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Abstract: (1) Background: Artemia salina is a brine shrimp containing high concentrations of dinu-
cleotides, molecules with properties for dry eye treatment. For this reason, the purpose of the study
was to evaluate the effect of the artificial tears based on an extract of Artemia salina in a rabbit dry
eye model. (2) Methods: A prospective and randomized study was carried out. Twenty rabbits were
divided into 4 groups (n = 5, each group): healthy rabbits, dry eye rabbits, dry eye rabbits treated
with hypromellose (HPMC), and dry eye rabbits treated with Artemia salina. Dry eye was induced by
the topical instillation of 0.2% benzalkonium chloride. The measurements were performed before
and after the treatment for 5 consecutive days. (3) Results: The topical instillation of artificial tears
containing Artemia salina showed beneficial effects on tear secretion, tear break-up time, corneal
staining, the density of Goblet cells, heigh of mucin cloud secreted by these cells, and mRNA levels of
IL-1β and MMP9 in conjunctival cells. Compared with the HPMC, there was a statistically significant
improvement (p < 0.05) with the Artemia salina in all the variables under study, except for the conjunc-
tival hyperemia, density of Goblet cells, and mRNA levels of IL-6. (4) Conclusions: The potential of
artificial tears based on Artemia salina as a secretagogue agent for dry eye treatment was confirmed,
opening the door for future clinical trials and studies to extrapolate the findings for dry eye patients.

Keywords: dry eye; Artemia salina; dinucleotides; secretagogue; purinergic signaling

1. Introduction

Dry eye was defined by the Tear Film and Ocular Surface Society (TFOS) as “a
multifactorial disease of the ocular surface characterized by a loss of homeostasis of
the tear film, and accompanied by ocular symptoms, in which tear film instability and
hyperosmolarity, ocular surface inflammation and damage and neurosensory abnormalities
play etiological roles” [1]. This condition affects a large portion of the world’s population,
reaching a prevalence of 50% in some regions of the planet [2]. For the treatment of dry
eye, a remarkable family of compounds depicting interesting physiological properties on
the ocular surface is dinucleoside polyphosphates, also known as dinucleotides [3].

Dinucleoside polyphosphates are formed by two nucleotides linked by a variable
number of phosphates (from 2 to 7) and play an important role in the diagnosis and
treatment of dry eye [4]. These compounds activate cell surface purinergic P2 receptors,
both P2X ionotropic [5] and P2Y metabotropic [6] receptors. P2 receptors have been found
in different parts of the eye such as the ocular surface, anterior and posterior chambers, and
retina [7]. The activation of P2Y2 receptor, a subtype of P2Y receptors, produces chloride
efflux and water movement into the extracellular medium [4,8,9].
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On the ocular surface, P2Y2 receptor has been described in the cornea, conjunctiva, and
lacrimal gland [10]. The activation of P2Y2 receptor via topical instillation of diadenosine
tetraphosphate (Ap4A) and diuridine tetraphosphate (Up4U) demonstrated its capability
to stimulate aqueous [11–14], mucinous [15], and lipidic [16] components of tears, as well
as to accelerate corneal re-epithelization [15,17,18]. Additionally, the instillation of these
compounds increases the corneal permeability [19,20] and the levels of both lysozyme [21]
and lactoferrin [22] in tears.

From a clinical viewpoint, the scientific evidence supports the safety and security of
the commercial form of Up4U (Diquafosol®) as a secretagogue agent for the treatment of
dry eye [23,24]. The Diquafosol®, which is only commercially available in Asia, demon-
strated its efficacy to improve the signs and symptoms of dry eye in patients with Sjögren
syndrome [25], aqueous deficient dry eye [26], evaporative dry eye [27], dry eye associated
with cataract surgery [23], contact lens wearers [28], and even in healthy subjects [29].

Recently, our research group developed artificial tears based on an extract of 4% Artemia
salina [30], a brine shrimp containing high concentrations of dinucleotides, mainly diguano-
sine tetraphosphate (Gp4G), but also others such as diguanosine triphosphate (Gp3G) and
diphosphate (Gp2G), or guanosine-adenosine tetraphosphate (Gp4A) [31,32]. The concen-
tration of 4% Artemia salina was chosen in a previous study where the effect of short-term
instillation of different concentrations of the brine shrimp (2%, 4%, 6%, 8%, and 10%) was
evaluated in healthy rabbits [30]. The 4% Artemia salina manifested the best results in
increasing tear secretion and improving corneal epithelial damage, also confirming its
safety over the ocular surface.

