Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primers and Probe Selections for RT-RPA-LFT
2.2. Characterization of RT-RPA-LFTs of AMV RNA3
2.3. Verification of the RT-RPA-LFT by Testing AMV Infected Plants
3. Materials and Methods
3.1. Reagents
3.2. In Vitro Transcription of AMV RNA3
3.3. Preparation of Conjugate of Gold Nanoparticles with Antibodies
3.4. Preparation of Lateral Flow Test Strips
3.5. Sample Collection and Characterization
3.6. Primers and Probe Designs
3.7. Real-Time Quantitative PCR (qPCR) of AMV RNA3 Δ
3.8. Two Variants of RPA-LFT for Detection of AMV RNA3 Δ
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Li, J.; Macdonald, J.; von Stetten, F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2018, 144, 31–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, K.; Zheng, W.; Cheng, Y.; Li, T.; Cao, B.; Jin, Q.; Cui, D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021, 146, 1514–1528. [Google Scholar] [CrossRef] [PubMed]
- Sang, P.; Hu, Z.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Guo, Y.; Qian, H. Nucleic acid amplification techniques in immunoassay: An integrated approach with hybrid performance. J. Agric. Food Chem. 2021, 69, 5783–5797. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhan, L.; Qin, Z.; Sackrison, J.; Bischof, J.C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef] [PubMed]
- Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens. Bioelectron. 2020, 170, 112674. [Google Scholar] [CrossRef]
- El-Tholoth, M.; Branavan, M.; Naveenathayalan, A.; Balachandran, W. Recombinase polymerase amplification-nucleic acid lateral flow immunoassays for Newcastle disease virus and infectious bronchitis virus detection. Mol. Biol. Rep. 2019, 46, 6391–6397. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta 2020, 210, 120616. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Safenkova, I.V.; Drenova, N.V.; Zherdev, A.V.; Dzantiev, B.B. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Mol. Cell. Probes 2020, 53, 101622. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Shmyglya, I.V.; Zherdev, A.V.; Dzantiev, B.B.; Safenkova, I.V. The challenge for rapid detection of high-structured circular rna: Assay of potato spindle tuber viroid based on recombinase polymerase amplification and lateral flow tests. Plants 2020, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- TwistAmp ® DNA Amplification Kits Assay Design Manual; TwistDx™: Cambridge, UK, 2018.
- Harrison, L.; Brame, K.L.; Geltz, L.E.; Landry, A.M. Closely opposed apurinic/apyrimidinic sites are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endonuclease IV, nucleotide excision repair and AP lyase cleavage. DNA Repair 2006, 5, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Huang, H.; Zhang, Y.; Zhu, P.; Yan, Y.; Fan, J.; Chen, X. Recombinase Polymerase Amplification-Based Assay for Rapid Detection of Listeria monocytogenes in Food Samples. Food Anal. Methods 2017, 10, 1972–1981. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Q.; Huang, J.; Chen, J.; Guo, Z.; Liu, Z.; Cai, L.; Li, R.; Wang, Y.; Yang, G.; et al. Influence of design probe and sequence mismatches on the efficiency of fluorescent RPA. World J. Microbiol. Biotechnol. 2019, 35, 95. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Multiplex assay of viruses integrating recombinase polymerase amplification, barcode—anti-barcode pairs, blocking anti-primers, and lateral flow assay. Anal. Chem. 2021, 93, 13641–13650. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, P.; Si, X.; Li, J.; Dai, X.; Zhang, K.; Gao, S.; Dong, J. Rapid and specific detection of Listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer-dimers. Front. Microbiol. 2019, 10, 2959. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhao, P.; Yang, X.; Li, J.; Zhang, J.; Zhang, X.; Zeng, Z.; Dong, J.; Gao, S.; Lu, C. A Recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype typhimurium with no worry of primer-dependent artifacts. Front. Microbiol. 2020, 11, 1015. [Google Scholar] [CrossRef]
- Hull, R. Alfalfa mosaic virus. Adv. Virus Res. 1969, 15, 365–433. [Google Scholar]
- Alfalfa Mosaic Virus. Plant Pathology, Necrosis, Alfalfa, Virus, Capsid, Icosahedron, Protoplast, Nucleotide; Loc Publishing: Van Nuys, CA, USA, 2011.
