, X. Enhanced antitumor effect of cytotoxic T lymphocytes induced by dendritic cells pulsed with colorectal cancer cell lysate expressing α-gal epitopes. Oncol. Lett. 2019, 18, 864–871. [Google Scholar] [CrossRef]
- Pan, K.; Wang, Q.J.; Liu, Q.; Zheng, H.X.; Li, Y.Q.; Weng, D.S.; Li, J.J.; Huang, L.X.; He, J.; Chen, S.P.; et al. The phenotype of ex vivo generated cytokine-induced killer cells is associated with overall survival in patients with cancer. Tumor Biol. 2014, 35, 701–707. [Google Scholar] [CrossRef]
- Pan, Q.Z.; Zhao, J.J.; Yang, C.P.; Zhou, Y.Q.; Lin, J.Z.; Tang, Y.; Gu, J.M.; Wang, Q.J.; Li, Y.Q.; He, J.; et al. Efficacy of adjuvant cytokine-induced killer cell immunotherapy in patients with colorectal cancer after radical resection. Oncoimmunology 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhu, L.; Zhang, Q.; He, X.; Yin, Y.; Gu, Y.; Guo, R.; Lu, K.; Liu, L.; Liu, P.; et al. Effects of cytokine-induced killer cell treatment in colorectal cancer patients: A retrospective study. Biomed. Pharmacother. 2014, 68, 715–720. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Yu, J.; Wei, F.; Cao, S.; Zhang, X.; Dong, N.; Li, H.; Ren, X. Autologous Cytokine-Induced Killer Cells improves overall survival of metastatic colorectal cancer patients: Results from a phase II clinical trial. Clin. Colorectal Cancer 2016, 15, 228–235. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, L.; Chen, L.; Lin, X.; Chen, L.; Zheng, Q. Effect of dendritic cell-cytokine-induced killer cells in patients with advanced colorectal cancer combined with first-line treatment. World J. Surg. Oncol. 2017, 15, 4–9. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Li, J.; Ren, Y.; Zhang, T.; Zhang, C.; Zhang, J.; Li, J.; Pang, Y. Immune response, safety, and survival and quality of life outcomes for advanced colorectal cancer patients treated with dendritic cell vaccine and cytokine-induced killer cell therapy. Biomed Res. Int. 2014, 2014, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Li, C.; Xie, X.; Zhao, P.; Wei, X.; Sun, W.; Liu, H.C.; Alexandrou, A.T.; Jones, J.; Zhao, R.; et al. Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in gastric and colorectal cancer patients. PLoS ONE 2014, 9, 1–9. [Google Scholar] [CrossRef]
- Ishii, S.; Hiroishi, K.; Eguchi, J.; Hiraide, A.; Imawari, M. Dendritic cell therapy with interferon-α synergistically suppresses outgrowth of established tumors in a murine colorectal cancer model. Gene Ther. 2006, 13, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Veluchamy, J.P.; Spanholtz, J.; Tordoir, M.; Thijssen, V.L.; Heideman, D.A.M.; Verheul, H.M.W.; De Gruijl, T.D.; Van Der Vliet, H.J. Combination of NK cells and cetuximab to enhance anti-tumor responses in RAS mutant metastatic colorectal cancer. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Chen, R.; Yin, M.; Zheng, Q. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model. Oncol. Lett. 2016, 12, 1868–1876. [Google Scholar] [CrossRef] [Green Version]
- Veluchamy, J.P.; Lopez-Lastra, S.; Spanholtz, J.; Bohme, F.; Kok, N.; Heideman, D.A.M.; Verheul, H.M.W.; Di Santo, J.P.; de Gruijl, T.D.; van der Vliet, H.J. In Vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of metastatic colorectal cancer. Front. Immunol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, W.; Wang, C.; Yan, X.; Wang, Y.; Niu, C.; Zhang, X.; Li, M.; Tian, H.; Yao, C.; et al. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy 2018, 20, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Naito, M.; Yamada, T.; Aisu, N.; Daibo, K.; Mera, T.; Tanaka, T.; Naito, K.; Yasumoto, K.; Kamigaki, T.; et al. Adoptive chemoimmunotherapy using activated αβ T cells for stage IV colorectal cancer. Anticancer Res. 2016, 36, 3741–3746. [Google Scholar] [PubMed]