The purpose of the current study was to evaluate the effect of the artificial tears based
on an extract of 4% Artemia salina on lacrimal function and ocular surface damage and
inflammation in a rabbit dry eye model. The dry eye model was induced by topical instilla-
tion of 0.2% benzalkonium chloride (BAC) for 5 consecutive days, a method previously
validated [33], while the treatment with the artificial tears was applied simultaneously.

2. Results

Table 1 summarizes the values of all the variables under study before (PRE) and after
(POST) the instillation of the different treatments for 5 consecutive days and the statistical
comparison between PRE and POST measurements.

Table 1. Values of all the variables under study before (PRE) and after (POST) the instillation of the different treatments for
5 consecutive days. The statistical comparison was performed between the values PRE and POST in each group.

Variable
Group

(n = 5, Each One)

Mean ± SD
p-Value

PRE POST

Tear secretion (µL)

Healthy 7.0 ± 3.4 6.0 ± 3.1 0.373

Dry eye 7.8 ± 2.2 6.3 ± 2.3 0.081

Dry eye + HPMC 8.1 ± 2.5 7.4 ± 3.0 0.477

Dry eye + Artemia 7.3 ± 2.7 12.0 ± 3.4 0.008 ˆ

Tear break-up time (s)

Healthy 4.2 ± 0.7 4.1 ± 1.3 0.896

Dry eye 5.4 ± 2.7 1.7 ± 0.6 0.005 *

Dry eye + HPMC 5.2 ± 1.5 1.7 ± 0.9 0.005 ˆ

Dry eye + Artemia 4.1 ± 1.1 2.5 ± 1.0 <0.001 *

Corneal staining (score)

Healthy 1.90 ± 0.88 1.70 ± 1.06 0.516

Dry eye 1.60 ± 0.84 4.00 ± 0.00 0.004 *

Dry eye + HPMC 1.70 ± 0.95 3.70 ± 0.48 0.007 *

Dry eye + Artemia 2.30 ± 0.67 3.00 ± 0.94 0.140
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Table 1. Cont.

Variable
Group

(n = 5, Each One)

Mean ± SD
p-Value

PRE POST

Conjunctival hyperemia (score)

Healthy 0.00 ± 0.00 0.10 ± 0.32 0.317

Dry eye 0.00 ± 0.00 3.40 ± 0.70 0.004 *

Dry eye + HPMC 0.00 ± 0.00 3.50 ± 0.85 0.004 *

Dry eye + Artemia 0.00 ± 0.00 2.90 ± 0.57 0.004 *

Density of Goblet cells
(cells/mm2)

Healthy 641.2 ± 216.7 646.5 ± 263.5 0.960

Dry eye 911.7 ± 319.9 291.5 ± 103.2 <0.001 *

Dry eye + HPMC 850.8 ± 297.1 382.9 ± 336.2 0.022 *

Dry eye + Artemia 851.8 ± 248.4 578.4 ± 254.1 0.071

Height of mucin cloud (µm)

Healthy 18.4 ± 1.0 18.1 ± 1.6 0.532

Dry eye 16.8 ± 2.1 10.8 ± 1.7 <0.001 *

Dry eye + HPMC 16.7 ± 1.2 14.0 ± 4.0 0.053

Dry eye + Artemia 16.6 ± 1.9 15.5 ± 1.9 0.139

mRNA levels of IL-1β
(fold change)

Healthy 6.430 ± 8.572 3.466 ± 3.067 0.878

Dry eye 7.758 ± 11.702 42.369 ± 42.889 0.009 ˆ

Dry eye + HPMC 4.103 ± 2.772 46.116 ± 26.483 0.001 *

Dry eye + Artemia 1.295 ± 1.838 12.408 ± 10.426 0.012 ˆ

mRNA levels of IL-6
(fold change)

Healthy 0.072 ± 0.082 0.416 ± 0.457 0.028 ˆ

Dry eye 0.046 ± 0.036 0.338 ± 0.401 0.017 ˆ

Dry eye + HPMC 0.051 ± 0.086 0.230 ± 0.195 0.009 ˆ

Dry eye + Artemia 0.026 ± 0.033 0.175 ± 0.132 0.025 ˆ

mRNA levels of MMP9
(fold change)

Healthy 0.028 ± 0.034 - -

Dry eye 0.042 ± 0.059 0.314 ± 0.266 0.009 ˆ

Dry eye + HPMC 0.030 ± 0.017 0.525 ± 0.483 0.005 ˆ

Dry eye + Artemia 0.012 ± 0.017 0.174 ± 0.176 0.012 ˆ

* p < 0.05, Student’s t-test for paired samples (normal distributions); ˆ p < 0.05, Wilcoxon signed-rank test (non-normal distributions);
Artemia: Artemia salina; HPMC: hypromellose.

