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Abstract: Hydrogen sulfide (H2S) has recently been considered as a crucial gaseous transmitter
occupying extensive roles in physiological and biochemical processes throughout the life of plant
species. Furthermore, plenty of achievements have been announced regarding H2S working in
combination with other signal molecules to mitigate environmental damage, such as nitric oxide
(NO), abscisic acid (ABA), calcium ion (Ca2+), hydrogen peroxide (H2O2), salicylic acid (SA), ethylene
(ETH), jasmonic acid (JA), proline (Pro), and melatonin (MT). This review summarizes the current
knowledge within the mechanism of H2S and the above signal compounds in response to abiotic
stresses in plants, including maintaining cellular redox homeostasis, exchanging metal ion transport,
regulating stomatal aperture, and altering gene expression and enzyme activities. The potential
relationship between H2S and other signal transmitters is also proposed and discussed.

Keywords: hydrogen sulfide; nitric oxide; abscisic acid; Ca2+; hydrogen peroxide; abiotic stresses;
signal transmitters; stomatal movement

1. Introduction

Several abiotic stresses such as salt, drought, flooding, heat, cold, and freezing easily
result in the loss of crop production and a drop in economy in the world. Furthermore,
with ongoing industrialization and pesticides application, plants are more likely subjected
to some abiotic stresses including salinity and heavy metal (aluminum (Al); cadmium (Cd);
chromium (Cr); lead (Pb); cobalt (Co); arsenic (As); nickel (Ni)) stresses [1,2]. In order
to survive, plants must make a series of adjustments in morphology and physiological
and biochemical metabolism when they are subjected to abiotic stresses. There are many
kinds of mechanisms for plants to respond to abiotic stresses, including plant hormones,
osmotic regulators, active oxygen scavenging systems, genes, and proteins. When plants
are subjected to adversity stress, a series of changes will occur in the hormone levels,
thereby initiating or regulating certain physiological and biochemical processes related
to stress resistance to complete the response to adversity. Moreover, some inorganic and
organic osmotic substances such as Na+, K+, Cl−, proline (Pro), and soluble sugars may
accumulate when plants encounter stresses. Further, under normal circumstances, the
reactive oxygen species (ROS) are tightly controlled in plants, because plants have a reactive
oxygen scavenging system, which keeps the production and removal of reactive oxygen
species in a dynamic balance. This ROS includes hydrogen peroxide (H2O2), superoxide
anion (O2·-), singlet oxygen (·O2), and hydroxyl radical (·OH) [3]. Under the condition of
adversity, this balance is broken, and a large amount of active oxygen is produced. Active
oxygen attacks the membrane system, causing changes in membrane lipid components
and conformation of various enzymes on the membrane, loss of membrane selective
permeability, leakage of electrolytes and certain small molecular organic substances, and
disorder of mitochondria and chloroplast functions [1,4]. The active oxygen scavenging
system mainly includes two types of substances: one is an enzymatic protection system
composed of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), etc.; the
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other is non-enzymatic antioxidants including reduced glutathione (GSH), carotenoids
(Car), vitamin E, and other antioxidants [5]. Last but not least, some proteins such as
NAC, WRKY, basic region/leucine zipper motif (bZTP), and salt overly sensitive1 (SOS1)
participate in plant response to abiotic stresses [2,6].

Hydrogen sulfide (H2S) is a colorless, combustible, and hydrosoluble gas with an
obvious smell of rotten eggs, which has been widely considered as the third gasotransmitter
molecule besides nitric oxide (NO) and carbon monoxide (CO) [7]. The emission of H2S
was studied a long time ago. In 1978, Wilson et al. (1978) firstly observed the emission
of H2S in the leaves of cucumber (Cucumis sativus L.), squash and pumpkin (Cucurbita
pepo L.), cantaloupe (Cucumis melo L.), maize, soybean (Glycine max L. Merr), and cotton
(Gossypium hirsutum L.) [8]. Current studies show that H2S can be biosynthesized through
a variety of enzymes such as cysteine synthase (CS), β-cyanoalanine synthase (CAS), L-
cysteine desulfhydrase (LCD), D-cysteine desulfhydrase (DCD), and sulfite reductase (SiR)
in mitochondria, cytosol, and chloroplast [9,10]. In mitochondria, H2S can be produced
by CAS in the course of cyanide detoxification. The generation of H2S mainly occurs by
inducing the activities of LCD and DCD from cysteine (Cys) in the cytosol, which is also
accompanied by the formation of pyruvate and ammonia. SiR is the reaction catalyst in
the photosynthetic sulfate-assimilation pathway which induces the release of H2S in the
chloroplast [11,12]. Thus, endogenous H2S can be produced under the catalysis of the
corresponding enzymes [8–11]. The changes in endogenous H2S level can influence cellular
metabolisms, enzyme activities, and gene expressions, and thus modulate plant growth
and development [5,13]. Therefore, H2S is widely considered as a signaling molecule
within organic cells.