- Parkhust, M.R.; Joo, J.; Riley, J.P.; Yu, Z.; Li, Y.; Robbins, P.F.; Rosenberg, S.A. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin. Cancer Res. 2009, 15, 169–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T cells. Biomark. Res. 2017, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Breman, E.; Demoulin, B.; Agaugué, S.; Mauën, S.; Michaux, A.; Springuel, L.; Houssa, J.; Huberty, F.; Jacques-Hespel, C.; Marchand, C.; et al. Overcoming target driven fratricide for T cell therapy. Front. Immunol. 2018, 9, 2940. [Google Scholar] [CrossRef] [PubMed]
- Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581. [Google Scholar] [CrossRef]
- Guedan, S.; Calderon, H.; Posey, A.D.; Maus, M.V. Engineering and design of chimeric antigen receptors. Mol. Ther.-Methods Clin. Dev. 2019, 12, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Abken, H. TRUCKs: The fourth generation of CARs. Expert Opin. Biol. Ther. 2015, 15, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- D’Aloia, M.M.; Zizzari, I.G.; Sacchetti, B.; Pierelli, L.; Alimandi, M. CAR-T cells: The long and winding road to solid tumors. Cell Death Dis. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov (term search: CAR-T). Available online: https://clinicaltrials.gov/ct2/results?term=car-t (accessed on 21 September 2021).
- Trapani, J.A.; Darcy, P.K. Immunotherapy of cancer. Aust. Fam. Physician 2017, 46, 194–199. [Google Scholar]
- Wagner, S.; Mullins, C.S.; Linnebacher, M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J. Gastroenterol. 2018, 24, 5418–5432. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Zhao, Z.; Yang, M.; Ji, J.; Zhu, D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett. 2021, 498, 201–209. [Google Scholar] [CrossRef]
- Bakarurraini, N.A.A.R.; Mutalib, N.S.A.; Jamal, R.; Abu, N. The landscape of tumor-specific antigens in colorectal cancer. Vaccines 2020, 8, 371. [Google Scholar] [CrossRef]
- Han, Z.W.; Lyv, Z.W.; Cui, B.; Wang, Y.Y.; Cheng, J.T.; Zhang, Y.; Cai, W.Q.; Zhou, Y.; Ma, Z.W.; Wang, X.W.; et al. The old CEACAMs find their new role in tumor immunotherapy. Invest. New Drugs 2020, 38, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Z.; Yang, Z.; Wang, M.; Li, S.; Li, Y.; Zhang, R.; Xiong, Z.; Wei, Z.; Shen, J.; et al. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA+ Metastatic Colorectal Cancers. Mol. Ther. 2017, 25, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Jelski, W.; Mroczko, B. Biochemical markers of colorectal cancer–present and future. Cancer Manag. Res. 2020, 12, 4789–4797. [Google Scholar] [CrossRef] [PubMed]
- Lisby, A.N.; Flickinger, J.C.; Bashir, B.; Weindorfer, M.; Shelukar, S.; Crutcher, M.; Snook, A.E.; Waldman, S.A. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. Expert Rev. Precis. Med. Drug Dev. 2021, 6, 117–129. [Google Scholar] [CrossRef]
- Magee, M.S.; Kraft, C.L.; Abraham, T.S.; Baybutt, T.R.; Marszalowicz, G.P.; Li, P.; Waldman, S.A.; Snook, A.E. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology 2016, 5, e1227897. [Google Scholar] [CrossRef]
- Magee, M.S.; Abraham, T.S.; Baybutt, T.R.; Jr, J.C.F.; Ridge, A.; Marszalowicz, G.P.; Prajapati, P.; Hersperger, A.R.; Scott, A.; Snook, A.E. Human GUCY2C-targeted chimeric antigen receptor (CAR)-expresssing T cells eliminate colorectal cancer metastases. Cancer Immunol. Res. 2019, 6, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Zingoni, A.; Molfetta, R.; Fionda, C.; Soriani, A.; Paolini, R.; Cippitelli, M.; Cerboni, C.; Santoni, A. NKG2D and its ligands: “One for all, all for one”. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Lanier, L.L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 2015, 3, 575. [Google Scholar] [CrossRef] [Green Version]
- Dhar, P.; Wu, J.D. NKG2D and its ligands in cancer. Curr. Opin. Immunol. 2018, 51, 55–61. [Google Scholar] [CrossRef]
- Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem. 2020, 20, 815–834. [Google Scholar] [CrossRef]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Xi, J.; Wang, L.; Wang, X.; Ma, X.; Deng, Q.; Lu, Y.; Kumar, M.; Zhou, Z.; Li, L.; et al. MiR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J. Hematol. Oncol. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Siena, S.; Sartore-Bianchi, A.; Marsoni, S.; Hurwitz, H.I.; McCall, S.J.; Penault-Llorca, F.; Srock, S.; Bardelli, A.; Trusolino, L. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann. Oncol. 2018, 29, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Styczen, H.; Nagelmeier, I.; Beissbarth, T.; Nietert, M.; Homayounfar, K.; Sprenger, T.; Boczek, U.; Stanek, K.; Kitz, J.; Wolff, H.A.; et al. HER-2 and HER-3 expression in liver metastases of patients with colorectal cancer. Oncotarget 2015, 6, 15065–15076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, K.H.; Tso, H.C.; Hung, S.H.; Kuan, I.I.; Lai, J.K.; Ke, F.Y.; Chuang, Y.T.; Liu, I.J.; Wang, Y.P.; Chen, R.H.; et al. Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett. 2018, 433, 165–175. [Google Scholar] [CrossRef]
- Eyvazi, S.; Farajnia, S.; Dastmalchi, S.; Kanipour, F.; Zarredar, H.; Bandehpour, M. Antibody Based EpCAM Targeted Therapy of Cancer, Review and Update. Curr. Cancer Drug Targets 2018, 18, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Gires, O.; Pan, M.; Schinke, H.; Canis, M.; Baeuerle, P.A. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev. 2020, 39, 969–987. [Google Scholar] [CrossRef]
- Cho, J.; Kim, K.M.; Kim, H.C.; Lee, W.Y.; Kang, W.K.; Park, Y.S.; Ha, S.Y. The prognostic role of tumor associated glycoprotein 72 (TAG-72) in stage II and III colorectal adenocarcinoma. Pathol. Res. Pract. 2019, 215, 171–176. [Google Scholar] [CrossRef]
- Klampatsa, A.; Dimou, V.; Albelda, S.M. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin. Biol. Ther. 2021, 21, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Tsunoda, T.; Riku, M.; Ito, H.; Inoko, A.; Murakami, H.; Ebi, M.; Ogasawara, N.; Pastan, I.; Kasugai, K.; et al. Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol. Lett. 2020, 19, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Nabavinia, M.S.; Gholoobi, A.; Charbgoo, F.; Nabavinia, M.; Ramezani, M.; Abnous, K. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev. 2017, 37, 1518–1539. [Google Scholar] [CrossRef]
- Li, X.; Berahovich, R.; Zhou, H.; Liu, X.; Li, F.; Xu, S.; Wei, Y.; Ouaret, D.; Bodmer, W.; Wu, L.; et al. PLAP -CAR T cells mediate high specific cytotoxicity against colon cancer cells. J. Chem. Inf. Model. 2020, 25, 1765–1786. [Google Scholar]
- Reiswich, V.; Gorbokon, N.; Luebke, A.M.; Burandt, E.; Menz, A.; Kluth, M.; Hube-Magg, C.; Wittmer, C.; Weidemann, S.; Fraune, C.; et al. Pattern of placental alkaline phosphatase (PLAP) expression in human tumors: A tissue microarray study on 12,381 tumors. J. Pathol. Clin. Res. 2021. [Google Scholar] [CrossRef]
- Akbari, M.; Shomali, N.; Faraji, A.; Shanehbandi, D.; Asadi, M.; Mokhtarzadeh, A.; Shabani, A.; Baradaran, B. CD133: An emerging prognostic factor and therapeutic target in colorectal cancer. Cell Biol. Int. 2020, 44, 368–380. [Google Scholar] [CrossRef]
- Abbasian, M.; Mousavi, E.; Arab-Bafrani, Z.; Sahebkar, A. The most reliable surface marker for the identification of colorectal cancer stem-like cells: A systematic review and meta-analysis. J. Cell. Physiol. 2019, 234, 8192–8202. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, J.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Park, Y.S.; Kim, S.T. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival. Clin. Colorectal Cancer 2018, 17, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, K.; Afshar-Oromieh, A.; Jadvar, H.; Ahmadzadehfar, H. PSMA Theranostics: Current Status and Future Directions. Mol. Imaging 2018, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cuda, T.J.; Riddell, A.D.; Liu, C.; Whitehall, V.L.; Borowsky, J.; Wyld, D.K.; Burge, M.E.; Ahern, E.; Griffin, A.; Lyons, N.J.R.; et al. PET imaging quantifying 68Ga-PSMA-11 uptake in metastatic colorectal cancer. J. Nucl. Med. 2020, 61, 1576–1579. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.X.; Li, Z.; Chi, Z.; Du, S.H.; Chen, C.; Tay, J.C.K.; Toh, H.C.; Connolly, J.E.; Xu, X.H.; Wang, S. Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget 2017, 8, 13545–13559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Yang, P.; Zhang, E.; Gu, J.; Xu, H.; Li, M.; Gao, X.; Li, X.; Zhang, Y.; Xu, H.; et al. Significantly increased anti-tumor activity of carcinoembryonic antigen-specific chimeric antigen receptor T cells in combination with recombinant human IL-12. Cancer Med. 2019, 8, 4753–4765. [Google Scholar] [CrossRef]
- Zhang, B.L.; Li, D.; Gong, Y.L.; Huang, Y.; Qin, D.Y.; Jiang, L.; Liang, X.; Yang, X.; Gou, H.F.; Wang, Y.S.; et al. Preclinical Evaluation of Chimeric Antigen Receptor-Modified T Cells Specific to Epithelial Cell Adhesion Molecule for Treating Colorectal Cancer. Hum. Gene Ther. 2019, 30, 402–412. [Google Scholar] [CrossRef]
- Deng, X.; Gao, F.; Li, N.; Li, Q.; Zhou, Y.; Yang, T.; Cai, Z.; Du, P.; Chen, F.; Cai, J. Antitumor activity of NKG2D CAR-T cell against human colorectal cancer cells in vitro and in vivo. Am. J. Cancer Res. 2019, 9, 945–958. [Google Scholar]
- Ramos, C.A.; Rouce, R.; Robertson, C.S.; Reyna, A.; Narala, N.; Vyas, G.; Mehta, B.; Zhang, H.; Dakhova, O.; Carrum, G.; et al. In Vivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin’s Lymphomas. Mol. Ther. 2018, 26, 2727–2737. [Google Scholar] [CrossRef] [Green Version]
- Hombach, A.A.; Rappl, G.; Abken, H. Blocking CD30 on T Cells by a Dual Specific CAR for CD30 and Colon Cancer Antigens Improves the CAR T Cell Response against CD30− Tumors. Mol. Ther. 2019, 27, 1825–1835. [Google Scholar] [CrossRef]
- Teng, R.; Zhao, J.; Zhao, Y.; Gao, J.; Li, H.; Zhou, S.; Wang, Y.; Sun, Q.; Lin, Z.; Yang, W.; et al. Chimeric antigen receptor-modified T cells repressed solid tumors and their relapse in an established patient-derived colon carcinoma xenograft model. J. Immunother. 2019, 42, 33–42. [Google Scholar] [CrossRef]
- Hombach, A.A.; Geumann, U.; Günther, C.; Hermann, F.G.; Abken, H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 2020, 9, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sureban, S.M.; Berahovich, R.; Zhou, H.; Xu, S.; Wu, L.; Ding, K.; May, R.; Qu, D.; Bannerman-menson, E.; Golubovskaya, V.; et al. DCLK1 Monoclonal Antibody-Based CAR-T Cells Asa Novel Treatment Strategy against Human Colorectal Cancers. Cancers 2020, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Katz, S.; Point, G.R.; Cunetta, M.; Thorn, M.; Guha, P.; Espat, N.J.; Boutros, C.; Hanna, N.; Junghans, R.P. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 2016, 23, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, G.; Liu, J.; Yang, M.; Fu, J.; Liu, G.; Li, D.; Gu, Z.; Zhang, L.; Pan, Y.; et al. The antitumor capacity of mesothelin-CAR-T cells in targeting solid tumors in mice. Mol. Ther. Oncolytics 2021, 20, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Bürtin, F.; Mullins, C.S.; Linnebacher, M. Mouse models of colorectal cancer: Past, present and future perspectives. World J. Gastroenterol. 2020, 26, 1394–1426. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Wu, Z.; Tong, C.; Dai, H.; Guo, Y.; Liu, Y.; Huang, J.; Lv, H.; Luo, C.; et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology 2018, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.C.; Guo, Y.L.; Liu, Y.; Dai, H.R.; Wang, Y.; Lv, H.Y.; Huang, J.H.; Yang, Q.M.; Han, W.D. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J. Hematol. Oncol. 2017, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wen, P.; Li, M.; Li, Y.; Li, X.A. Construction of chimeric antigen receptor-modified T cells targeting EpCAM and assessment of their anti-tumor effect on cancer cells. Mol. Med. Rep. 2019, 20, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.X.; Ng, Y.Y.; Xiao, L.; Chen, C.; Li, Z.; Chi, Z.; Tay, J.C.-K.; Tan, W.K.; Zeng, J.; Toh, H.C.; et al. Electroporation of NKG2D RNA CAR Improves Vγ9Vδ2 T Cell Responses against Human Solid Tumor Xenografts. Mol. Ther. Oncolytics 2020, 17, 421. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.L.; Morgan, R.A.; Yang, J.C.; Sherry, R.M.; Robbins, P.F.; Restifo, N.P.; Feldman, S.A.; Lu, Y.C.; Lu, L.; Zheng, Z.; et al. Pilot trial of adoptive transfer of chimeric antigen receptor-Transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 2019, 42, 126–135. [Google Scholar] [CrossRef]