2.1. Tear Secretion and Tear Break-Up Time

Figure 1 shows the normalized effect after the instillation of the different treatments
on both tear secretion and tear break-up time, and the statistical comparison between all
the groups.

Concerning tear secretion, the group of rabbits with dry eye treated with Artemia
salina was the only one that showed a statistically significant increase of 64.38 ± 18.41% in
comparison with the rest of the groups (p < 0.05). The other groups did not show statistical
differences between them nor changes in comparison with their baseline measurements
(p ≥ 0.05).

In relation to tear break-up time, there was a statistically significant deterioration in
the three groups of rabbits with induced dry eye in comparison with the healthy rabbits
(p < 0.05). This deterioration was 69.13 ± 25.31% in the dry eye group, 67.78 ± 36.16% in
the dry eye + HPMC group, and 37.73 ± 14.85% in the dry eye + Artemia salina group. Ad-
ditionally, the treatment with Artemia salina in the rabbits with induced dry eye statistically
improved the tear break-up time in comparison with the instillation of HPMC (p = 0.001).
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Figure 1. Normalized effect on tear secretion (a) and tear break−up time (b) of the instillation of the 
different treatments for 5 consecutive days. The values higher or lower than 100% represent an in-
crease or decrease in comparison with their baseline, respectively. The statistical comparison was 
performed between the different groups (n = 5, each group). * p < 0.05, ** p < 0.01, *** p < 0.001, 
Student’s t−test for independent samples. 
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discrete variables. 

Regarding corneal staining, both healthy rabbits and the rabbits with induced dry 
eye treated with Artemia salina showed a statistically significant improvement in compar-
ison with the rabbits with dry eye not treated and treated with HPMC (p < 0.05). On the 
other hand, despite the rabbits with dry eye being treated with Artemia salina, presenting 
a deterioration in comparison with their baseline, there were no statistical differences with 
the healthy rabbits (p = 0.109). 

In terms of conjunctival hyperemia, there was a statistically significant deterioration 
in the three groups of rabbits with induced dry eye in comparison with the healthy rabbits 
(p < 0.05). Furthermore, the treatments with Artemia salina and HPMC had no effect since 
they showed no statistical differences with the rabbits with dry eye used as positive con-
trols (p ≥ 0.05). 

Figure 1. Normalized effect on tear secretion (a) and tear break−up time (b) of the instillation of
the different treatments for 5 consecutive days. The values higher or lower than 100% represent
an increase or decrease in comparison with their baseline, respectively. The statistical comparison
was performed between the different groups (n = 5, each group). * p < 0.05, ** p < 0.01, *** p < 0.001,
Student’s t−test for independent samples.

2.2. Slit-Lamp Examination

Figure 2 shows the effect after the instillation of the different treatments on both
corneal staining and conjunctival hyperemia, and the statistical comparison between all
the groups. The effect on both variables was not normalized in percentage because they
are discrete variables.

Regarding corneal staining, both healthy rabbits and the rabbits with induced dry eye
treated with Artemia salina showed a statistically significant improvement in comparison
with the rabbits with dry eye not treated and treated with HPMC (p < 0.05). On the other
hand, despite the rabbits with dry eye being treated with Artemia salina, presenting a
deterioration in comparison with their baseline, there were no statistical differences with
the healthy rabbits (p = 0.109).

In terms of conjunctival hyperemia, there was a statistically significant deterioration
in the three groups of rabbits with induced dry eye in comparison with the healthy rabbits
(p < 0.05). Furthermore, the treatments with Artemia salina and HPMC had no effect since
they showed no statistical differences with the rabbits with dry eye used as positive controls
(p ≥ 0.05).
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tion, the treatment with Artemia salina in the rabbits with dry eye showed similar results 
to the healthy rabbits (p = 0.329). 