In the last few decades, increasing evidence has shown that H2S plays a vital role
in the treatment of diseases for animals and humans, including cancer [13], burns [14],
neurodegenerative diseases [15], and inflammation [16]. In addition, it is involved in many
processes of growth and development in plants. It can influence the seed germination,
root organogenesis, photosynthesis, stomatal movement, leaf senescence, fruit ripening
and nodulation, and nitrogen fixation [17]. H2S can also enhance the plant’s tolerance to
diverse biotic and abiotic stresses, such as bacterial and fungal pathogens, salinity, drought,
heat, hyperosmotic, oxidative and heavy metal stresses, etc. [5,17–19].

As a gaseous signaling molecule, H2S can interact with other signal molecules to
influence the growth and development of, and respond to abiotic stresses in, plants. Plenty
of research demonstrates that H2S is involved in NO-alleviated salt stress and heavy metal
stresses in the seedling roots of pea (Pisum sativum L. cv. Azad P-1) and barley (Hordeum
vulgare L.), as well as the seeds of alfalfa (Medicago sativa L. cv. Victoria) [20–22]. Besides,
some plant hormones such as abscisic acid (ABA), salicylic acid (SA), ethylene (ETH),
jasmonic acid (JA), and melatonin (MT) could alleviate abiotic stresses together with H2S in
the process of plant growth and development. Some ionic signals such as calcium ion (Ca2+)
and H2S are interrelated under stresses [23]. Meanwhile, H2O2 and proline (Pro) have been
reported to have a relationship with H2S under abiotic stresses during the process of plant
growth [17,24,25]. Here, we comprehensively review the crosstalk between H2S and other
signal molecules in response to abiotic stresses. Also, new research directions and future
prospects in this area will be discussed in this review (Figure 1).
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Figure 1. The summary of the biosynthesis of H2S, the crosstalk between H2S and other molecules,
the regulation of plant growth and development, and the response to abiotic stresses by H2S. H2S, hy-
drogen sulfide; LCD, L-cysteine desulfhydrase; DCD, D-cysteine desulfhydrase; CAS, β-cyanoalanine
synthase; SiR, sulfite reductase; NO, nitric oxide; ABA, abscisic acid; Ca2+, calcium ion; H2O2, hydro-
gen peroxide; SA, salicylic acid; JA, jasmonic acid; Pro, proline; MT, melatonin; Al, aluminum; Cd,
cadmium; Cr, chromium; Pb, lead; Co, cobalt; As, arsenic; Ni, nickel.

2. Crosstalk between H2S and NO in Response to Abiotic Stresses

NO is widely recognized as a gas transmitter in the regulation of seed germina-
tion, dormancy, stomatal aperture, adventitious root development, and photosynthesis in
plants [26,27]. NO also takes part in many stress alleviation processes, such as heavy metal,
extreme temperature, drought, salt, and UV-B radiation [4,28]. Moreover, the relationship
between H2S and NO under different stress conditions has been explored at both the
physiological and molecular levels, which remains a hot topic in plant science research in
recently years. The obtained achievements in this field were collected and shown below.

2.1. Crosstalk between H2S and NO in Response to Heavy Metal Stress

There is considerable research on how H2S and NO interplay with each other in
plants under heavy metal stress. In pea seedlings, As (V) reduced growth, photosynthesis
capacity, and nitrogen content [29]. An application of exogenous NaHS alleviated As (V)
toxicity by inducing H2S and NO generation. These results suggest a vital role of H2S
in As (V) stress tolerance. Also, exogenous H2S and NO could reduce the influence of
Cr (VI) toxicity in maize (Zea mays L.) in a similar manner [30]. Furthermore, H2S donor
NaHS and NO donor sodium nitroprusside (SNP), rather than other derivatives, were
found to specifically ameliorate Cd-induced oxidative damage in the root tissues of alfalfa
seedlings [31]. This work further confirms that both H2S and NO may participate in
alleviating heavy metal stress. In addition, the alleviation effects of NaHS and SNP were
reversed by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide potassium salt (cPTIO) [31], illustrating crosstalk between H2S and NO during the
response to Cd stress. Another study in wheat (Triticum aestivum L.) obtained similar results
that exogenous H2S might correlate with NO to enhance Co tolerance [32]. The above
studies show that H2S may cooperate with the NO signal in managing different heavy
metal stresses in plants.