- Sampson, J.H.; Choi, B.D.; Sanchez-Perez, L.; Suryadevara, C.M.; Snyder, D.J.; Flores, C.T.; Schmittling, R.J.; Nair, S.K.; Reap, E.A.; Norberg, P.K.; et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin. Cancer Res. 2014, 20, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Katz, S.C.; Hardaway, J.; Prince, E.; Guha, P.; Cunetta, M.; Moody, A.; Wang, L.J.; Armenio, V.; Espat, N.J.; Junghans, R.P. HITM-SIR: Phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA+ liver metastases. Cancer Gene Ther. 2020, 27, 341–355. [Google Scholar] [CrossRef]
- Katz, S.C.; Moody, A.E.; Guha, P.; Hardaway, J.C.; Prince, E.; LaPorte, J.; Stancu, M.; Slansky, J.E.; Jordan, K.R.; Schulick, R.D.; et al. HITM-SURE: Hepatic immunotherapy for metastases phase Ib anti-CEA CAR-T study utilizing pressure enabled drug delivery. J. Immunother. Cancer 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Lichtenstern, C.R.; Ngu, R.K.; Shalapour, S.; Karin, M. Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.A.; Büning, H.; Sauer, M.; Schambach, A. Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells. Front. Immunol. 2020, 11, 1965. [Google Scholar] [CrossRef]
- Sallman, D.A.; Brayer, J.B.; Poire, X.; Kerre, T.; Lewalle, P.; Wang, E.S.; Verma, B.; Breman, E.; Davila, M.; Braun, N.; et al. Abstract CT129: The THINK clinical trial: Preliminary evidence of clinical activity of NKG2D chimeric antigen receptor T cell therapy (CYAD-01) in acute myeloid leukemia. Cancer Res. 2018, 78, CT129. [Google Scholar] [CrossRef]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]
- Yazdanifar, M.; Barbarito, G.; Bertaina, A.; Airoldi, I. γδ T Cells: The Ideal Tool for Cancer Immunotherapy. Cells 2020, 9, 1305. [Google Scholar] [CrossRef]
- Prenen, H.; Dekervel, J.; Hendlisz, A.; Anguille, S.; Awada, A.; Cerf, E.; Lonez, C.; Breman, E.; Dheur, M.-S.; Alcantar-Orozco, E.; et al. Updated data from alloSHRINK phase I first-in-human study evaluating CYAD-101, an innovative non-gene edited allogeneic CAR-T in mCRC. J. Clin. Oncol. 2021, 39, 74. [Google Scholar] [CrossRef]
- Dai, H.; Tong, C.; Shi, D.; Chen, M.; Guo, Y.; Chen, D.; Han, X.; Wang, H.; Wang, Y.; Shen, P. Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: A single-arm, open-label, phase II trial. Oncoimmunology 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Lonez, C.; Hendlisz, A.; Shaza, L.; Aftimos, P.; Awada, A.; Machiels, J.-P.H.; Eynde, M. Van Den Canon, J.-L.; Carrasco, J.; Verma, B.; et al. Abstract CT123: A phase I study assessing the safety and clinical activity of multiple doses of a NKG2D-based CAR-T therapy, CYAD-01, administered concurrently with the neoadjuvant FOLFOX treatment in patients with potentially resectable liver metastases. Cancer Res. 2018, 78, CT123. [Google Scholar] [CrossRef]
- Braun, N.; Hendlisz, A.; Shaza, L.; Vouche, M.; Donckier, V.; Aftimos, P.; Awada, A.; Lonez, C.; Verma, B.; Gilham, D.E.; et al. Abstract CT134: A phase I study assessing the safety and clinical activity of multiple hepatic transarterial administrations of a NKG2D-based CAR-T therapy CYAD-01, in patients with unresectable liver metastases from colorectal cancer. Cancer Res. 2018, 78, CT134. [Google Scholar] [CrossRef]
- Definition of Autologous NKG2D CAR T Cells KD-025-NCI Drug Dictionary-National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/autologous-nkg2d-car-t-cells-kd-025 (accessed on 16 September 2021).