Figure 2. Variation of corneal staining (a) and conjunctival hyperemia (b) after the instillation of
the different treatments for 5 consecutive days. The values higher or lower than 0 represent a
deterioration or an improvement in comparison with their baseline, respectively. The statistical
comparison was performed between the different groups (n = 5, each group). ** p < 0.01, *** p < 0.001,
Student’s t-test for independent samples (normal distributions). ˆˆˆ p < 0.001, Mann–Whitney U test
(non-normal distributions).

2.3. Conjunctival Cytology

Figure 3 shows the normalized effect after the instillation of the different treatments
on both density of Goblet cells and height of mucin cloud, and the statistical comparison
between all the groups, while Figure 4 shows representative images used to quantify the
density of Goblet cells in the different groups.

Concerning the density of Goblet cells, the two groups of rabbits with induced dry
eye treated or not treated with HPMC suffered a statistically significant deterioration of
68.03 ± 24.10% and 55.00 ± 48.29%, respectively, in comparison with the healthy rabbits
(p < 0.05). Conversely, despite the rabbits with dry eye being treated with Artemia salina
they also showed a deterioration compared with the healthy rabbits, these differences,
however, were not statistically significant (p = 0.117).

Regarding the height of mucin cloud, again the two groups of rabbits with induced
dry eye treated or not treated with HPMC suffered a deterioration of 35.81 ± 5.78% and
16.31 ± 4.70%, respectively, which was statistically significant in comparison with the
healthy rabbits and the rabbits with dry eye treated with Artemia salina (p < 0.05). In
addition, the treatment with Artemia salina in the rabbits with dry eye showed similar
results to the healthy rabbits (p = 0.329).
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instillation of the different treatments for 5 consecutive days. A decrease can be observed in the 
density of Goblet cells (brightest cells) in the three groups of rabbits with induced dry eye, but this 
decrease occurred in a lesser magnitude with the artificial tears based on Artemia salina. 

2.4. Quantitative PCR 
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Figure 3. Normalized effect on the density of Goblet cells (a) and height of mucin cloud (b) of
the instillation of the different treatments for 5 consecutive days. The values higher or lower than
100% represent an increase or decrease in comparison with their baseline, respectively. The statistical
comparison was performed between the different groups (n = 5, each group). * p < 0.05, ** p < 0.01,
*** p < 0.001, Student’s t-test for independent samples.
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Figure 4. Representative images of the density of Goblet cells before (PRE) and after (POST) the
instillation of the different treatments for 5 consecutive days. A decrease can be observed in the
density of Goblet cells (brightest cells) in the three groups of rabbits with induced dry eye, but this
decrease occurred in a lesser magnitude with the artificial tears based on Artemia salina.
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2.4. Quantitative PCR

Figure 5 shows the effect after the instillation of the different treatments on the mRNA
levels of IL-1β, IL-6, and MMP9, and the statistical comparison between all the groups.
Previously, these results were normalized with the signal of the HPRT1 gene (Table 1), the
reason why they were not normalized again in percentage.
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Figure 5. Variation of mRNA levels of IL−1β (a), IL−6 (b), and MMP9 (c) after the instillation
of the different treatments for 5 consecutive days. The values higher or lower than 0 represent a
deterioration or an improvement in comparison with their baseline, respectively. The statistical
comparison was performed between the different groups (n = 5, each group). * p < 0.05, ** p < 0.01,
*** p < 0.001, Mann–Whitney U test.

In the levels of IL-1β, the three groups of rabbits with induced dry eye showed a fold
increase of 34.611 ± 35.999 in the dry eye group, 42.014 ± 27.068 in the dry eye + HPMC
group, and 11.114 ± 9.537 in the dry eye + Artemia salina group that was statistically signif-
icant in comparison with the healthy rabbits (p < 0.05). Additionally, the treatment with
Artemia salina produced a decrease in the mRNA expression of IL-1β in comparison with
the HPMC (p = 0.001).

Regarding the levels of IL-6, there were no statistically significant differences between
all the groups (p ≥ 0.05), despite the rabbits with dry eye treated with Artemia salina and
HPMC showed lower values.

In relation to the levels of MMP9, the quantitative PCR did not detect signals for the
POST measurements of the healthy rabbits. However, in the rabbit with induced dry eye,
the treatment with Artemia salina decreased the mRNA expression of MMP9 in comparison
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with the HPMC (p = 0.021). The fold change was 0.162 ± 0.165 with the Artemia salina and
0.494 ± 0.477 with the HPMC.