The pharmacological method of introducing specific scavengers into different exper-
imental conditions was further employed to research the relationship between H2S and
NO under heavy metal ion stress in plants. Cd stress was shown to induce a burst of
endogenous NO and H2S in bermudagrass [Cynodon dactylon (L). Pers.] [33]. Moreover,
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exogenous NO donor SNP and H2S donor NaHS could improve Cd stress tolerance, while
the positive roles of SNP and NaHS were specifically blocked by H2S scavenger hypotau-
rine (HT, C2H7NO2S), but not by NO scavenger cPTIO and H2S inhibitors potassium
pyruvate (PP, C3H3KO3) and hydroxylamine (HA, H3NO). PP is regarded as the substrate
of dehydrogenase. H2S could interact with the dehydrogenase. HA is an alkaline inorganic
amine, which can react with the acid gas H2S; thereby, PP and HA are able to inhibit the
production of endogenous H2S [33]. Thus, NO could activate the H2S signal in response
to Cd stress, and maybe H2S is downstream of the NO signal. This phenomenon was
further proved by the study of Al stress in soybean roots, in which NO modulated Gm-
MATE13 and GmMATE47 gene expressions to enhance citrate secretion, and regulated
PM H+-ATPase activity through regulating H2S biosynthesis and degradation [34]. H2S
and NO improved Pb tolerance in Sesamum indicum, while the H2S-induced response was
completely eliminated by NO scavenger cPTIO [35]. Meanwhile, only part of the effect
conducted by NO was weakened by H2S scavenger HT. It seems that NO acts downstream
of H2S or independent of H2S in conferring plant tolerance to Pd stress. More recently, the
downstream role of NO in cooperation with H2S was also discovered in pepper (Capsicum
annuum L.) and wheat under Cd stress [36,37]. From the numerous studies of H2S and
NO, a hypothesis may be drawn that there exists a two-side signal cascades mechanism
between H2S and NO in mediating heavy metal damage (Figure 2).
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Figure 2. Overview for the mechanisms of the crosstalk between Ca2+, NO, and H2S to regulate plant response to abiotic
stresses. A protein marked with a red asterisk means that the protein can be persulfided. Ca2+, calcium ion; NO, nitric oxide;
H2S, hydrogen sulfide; LCD, L-cysteine desulfhydrase; DCD, D-cysteine desulfhydrase; APX, ascorbate peroxidase; SOD,
superoxide dismutase; GR, glutathione reductase; POD, peroxidase; CAT, catalase; CaM, calmodulin; PCs, phytochelatin
synthase; MT3A, metallothionein-like type 3; CDPKs, Ca2+-dependent protein kinases; AsA-GSH, ascorbate-glutathione
cycle; DHAR, dehydroascorbate reductase; POD, peroxidase; CAT, catalase.

2.2. Crosstalk between H2S and NO in Response to Salt Stress

It has long been recognized that H2S and NO participate in alleviating salt stress in
different plant species. Salt treatment (conducted by NaCl) could increase endogenous
H2S and NO generation in the leaves of Nicotiana tabacum L. cv. Havana by increasing
L-Cys and L-Arg contents and enhancing H2S and NO biosynthesis enzyme activities [38].
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Then, H2S and NO help plants to cope with oxidative stress induced by salinity. These
results suggest that both H2S and NO contribute to enhancing salt tolerance. Moreover,
H2S donor NaHS and NO donor SNP relieved the inhibition of seed germination under
salt stress in alfalfa through reestablishing ion homeostasis and maintaining activities of
antioxidant enzymes [39]. The attenuation effect of salinity damage by H2S was reversed
by NO scavenger cPTIO, suggesting that H2S enhanced salt tolerance through the NO
pathway [39]. Another report discovered a similar relationship between H2S and NO in
rescuing salt-induced inhibition of plant growth by regulating ion homeostasis [22].

The relationship between H2S and NO in salt resistance is still puzzled. It has been
found that NO accumulation occurred ahead of H2S, however, H2S could not stimulate
NO accumulation during the initial stage in salt-treated tomato (Solanum lycopersicum)
roots [40]. The results above illustrate that H2S acts downstream of NO under salt stress,
and may further induce NO production to strengthen the signal cascade in a feedback
manner (Figure 2). In addition, H2S and NO may act downstream of MT to alleviate salt
stress in pepper seedlings [41].