- Definition of Autologous Universal CAR-Expressing T Lymphocytes UniCAR02-T-NCI Drug Dictionary-National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/autologous-universal-car-expressing-t-lymphocytes-unicar02-t (accessed on 16 September 2021).
- Sur, D.; Havasi, A.; Cainap, C.; Samasca, G.; Burz, C.; Balacescu, O.; Lupan, I.; Deleanu, D.; Irimie, A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J. Clin. Med. 2020, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, J.; Zhang, N.; Chen, M.; Wang, H.; Zhu, D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett. 2019, 458, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Bollard, C.M.; Rössig, C.; Julia Calonge, M.; Helen Huls, M.; Wagner, H.J.; Massague, J.; Brenner, M.K.; Heslop, H.E.; Rooney, C.M. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood 2002, 99, 3179–3187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, K.; Salazar-Onfray, F.; Petersson, M.; Hansson, J.; Masucci, G.; Wasserman, K.; Nakazawa, T.; Anderson, P.; Kiessling, R. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol. 1996, 26, 1308–1313. [Google Scholar] [CrossRef]
- Leen, A.M.; Sukumaran, S.; Watanabe, N.; Mohammed, S.; Keirnan, J.; Yanagisawa, R.; Anurathapan, U.; Rendon, D.; Heslop, H.E.; Rooney, C.M.; et al. Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor. Mol. Ther. 2014, 22, 1211–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillard, P.; Lie, M.; Baken, E.; Lobert, V.H.; Benard, E.; Köksal, H.; Inderberg, E.M.; Wälchli, S. Colorectal cysts as a validating tool for CAR therapy. BMC Biotechnol. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Hegde, P.S.; Chen, D.S. Top 10 Challenges in Cancer Immunotherapy. Immunity 2020, 52, 17–35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio, C.; Belver, M.; Enríquez, L.; Espeso, F.; Núñez, L.; Sánchez, A.; de la Fuente, M.Á.; González-Vallinas, M. Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. Int. J. Mol. Sci. 2021, 22, 11781. https://doi.org/10.3390/ijms222111781
Aparicio C, Belver M, Enríquez L, Espeso F, Núñez L, Sánchez A, de la Fuente MÁ, González-Vallinas M. Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. International Journal of Molecular Sciences. 2021; 22(21):11781. https://doi.org/10.3390/ijms222111781
Chicago/Turabian StyleAparicio, Cristina, Marina Belver, Lucía Enríquez, Francisco Espeso, Lucía Núñez, Ana Sánchez, Miguel Ángel de la Fuente, and Margarita González-Vallinas. 2021. "Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells" International Journal of Molecular Sciences 22, no. 21: 11781. https://doi.org/10.3390/ijms222111781
APA StyleAparicio, C., Belver, M., Enríquez, L., Espeso, F., Núñez, L., Sánchez, A., de la Fuente, M. Á., & González-Vallinas, M. (2021). Cell Therapy for Colorectal Cancer: The Promise of Chimeric Antigen Receptor (CAR)-T Cells. International Journal of Molecular Sciences, 22(21), 11781. https://doi.org/10.3390/ijms222111781