3. Discussion

The current study reported on the effect of artificial tears based on an extract of
4% Artemia salina in a rabbit dry eye model. The treatment with these artificial tears
manifested beneficial effects on tear secretion, tear break-up time, corneal staining, the
density of Goblet cells, height of mucin cloud, and inflammatory biomarkers. Additionally,
the safety of these artificial tears was already confirmed in a previous study performed in
healthy rabbits by our research group [30].

In terms of tear secretion, the topical instillation of artificial tears with 4% Artemia
salina produced an increase of 64% in the rabbits with induced dry eye (see Figure 1), values
slightly higher than those previously reported by our research group after the instillation
of the same extract in health rabbits (44%) [30], but both studies showed an increase of
around 4–5 µL compared with their baseline. The secretagogue effect on the aqueous
component of tears was associated with the agonist action of dinucleoside polyphosphates
present in Artemia salina, especially Gp4G, on P2Y2 receptors expressed in the conjunctival
epithelium [11–14]. Nevertheless, it is still unknown whether Gp4G or other nucleotides
present in the crustacean specifically activate the P2Y2 receptor as other dinucleotides such
as Ap4A and Up4U. In this regard, different studies found that the topical instillation of
Ap4A increased tear secretion by around 40–50% in healthy New Zealand white rabbits
through the activation of the P2Y2 receptor [11,13]. The topical instillation of Up4U or
Diquafosol®also demonstrated its capability to stimulate tear secretion by 33% in the same
rabbits [12,14].

On the other hand, it should be noted that the instillation of 0.2% BAC to induce the
dry eye did not decrease tear secretion in comparison with the group of healthy rabbits
(see Figure 1), contrary to what happened in previous experiments [33]. This fact would
question the use of this animal model to study the aqueous deficient dry eye.

The artificial tears containing Artemia salina also improved tear break-up time com-
pared with the topical instillation of HPMC in the rabbits with induced dry eye (see
Figure 1), which manifested the beneficial effect of the extract of Artemia salina on tear film
stability. However, the comparison of POST measurements between both groups only
showed an increase lower than 1 µL after the treatment with Artemia salina (see Table 1),
not considered relevant for improving the severity of dry eye. To our knowledge, only
the previous study of our research performed in healthy rabbits evaluated tear break-up
time after a treatment containing dinucleotides, where there were no changes with the
extract of 4% Artemia salina [30]. On the other hand, different studies demonstrated that the
activation of the P2Y2 receptor by topical instillation of Up4U stimulates the production
of mucins and lipids in the Goblet cells and Meibomian glands, respectively [15,16,34,35].
Considering that mucins and lipids are the responsible components for tear film stabil-
ity [36], the possibility that the artificial tears with Artemia salina improves this stability
in future clinical studies should not be discarded based on the hypothesis that the Gp4G
present in the crustacean could act as an agonist of P2Y2 receptor.

Concerning the analysis of conjunctival cytologies by confocal microscopy, the secreta-
gogue effect on the mucinous component of tears after the treatment with artificial tears
containing Artemia salina was confirmed (see Figure 3). In terms of density of Goblet cells,
the topical instillation of Artemia salina in the rabbits with induced dry eye did not show
statistical differences with any group, including the healthy rabbits. This could indicate a
protective effect against cell death induced by the instillation of 0.2% BAC. The results of the
height of mucin cloud also demonstrated that the amount of mucin secreted by Goblet cells
was higher after the treatment with Artemia salina due to there being no differences with
the healthy rabbits and the mucin cloud increased compared with the untreated rabbits
with dry eye. As mentioned above, the secretagogue effect on the mucinous component of
tears is associated with the agonist action of dinucleotides on the P2Y2 receptors expressed
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in Goblet cells, despite only having been confirmed in the case of Up4U [15,34], but no
other dinucleotides such as Ap4A or Gp4G. In this context, different studies performed on
rabbits and rats found that topical instillation of Up4U stimulated the production of mucins
in Goblet cells [15,34] and increased the concentration of MUC5A dissolved in tears [37,38].
In humans, Shigeyasu et al. [39,40] reported an increase in the concentration of sialic acid,
a molecule that binds to the ends of mucin chains, in tears after the short- and long-term
instillation of Up4U.