2.3. Crosstalk between H2S and NO in Response to Other Stresses

There also exists multiple pieces of evidence that H2S and NO cooperate with each
other in heat, drought, osmotic, and flooding stresses. The pretreatment of exogenous NO
enhanced the survival rate of maize seedlings under heat stress, and NO increased H2S
content [42]. Furthermore, NO-induced heat tolerance was eliminated by H2S synthesis
inhibitors and a H2S scavenger [42], indicating that H2S may act downstream of the NO
signal in NO-induced heat tolerance. Later, another study discovered that SNP treatment
facilitated the survival of submerged maize by enhancing the antioxidant system and regu-
lating ROS content, elevating intracellular Ca2+ content and ADH activity, and increasing
expressions of hypoxia-induced genes in maize seedling roots [43]. Moreover, SNP induced
endogenous H2S generation, and H2S increased the NO-enhanced acquisition of tolerance
to flooding-induced hypoxia in maize seedling roots [43], suggesting an analogical pattern
of H2S and NO signal cascades in relieving heat and hypoxia stresses.

H2S may act as a downstream component of NO in ethylene-induced stomatal closure
in Vicia faba L. [44]. Also, NO represented downstream of H2S in ABA-triggered stomatal
closure, which may suggest a paradoxical relationship between H2S and NO under drought
condition [45]. As for osmotic stress in wheat seedlings, the application of exogenous NO
markedly improved H2S synthesis enzymes LCD and DCD, as well as enhancing the
activity of O-acetylserine (thiol)lyase (OAS-TL) to modulate Cys homeostasis [46]. On the
other hand, NO scavenger cPTIO and H2S scavenger HT invalidated the effect of NO on
endogenous H2S levels and Cys homeostasis in wheat [46]. Thus, both H2S and NO could
contribute to reinforcing osmotic tolerance and direct stomatal closure, though the concrete
mechanism is largely unknown.

The H2S donor GYY4137 released a less severe H2S shock and a more prolonged
H2S flux; however, it decreased NO accumulation in guard cells of A. thaliana leaves, in
accordance with another type of H2S donor, NaHS [47]. In Medicago sativa, pretreatment
with NOSH or NOSH-aspirin, the novel donors, which can donate NO and H2S simultane-
ously to plants, could enhance plant tolerance to drought stress and improve the recovery
phenotype followed by rewatering [48]. Considering the cooperative relationship between
H2S and NO, acting as signal molecules in retarding environmental damages, NOSH or
NOSH-aspirin seems to be more favorable compared with NaHS and GYY4137 when used
in plant guard cells, however, the effect and dosage have yet to be demonstrated (Figure 2).

3. Crosstalk between H2S and ABA in Response to Abiotic Stresses

ABA has long been recognized as a significant phytohormone with the function of
regulating plant growth, development processes, and responses to diverse environmental
stresses [49]. Within drought stress, ABA may take a central role in endogenous physio-
logical processes, including stomatal movement [50,51]. Stomata are pores of plant aerial
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tissues and consist of a pair of guard cells. The stomatal aperture can be modulated by
these specialized cells to respond to external and internal stimuli [52]. Within the past
10 years, the research of H2S and ABA crosstalk in augmenting plant tolerance to abiotic
stresses has always come along with the regulation mechanism of stomatal movement.

3.1. Crosstalk between H2S and ABA in Response to Abiotic Stresses through Regulating Stomatal
Closure

H2S cooperates with ABA in modulating the stomatal aperture, which has long been
reported since [53] found that exogenous H2S regulated stomatal movement and enhanced
leaf relative water content (RWC) to strengthen plant drought tolerance in Arabidopsis
thaliana. Furthermore, scavenging H2S by HT or inhibiting H2S biosynthesis partially
blocked ABA-dependent stomatal closure through regulating ATP-binding cassette trans-
porters [53]. Similarly, pretreatment with H2S could considerably enhance rice’s tolerance
to drought stress by decreasing lipid peroxidation, maintaining antioxidant system activa-
tion, and improving ABA biosynthesis [54]. The results above affirm a role of H2S in ABA
signaling under environmental stresses. Furthermore, the stomatal aperture was enlarged
in lcd mutant plants, causing a sensitive drought phenotype [55]. In addition, LCD expres-
sion and H2S generation were down-regulated in ABA-related mutants aba3 and abi1, and
NaHS application increased stomatal closure in these mutants [55]. Thus, H2S may regulate
stomatal aperture in an ABA-dependent manner, and ABA may induce H2S biosynthesis
under drought stress. Simultaneously, another report revealed that pretreatment of exoge-
nous H2S enhanced wheat seedling tolerance to drought conditions through reinforcing
antioxidant capacity [56]. Besides, the application of H2S modulated ABA metabolic path-
way genes and up-regulated ABA receptors, indicating again that H2S alleviates drought
stress, at least in part, through the ABA signaling pathway. Furthermore, exogenous ABA
induced the endogenous H2S content under drought stress [56], illustrating a complex
relationship between H2S and ABA signals in modulating drought stress.