- Mueller, E.E.; Grau, C.R. Seasonal progression, symptom development, and yield effects of Alfalfa mosaic virus epidemics on soybean in Wisconsin. Plant Dis. 2007, 91, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, H.A.; Domier, L.L.; Nelson, B.D. First report of Alfalfa mosaic virus and Soybean dwarf virus on soybean in North Dakota. Plant Dis. 2012, 96, 1829. [Google Scholar] [CrossRef]
- Al-Saleh, M.A.; Amer, M.A. Biological and molecular variability of Alfalfa mosaic virus affecting alfalfa crop in Riyadh region. Plant Pathol. J. 2013, 29, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Al-Shahwan, I.M.; Abdalla, O.A.; Al-Saleh, M.A.; Amer, M.A. Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1336–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halabi, M.H.; Oladokun, J.O.; Nath, P.D. Evidence of occurring alfalfa mosaic virus in potato plants in Assam, India. Virusdisease 2019, 30, 571–573. [Google Scholar] [CrossRef]
- Nie, X.; Dickison, V.; Singh, M.; De Koeyer, D.; Xu, H.; Bai, Y.; Hawkins, G. Potato tuber necrosis induced by Alfalfa mosaic virus depends on potato cultivar rather than on virus strain. Plant Dis. 2020, 104, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Parrella, G.; Troiano, E.; Faure, C.; Marais, A.; Candresse, T. First report of Alfalfa mosaic virus in Chayote in Italy. Plant Dis. 2020, 105, 698. [Google Scholar] [CrossRef]
- Dore, J.M.; Pinck, M.; Pinck, L. Competitive multiplication of RNA3 species of different strains of alfalfa mosaic virus. J. Gen. Virol. 1989, 70 Pt 3, 777–782. [Google Scholar] [CrossRef]
- van der Kuyl, A.C.; Neeleman, L.; Bol, J.F. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants. Virology 1991, 183, 731–738. [Google Scholar] [CrossRef]
- Reusken, C.B.; Neeleman, L.; Brederode, F.T.; Bol, J.F. Mutations in coat protein binding sites of alfalfa mosaic virus RNA 3 affect subgenomic RNA 4 accumulation and encapsidation of viral RNAs. J. Virol. 1997, 71, 8385–8391. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Navarro, J.A.; Zwart, M.P.; Elena, S.F. Effects of the number of genome segments on primary and systemic infections with a multipartite plant RNA virus. J. Virol. 2013, 87, 10805–10815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, M.R.; Barnett, O.W.; Burrows, P.M.; Baum, R.H. Improved ELISA conditions for detection of plant viruses. J. Virol. Methods 1981, 3, 13–25. [Google Scholar] [CrossRef]
- Ali, A. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay. J. Virol. Methods 2017, 249, 126–129. [Google Scholar] [CrossRef]
- Xu, H.; Nie, J. Identification, characterization, and molecular detection of Alfalfa mosaic virus in potato. Phytopathology 2006, 96, 1237–1242. [Google Scholar] [CrossRef] [Green Version]
- Samarfard, S.; Bejerman, N.E.; Sharman, M.; Trucco, V.; Giolitti, F.; Dietzgen, R.G. Development and validation of PCR assays for detection of alfalfa dwarf disease-associated viruses in Australian lucerne pastures. Australas Plant Pathol. 2017, 47, 215–225. [Google Scholar] [CrossRef]
- Almasi, M.A. Tracking and identification of Alfalfa mosaic virus (AMV) by loop mediated isothermal amplification assay. J. Crop Biotechnol. 2016, 5, 73–84. [Google Scholar]
- Munawar, M.A.; Martin, F.; Toljamo, A.; Kokko, H.; Oksanen, E. RPA-PCR couple: An approach to expedite plant diagnostics and overcome PCR inhibitors. Biotechniques 2020, 69, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Safenkova, I.V.; Ivanov, A.V.; Slutskaya, E.S.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Anal. Chim. Acta 2020, 1102, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.Y.C.; Wee, E.J.H.; West, N.P.; Trau, M. Rapid DNA detection of Mycobacterium tuberculosis-towards single cell sensitivity in point-of-care diagnosis. Sci. Rep. 2015, 5, 15027. [Google Scholar] [CrossRef]
- Clancy, E.; Higgins, O.; Forrest, M.S.; Boo, T.W.; Cormican, M.; Barry, T.; Piepenburg, O.; Smith, T.J. Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect. Dis. 2015, 15, 481. [Google Scholar] [CrossRef] [Green Version]
- Rohrman, B.; Richards-Kortum, R. Inhibition of recombinase polymerase amplification by background DNA: A lateral flow-based method for enriching target DNA. Anal. Chem. 2015, 87, 1963–1967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ravelonandro, M.; Russell, P.; McOwen, N.; Briard, P.; Bohannon, S.; Vrient, A. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP((R)) using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 2014, 207, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, F.; Li, X.; Lan, Y.; Du, L.; Zhou, T.; Zhou, Y. Reverse transcription-recombinase polymerase amplification combined with lateral flow strip for detection of rice black-streaked dwarf virus in plants. J. Virol. Methods 2019, 263, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Safenkova, I.V.; Chirkov, S.N.; Zherdev, A.V.; Blintsov, A.N.; Dzantiev, B.B.; Atabekov, I.G. Development of immunochromatographic test systems for express detection of plant viruses. Appl. Biochem. Microbiol. 2009, 45, 204–209. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 2007, 35, W43–W46. [Google Scholar] [CrossRef] [PubMed]
Name | 5′-3′ Sequence | 5′ Modification |
---|---|---|
AMV F1 * | CCATCATGAGTTCTTCACAAAAG | FAM/none |
AMV R1 * | TCGTCACGTCATCAGTGAGAC | biotin |
AMV F3 | ATTACTTCCATCATGAGTTCTTCACAAAAG | FAM/none |
AMV R3 | CATCCTCAGTCGTCACGTCATCAGTGAGAC | biotin |
AMV F4 | TTACGCAAAGCTCAACTGCCGAAGCCTCC | FAM/none |
AMV R4 | GAATCTCACGCCGAGCCCATTAAAAGAG | biotin |
AMV THF probe | (FAM)- AAACCGACGAATACTATACTGCCACAGACG-(THF)- GCTGCGTGTGGCAA-Pi | FAM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. Int. J. Mol. Sci. 2021, 22, 11885. https://doi.org/10.3390/ijms222111885
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. International Journal of Molecular Sciences. 2021; 22(21):11885. https://doi.org/10.3390/ijms222111885
Chicago/Turabian StyleIvanov, Aleksandr V., Irina V. Safenkova, Anatoly V. Zherdev, and Boris B. Dzantiev. 2021. "Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe" International Journal of Molecular Sciences 22, no. 21: 11885. https://doi.org/10.3390/ijms222111885
APA StyleIvanov, A. V., Safenkova, I. V., Zherdev, A. V., & Dzantiev, B. B. (2021). Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. International Journal of Molecular Sciences, 22(21), 11885. https://doi.org/10.3390/ijms222111885