Moreover, the treatment with artificial tears based on Artemia salina helped to protect
the corneal epithelium against the damage produced by the topical instillation of 0.2% BAC
due to corneal staining showed an improvement compared to the rabbits with induced
dry eye treated and untreated with HPMC (see Figure 2). Again, the wound healing
properties of the extract of Artemia salina were associated with the possible agonist action
of its dinucleotides on P2Y2 receptors localized in the corneal epithelium as has been
confirmed experimentally with Ap4A and Up4U [15,18,41–43]. Through this cellular
mechanism, our research group found that the topical instillation of Ap4A accelerated
wound healing by stimulating the cell migration of corneal epithelium [17,18]. Also,
Fujihara et al. [15] demonstrated that the instillation of Up4U reduced corneal staining in
an animal dry eye model. Conversely, other dinucleotides such as diadenosine triphosphate
(Ap3A) and pentaphosphate (Ap5A) act as agonists of the P2Y6 receptor, which is also
expressed in corneal epithelium, decelerating corneal wound healing by inhibiting cell
migration [18,44,45].

Regarding the quantitative PCR of the conjunctival cytologies, the artificial tears
based on Artemia salina reduced the mRNA levels of IL-1β and MMP9 compared with the
instillation of HPMC (see Figure 5), suggesting a possibly beneficial effect on ocular surface
inflammation. Nevertheless, the treatment with Artemia salina did not show statistical
differences with the rabbits with induced dry eye used as positive controls. This lack of
statistical significance was associated with the high variability that showed the positive
controls, as is observed in the standard deviation of the results. The increase of sample size
may have confirmed the trend of the extract of Artemia salina to reduce the mRNA levels
of IL-1β and MMP9. Recent studies demonstrated the efficacy of Up4U or Diquafosol®to
reduce ocular surface inflammation in both in vitro and in vivo dry eye models [38,46–48].
These studies found a reduction in the protein and mRNA expression of IL-1β and IL-
6, among other biomarkers, which agrees with the results obtained with the artificial
tears containing Artemia salina in the current study. Kim et al. [46] and Park et al. [48]
found that this anti-inflammatory effect is mediated by the nuclear factor κB pathway,
which also regulates the MMP9 expression [49]. However, it is unknown whether the anti-
inflammatory properties of dinucleotides on the ocular surface are mediated by purinergic
P2Y receptors, as occurs in other systemic pathologies [50], or are a consequence of the
protective effect of these compounds against ocular surface damage and loss of homeostasis.

An important aspect of using the rabbit dry eye model induced by the topical instilla-
tion of BAC is that this model is not stable over time. Li et al. [51] reported that the signs of
dry eye were sustained between 2 and 3 weeks after finishing the instillation of 0.1% BAC
for 14 consecutive days. Under this context, different studies applied their treatments
simultaneously to the instillation of BAC [52–56] or during the period of reversibility of the
dry eye model [57–61]. In the current study, this aspect was considered for the final study
design since it was previously confirmed that the instillation of the Artemia salina together
with the 0.2% BAC offered better results than the instillation of Artemia salina during the
period of reversibility.

Finally, the main limitation of the current study was that the interaction between the
dinucleotides present in the extract of Artemia salina and purinergic P2 receptors localized
on the ocular surface was not characterized. Therefore, it is only possible to hypothesize
about the agonist action of Gp4G on the P2Y2 receptor to justify the beneficial effect of the
artificial tears on tear secretion, corneal staining, the density of Goblet cells, and height of
mucin cloud. On the other hand, the rabbit dry eye model induced by topical instillation of



Int. J. Mol. Sci. 2021, 22, 11999 10 of 15

0.2% BAC did not reproduce the chronic character of dry eye, this being the reason why it
was not possible to evaluate the long-term treatment with the artificial tears containing
Artemia salina.

4. Materials and Methods
4.1. Study Design

An experimental, prospective, and randomized study was carried out. All the trials
were performed before (PRE) and after (POST) the topical instillation of the different
treatments: saline solution as negative control (healthy group), 0.2% BAC + saline solution
(dry eye group), 0.2% BAC + 0.24% hypromellose (dry eye + HPMC group), and 0.2% BAC
+ artificial tears containing Artemia salina (dry eye + Artemia salina).

The 0.2% BAC was used to induce the dry eye model by instilling 35 µL, twice per day
(at 10:00 and 18:00), for 5 consecutive days, except on the last day when there was a single
instillation during the morning [33]. For the 0.24% HPMC or artificial tears with Artemia
salina, 35 µL were instilled 3 times per day (at 12:00, 14:00, and 16:00), for 5 consecutive
days. In total, there were 9 instillations of 0.2% BAC or saline solution per eye in each
rabbit and 15 instillations of HPMC, Artemia salina, or saline solution.