Mitogen-activated protein kinases (MAPKs) belong to a crucial signaling molecule
family which adjusts plants to multiple environmental stimuli [49]. In A. thaliana, drought
stress fortified H2S generation and gene expression of MAPK, however, the induced MAPK
expression was abolished in H2S synthesis double mutants lcd des1 [57]. Further, the
contributions of ABA to stomatal movements were also inhibited in lcd des1 and mpk4
mutants. In addition, H2S-enhanced stomatal closure was impaired in slac1-3 mutants [57],
in which SLAC1 is an S-type anion channel that responds to ABA signaling in stomatal
closure [58]. A previous report announced that H2S could activate S-type anion currents
via SLAC1 to induce stomatal closure [59]. In all, it could be proposed that H2S is involved
in ABA-stimulated stomatal closure. Thus, MPK4 may act downstream of H2S, and H2S-
MPK4 signal cascade is involved in ABA-stimulated stomatal closure in alleviating drought
stress [57].

Osmotic stress adversely causes internal environmental disorder on account of the
overproduction of ROS, which leads to a decrease in plant growth and productivity. Usually,
plants resist osmotic stress by enhancing the antioxidant system and stimulating signal
transductions [60]. Wheat could adjust itself to resisting osmotic stress by enhancing
antioxidant systems and inducing H2S biosynthesis [61]. Furthermore, exogenous ABA
induced AsA-GSH cycle activity, but H2S scavenger HT and synthesis inhibitor aminooxy
acetic acid (AOA) reversed the activities mentioned above [61]. These results suggest that
H2S induced by exogenous ABA is a signal that triggers the up-regulation of the AsA-GSH
cycle under osmotic stress. Obviously, H2S takes part in ABA-related stomatal closure in
response to different environmental stresses; however, the relationship between them is
complicated (Figure 3).
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3.2. Crosstalk between DES1/H2S and ABA in Response to Drought Stress through Regulating
Protein Persulfidation

ABA could stimulate H2S generation under stresses, but how H2S synthesis enzyme
DES1 contributes to the crosstalk between ABA and H2S is puzzled. Recently, by creating
transgenic lines that expressed DES1 in a tissue-specific pattern, it was found that the guard
cell-specific DES1 was involved in ABA-induced physiological molecular responses [62].
ABA-induced DES1 expression and H2S production in guard cells were inhibited by
H2S scavenger and restored by H2S donor [62]. The above genetic and pharmacological
evidence further confirmed the hypothesis that DES1 is a unique component in ABA
signaling in guard cells, and guard cell in situ DES1, together with H2S, participates in
ABA-guided stomatal closure [63].

Excitingly, another report discovered that the ABA signal was, in turn, commanded
by H2S-induced persulfidation of Open stomata 1 (OST1)/Snf1-related protein kinase 2.6
(SnRK2.6) on Cys131 and Cys137 residues in A. thaliana [64]. The persulfidated SnRK2.6
then interacted with ABA response element-binding factor 2 (ABF2), an ABA downstream
protein, to modulate stomatal movement. Also, ABA was detected to induce DES1 and
DCD expressions within 5–30 min previously [63,65], which suggests that the accumu-
lation of H2S by ABA is ahead of the occurrence of protein persulfidation. Together
with the works above, a hypothesis that ABA induces H2S accumulation, which further
persulfidates SnRK2.6 continuously to promote ABA signaling in guard cells, would be
proposed. The persulfidated SnRK2.6 then enhanced ABA- and H2S-induced Ca2+ influx,
which subsequently caused stomatal closure through the inhibition of inward K+ chan-
nels and activation of outward anion channels [66]. To be encouraged continually, the
DES1/H2S-triggered persulfidation mechanism in ABA-regulated stomatal movement
has been confirmed in another two reports [67,68]. One of their works found that ABA
triggered DES1 accumulation, and DES1 auto-presulfidated at Cys44 and Cys205 in a redox-
dependent fashion, causing a trigger of transient H2S overproduction in guard cells [67].
They also found that the sustained DES1/H2S drove persulfidation of the NADPH oxidase
respiratory burst oxidase homolog protein d (RBOHD) at Cys825 and Cys890 to strengthen
its ability to introduce a ROS burst, which in turn induced stomatal closure [67]. Together,
this work suggests that H2S-guided persulfidantion of DES1 and RBOHD may form a
negative feedback loop that fine-tunes guard cell redox homeostasis and ABA signaling.
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Abscisic acid insensitive 4 (ABI4) could also be persulfidated by DES1 at Cys250 in vitro
and in vivo, and served as a downstream target of H2S in plant’s response to ABA under
stress conditions [68]. In addition, DES1-linked persulfication of ABI4 induced MPAKKK18
transactivation through binding to the CE1 motif in the MAPKKK18 promoter, which fur-
ther enlarged the MAPK signaling cascade induced by ABA. Meanwhile, ABI4 could bind
to the DES1 promoter and, in turn, activate its transcription, forming a DES1-ABI4 loop
to fine-tune ABA-MAPK signals [68]. The results above illustrate a redox-based protein
persulfidation mechanism within the crosstalk between H2S- and ABA-involved stomatal
movement [69]. Further work may focus on the molecular mechanisms of persulfidation
and other post-translational modification events in H2S-regulated ABA signaling in guard
cells (Figure 3).