On the last day, the measurements were taken 20 min after the last instillation at 16:00,
when dinucleotides produce the maximum effect on tear secretion [13,14]. The order of the
trials was as follows: tear secretion, slit-lamp examination (including tear break-up time),
and conjunctival cytology.

4.2. Animals

A total of 20 male New Zealand white rabbits were used in the study, including both
eyes in the same experimental group (neyes = 40). The rabbits were randomly divided
into four groups: 5 rabbits as negative control (healthy group, neyes = 10), 5 rabbits with
induced dry eye as a positive control (dry eye group, neyes = 10), 5 rabbits with induced
dry eye and treated with HPMC (dry eye + HPMC group, neyes = 10), and 5 rabbits with
induced dry eye and treated with artificial tears of Artemia salina (dry eye + Artemia salina,
neyes = 10).

The rabbits were provided by the animal facility of the Faculty of Veterinary of the
Complutense University of Madrid. They were kept in cages for 7 days before experimen-
tation to get them used to their new housing conditions. Their weight was between 3.0 and
3.5 kg and they had free access to food and water. The rabbits were under controlled
conditions: 12 h light–dark cycles, a temperature of 18 ◦C, and a humidity of 30%.

4.3. Artificial Tears

The artificial tears based on an extract of Artemia salina were manufactured and
provided by the company Avizor (Avizor, Madrid, Spain). The qualitative composition of
these artificial tears was as follows: an extract of 4% Artemia salina containing 10 µM of
Gp4G as an active ingredient, 0.24% HPMC as a thickening agent, boric acid and borax as a
buffer, and CaCl2, KCl, and MgCl2 as electrolytes. The artificial tears had an osmolality of
248 mOsm/kg, a pH of 7.1, and a viscosity of 5.6 cP.

The treatment with HPMC had the same composition as the artificial tears of Artemia
salina but with no crustacean extract. The saline solution used during the experiments was also
provided by Avizor, while the BAC was provided by Merck (Merck, Darmstadt, Germany).

4.4. Tear Secretion and Tear Break-Up Time

Tear secretion with anesthesia was measured by performing a Schirmer’s test (Aiesi;
Naples, Italy) for 5 min. The paper strip was positioned in the inferior lid and the rabbit’s
eyes were closed to avoid the reflex secretion associated with blinking. Each millimeter of
the paper strip soaked corresponded to 1 µL of tear secretion. The topical anesthesia was
induced by the instillation (2 drops in 5 min) of commercial eye drops containing 4 mg/mL
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of oxybuprocaine hydrochloride and 1 mg/mL of tetracaine hydrochloride (Alcon Cusí,
Barcelona, Spain). Tear secretion was measured 5 min after the last instillation of anesthesia.

Tear break-up time was measured during the slit-lamp examination. It was evaluated
after the instillation of 2 µL of commercial 2% fluorescein sodium (Alcon Cusí) over the
ocular surface. Three consecutive measurements were taken with a timer after manually
forcing the rabbits to blink.

4.5. Slit-Lamp Examination

The signs of ocular surface damage were examined with a VX75 slit lamp (Luneau
Technology, Chartres, France). The severity of corneal staining and conjunctival hyperemia
was quantified by using the Efron Grading Scales [62], which classify this severity as
follows: normal (0), trace (1), mild (2), moderate (3), and severe (4). Corneal staining was
measured immediately after measuring tear break-up time with fluorescein sodium.

4.6. Conjunctival Cytology

The medical device EYEPRIM (Opia Technologies, Paris, France) was used to collect
the superficial conjunctival cells. Two cytologies of both superior and inferior quadrants of
the bulbar conjunctiva were taken. The superior cytology was used to quantify the density
of Goblet cells and the height of mucid cloud of these cells, while the inferior cytology was
used to quantify the mRNA levels of interleukin 1β (IL-1β), IL-6, and metalloproteinase
9 (MMP9) by polymerase chain reaction (PCR).