4. Crosstalk between H2S and Ca2+ in Response to Abiotic Stresses

Ca2+ is another well-known second messenger in plant cells with the function of
regulating intracellular physiological and biochemical processes, including alleviating
abiotic stresses. Calmodulin (CaM) is a receptor protein in calcium signal transduction, and
its main function is to perceive the volatility of intracellular calcium ions [10,70]. Recent
studies uncovered a new signal transduction pattern in which Ca2+ and H2S cooperate to
help plants resist environmental stresses.

4.1. Crosstalk between H2S and Ca2+ in Response to Heavy Metal Stress

Ca2+ influx was found to participate in restraining heavy metal contamination together
with H2S signal cascade. H2S synthesis inhibitor and Ca2+ chelators aggravated the toxic
phenotypes of foxtail millet (Setaria italica) exposed to Cr (VI) damage, demonstrating
the involvement of H2S and Ca2+ signals during this process [71]. Furthermore, Ca2+

enhanced the expressions of heavy metal chelator biosynthesis genes Metallothionein-like
type 3 (MT3A) and Phytochelatin Synthase (PCS) and activated the antioxidant system, which
was partially dependent on the H2S signal [71], indicating a downstream role of H2S
in Ca2+ signaling. A later report in A. thaliana further discovered that the expression of
H2S synthesis enzyme LCD was increased through a Ca2+/calmodulin 2 (CaM2)-directed
pathway, which may explain the generation of H2S in the defense of plants against the
Cr (VI) toxic condition [72,73]. The detailed mechanism was that the extracellular Cr
(VI) stimulated Ca2+ influx, and the CaM2 protein then bound Ca2+ and interacted with
the bZIP transcription factor TGA3, which further reinforced LCD gene expression and
enhanced H2S production [72]. Ca2+ and H2S donor NaHS induced AsA-GSH cycle,
redox homeostasis, and Ca2+-dependent protein kinase (CDPK) and Phytochelatins (PCs) genes
expressions under Ni toxicity in zucchini seedlings [74]. In addition, H2S scavenger
HT inhibited H2S accumulation induced by Ca2+, and Ca2+ chelator ethylene glycol-
bis(b-aminoethylether)-N,N,N’,N’-tetra-acetic acid (EGTA) eliminated the impacts of seed
priming induced by NaHS [74]. Thus, Ca2+ and H2S may manifest a two-side crosstalk
in inoculating plants against heavy metal conditions. The relationship between NO and
H2S has been discussed in another part of the present article, and it was put forward that
Ca2+, in association with NO and H2S, improved chlorophyll metabolism, photosynthesis,
carbohydrate accumulation, and maintained redox homeostasis in Vigna radiata under Cd
stress [32]. The study also discovered that NO scavenger cPTIO could reduce Ca2+ content,
and that EGTA reduced H2S content and altered Ca2+-dependent LCD and DCD enzyme
activities, but that HT could not considerably reduce Ca2+ content [32]. Therefore, Ca2+,
as a downstream signal of NO, may act in a two-side crosstalk pattern with H2S during
plants’ adjustment to heavy mental contamination (Figure 2).

4.2. Crosstalk between H2S and Ca2+ in the Regulation of Stomatal Closure

Stomatal closure is an important physiological process under stress conditions; thus,
the role of Ca2+ in stomatal closure was also summarized here. As mentioned above, H2S
contributed to regulate S-type anion channel activation in guard cells, and this process
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was correlated with the SnRK2.6 function and the level of cytosolic free Ca2+ [59]. Further,
H2S induced the Ca2+ influx in guard cells by stimulating the accumulation of ROS [75].
H2S triggered the persulfidation of SnRK2.6, and the persulfidated SnRK2.6 enhanced
ABA- and H2S-induced Ca2+ influx, which subsequently caused stomatal closure [64].
Therefore, Ca2+ may function downstream of H2S-driven stomatal closure in a redox- and
post-translational persulfidation-dependent manner (Figure 2).

4.3. Crosstalk between H2S and Ca2+ in Response to Other Stresses

As signal messengers, the crosstalk between H2S and Ca2+ has also been validated in
many kinds of other stress conditions. Pretreating with H2S enhanced the heat tolerance of
tobacco (Nicotiana tabacum L.) suspension-cultured cells by inhibiting electrolyte leakage
and MDA accumulation, and exogenous Ca2+ and its ionophore A23187 intensified these
effects [76]. However, H2S-induced heat tolerance was restrained by the application of Ca2+

chelator EGTA, as well as CaM antagonists chlorpromazine (CPZ) and trifluoperazine (TFP),
illustrating a role of Ca2+ and CaM in H2S-triggered heat tolerance [76]. Afterward, another
study announced that exogenous H2S enhanced the heat resistance of wheat coleoptiles
through strengthening antioxidant enzyme activities in a Ca2+-dependent manner [77].
Thus, Ca2+ and CaM participate in H2S-induced heat tolerance in plants.

As for K+ deficiency under NaCl stress in Vigna radiata seedlings, Ca2+ increased
endogenous H2S generation, and Ca2+ and H2S then cooperated with each other to induce
an Na+/H+ antiport system and antioxidant defense [78]. Considering another result that
adding of Ca2+-chelator EGTA and H2S scavenger HT reversed the effects of Ca2+ [78], a
hypothesis may be drawn that H2S acts downstream during Ca2+-mediated plant adaptive
responses to NaCl stress (Figure 2).

5. Crosstalk between H2S and H2O2 in Response to Abiotic Stresses

H2O2 is a colorless transparent liquid and crucial signaling molecule. Various studies
have shown that H2O2 plays important roles in seed germination, stomatal movement,
shoot and root development, pollination, and fruit ripening [79]. Also, it can modulate the
plant growth and development under abiotic stresses [80]. The crosstalk between H2S and
H2O2 under stress has been studied in recent years.

5.1. Crosstalk between H2S and H2O2 in Response to Heavy Metal Stress

Cd stress could regulate the homeostasis of ROS and promote oxidative injury, which
may cause cell death [81]. Cd could decrease vacuolar H+-ATPase activity, which was able
to generate a proton gradient across the vacuolar membrane [82]. Under high Cd concen-
tration stress, H2O2 and O2·- significantly enhanced and triggered the oxidative injury, thus
resulting in cell death in Brassica rapa root tips [81]. However, when B. rapa was exposed to
low concentration Cd stress, the transcript levels of H2S biosynthesis-related genes LCD
and DCD were significantly increased. Simultaneously, H2O2 had a remarkable increase
and O2·- went down, whereas H2S biosynthesis inhibitor or H2S scavenger reversed the
positive effects, indicating a role of H2S in alleviating low Cd stress by adjusting the balance
between H2O2 and O2·− [81]. H2S donor NaHS treatment increased the photosynthetic
fluorescence parameters in cotyledons of cucumber (C. sativus L. var. Wisconsin) seedling
roots exposed to 100 µM CdCl2 for 24 h [82]. In addition, both the enhancement of H2O2
content and the decline in H2S content in roots decreased vacuolar H+-ATPase activity
under Cd stress. Further, the increase in H2S content in root tissue by exogenous H2O2
had nothing to do with the desulfurization enzyme activity. Exogenous H2S remarkably
enhanced the NADPH oxidase activity and the relative gene expression; however, it did not
have an effect on the accumulation of H2O2 in cucumber roots under Cd stress [82]. Hence,
H2S content might be partially enhanced through the H2O2/NADPH oxidase-induced
pathway, independent of desulfhydrase activity (Figure 4).
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5.2. Crosstalk between H2S and H2O2 in Response to Salt Stress

H2S donor NaHS could enhance the activity of PM H+-ATPase under salt or low-
temperature stress in cucumber, and the transcript levels of the plasma membrane pro-
ton pump-related genes including CsHA2, CsH4, CsH8, CsH9, and CsHA10 were also
increased [83]. However, NO and H2O2 only enhanced the expression of CsHA1. Therefore,
H2S, NO, and H2O2 could resist the salt stress by regulating the plasma membrane proton
pump at different standards. Usually, salt stress could induce stomata closure. However,
the H2S scavengers HT, AOA, hydroxylamine (NH2OH), potassium pyruvate (C3H3KO3),
ammonia (NH3), H2O2, ascorbic acid (AsA), CAT, and diphenyl iodide (DPI) suppressed
the closure of stomata in V. faba L. [44], suggesting that both H2S and H2O2 could regulate
stomatal movement under salt stress. Furthermore, endogenous H2S and H2O2 accumula-
tion and the activities of LCD and DCD were enhanced by salt treatment in guard cells.
Nevertheless, these effects were inhibited by H2O2 and H2S scavengers. Exogenous H2O2
scavengers prevented the increase in endogenous H2S level as well as the stomatal closure;
however, H2O2 generation was barely influenced with the application of H2S scavengers
in guard cells responding to salt stress [44]. Hence, H2S may act as the downstream of
H2O2-alleviated salt stress (Figure 4).