The superior cytology was fixed in 96% ethanol at 4 ◦C for 24 h to be stained with the
hematoxylin-periodic acid Schiff procedure posteriorly. For the visualization of the Goblet
cells, a confocal microscopy system FV1200 (Olympus, Tokyo, Japan) was used, while the
images were analyzed with the ImageJ software (National Institutes of Health; Bethesda,
MD, USA). The samples were excited by a wavelength of 559 nm and the light emission
was filtered for a range between 580 and 620 nm. Magnifications of x20 and x40 were
used for the quantification of the density of Goblet cells and the height of mucin cloud,
respectively. The Z-stacking to visualize the three-dimensional cells was performed with
a pupil diameter of 180 µm and a stack interval of 0.25 µm. All of these procedures were
previously detailed by Peral and Pintor [63].

The density of Goblet cells was quantified in 5 different regions of each sample, while
the height of mucin cloud, including the cell thickness, was quantified in 15 different cells.

4.7. Quantitative PCR

The inferior conjunctival cytology was fixed in RNAlater (Thermo Fisher Scientific,
Waltham, MA, USA) at 4 ◦C for 24 h. Then, RNAlater was removed and the samples were
stored at −80 ◦C until being processed.

The RNA isolation and purification of the samples were performed with the com-
mercial kits QIAshredder and RNeasy Mini Kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions.

Twenty-two µL of the total RNA were used for the first-strand cDNA synthesis
that was performed with the High Capability cDNA Reverse Transcription Kit and ran-
dom hexamer primers (Thermo Fisher Scientific). The quantitative PCR was carried
with the QuantStudio 3 system (Thermo Fisher Scientific) by using the cDNA, Quantitect
SYBR Green Kit (Qiagen), and specific primers of IL-1β, IL-6, and MMP9 (Table 2). The
hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) gene was used as an internal
control to normalize the mRNA relative expression. Each sample was triplicated and
negative controls were included in all the measurements. The thermal cycler program was
as follows: 15 min at 95 ◦C, 40 cycles of 15 s at 94 ◦C, 30 s at 55 ◦C, and 34 s at 72 ◦C.
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Table 2. Sequences of the different primers analyzed by quantitative polymerase chain reaction.

Primer Sequence (Forward/Reverse)

HPRT1 5′-CTGGCAAAACAATGCAGACCT-3′/
5′-GTCCTTTTCACCAGCAGGCTT-3′

IL-1β 5′-TTGAAGAAGAACCCGTCCTCTG-3′/
5′-CTCATACGTGCCAGACAACACC-3′

IL-6 5′-GCCTCACAAACTTCCTGGAG-3′/
5′-GATGGTGTGTTCTGACCGTG-3′

MMP9 5′-AAGACGCAGACGGTGGATTC-3′/
5′-ACTCACACGCCAGAAGAAGC-3′

HPRT1: hypoxanthine-guanine phosphoribosyltransferase 1; IL-1β: interleukin 1β; IL-6: interleukin
6; MMP9: metalloproteinase 9.

The analysis of the melting curves confirmed the specificity of the primers and the
absence of primer-dimers. Finally, both the stability of the HPRT1 gene and the analysis of
the quantitative PCR data were performed by the 2−∆Ct method.

4.8. Statistical Analysis

The statistical analysis was performed with the SPSS 23 software (IBM; Chicago, IL,
USA). The normality of all the variables was checked using the Shapiro–Wilk test. The
comparison between the measurements before (PRE) and after (POST) the instillation of the
different treatments was carried out with the Student’s t-test for paired samples (normal
distributions) or the Wilcoxon signed-rank test (non-normal distributions). Besides, the
comparison of the effect of the different treatments (difference between PRE and POST
measurements) between groups was performed using the Student’s t-test for independent
samples (normal distributions) or the Mann–Whitney U test (non-normal distributions). A
statistical significance of 95% (p < 0.05) was established in all the tests.

The analyzed variables were: tear secretion, tear break-up time, corneal staining,
conjunctival hyperemia, density of Goblet cells, height of mucin cloud, and mRNA levels
of IL-1β, IL-6, and MMP9. Results are reported as mean ± standard deviation (SD).

5. Conclusions

The artificial tears based on an extract of 4% Artemia salina showed secretagogue
properties on aqueous and mucinous components of tears, accompanied by a protective
effect against ocular surface damage and inflammation in a rabbit dry eye model. Thus,
the potential of these artificial tears as a secretagogue agent for dry eye treatment was
confirmed, which opens the door for future clinical trials and studies to extrapolate the
findings to dry eye patients.

6. Patents

Pintor Just, J.J.; Pérez de Lara, M.J.; Huete Toral, F.; Colligris, B.; Carracedo Rodríguez,
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