5.3. Crosstalk between H2S and H2O2 in Response to Drought Stress

Drought stress is one of the most serious abiotic stresses in the world. Treatment
by spermidine (Spd) remarkably enhanced H2S production and activities of antioxidant
enzymes [SOD, CAT, guaiacol peroxidase (GPOX), APX, GR, dehydroascorbate reductase
(DHAR), and monodehydroascorbate reductase (MDHAR)] in white clover (Trifolium
repens) under dehydration conditions [84]. Furthermore, NO and H2S scavengers could
not reduce the generation of H2O2 induced by Spd, but H2O2 scavengers could effectively
inhibit the increase of NO and H2S induced by Spd. The H2S signal induced by Spd was
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also significantly inhibited by NO scavenger [84]. Hence, in response to dehydration, H2S
may be the downstream signaling molecule to interact with NO and H2O2 (Figure 4).

5.4. Crosstalk between H2S and H2O2 in Response to Other Stresses

UV-B is a common stress in practical agricultural production. When plants encounter
the UV-B stress, the levels of electrolyte leakage, MDA, and ultraviolet absorbing com-
pounds decreased, and the activities of antioxidant enzymes, GSH, and AsA also de-
clined [85]. However, exogenous H2S, H2O2, and putrescence (Put) could alleviate the
negative effects of UV-B stress. The protective role of Put in UV-B radiation damage was
reduced by the inhibitors of H2S, H2O2, and Put [86]. Moreover, the level of H2O2 was
increased by exogenous H2S, and the enhanced H2O2 promoted the accumulation of UV
absorbing compounds in hulless barley (H. vulgare L. var. nude, Kunlun-12) seedlings, thus
preserving the steady state of oxidation-reduction under UV-B stress and improving its
UV-B tolerance [86].

In addition, extreme temperature is a key factor which influences plant growth and
development. H2S, NO, and H2O2 had a significant impact in response to low temperature
(10 ◦C) by modulating the plasma membrane proton pump in cucumber roots [83]. More-
over, H2O2 treatment could improve the heat resistance in maize (Z. mays L., Huidan No.
4) seedlings, and this effect could be strengthened by NO and H2S donors but abolished
by NO and H2S scavengers or synthesis inhibitors [87]. It seems that NO and H2S act
downstream of H2O2 in the acquisition of heat resistance in plants (Figure 4).

6. Crosstalk between H2S and Other Signal Molecules in Response to Abiotic Stresses

In recent years, many kinds of signal transmitters have emerged to regulate plant
growth and development, and to acclimate to environment changes. The protective role
of H2S related to these signal molecules such as SA, ETH, JA, Pro, and MT (mentioned in
another part of the article) under toxic environment in plants has also been explored to
some extent.

6.1. Crosstalk between H2S and SA in Response to Abiotic Stresses

SA has long been recognized as a pivotal signal messenger, manifesting multiple
functions in defending plant disease and adverse environmental conditions. Endogenous
SA biosynthesis is mainly proceeded in the cytoplasm through the phenylalanine route by
phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) [10,88,89].
SA and H2S enhanced heat tolerance by strengthening the activities of antioxidant enzymes
and increasing osmolyte content in maize seedlings [90]. Further, SA induced endogenous
H2S generation by enhancing the activity of H2S synthesis enzyme DES [91]. While the
increase in SA production and the relative enzyme activities of PAL and BA2H were rarely
influenced by H2S, this downstream role of H2S in SA-induced stress responses was also
similarly reported in Cd tolerance in A. thaliana [92]. Thus, the positive role of SA under
the stress condition is partially dependent on H2S. Pb stress accelerated endogenous H2S
production [35]. Moreover, SA improved enzyme activities of the AsA-GSH cycle system in
pepper under Pb stress [93]. In addition, exogenous SA enhanced the H2S content, which
was further reinforced by H2S donor NaHS. It seems that SA triggers endogenous H2S
accumulation, which further regulates the AsA-GSH cycle to resist Pb toxicity (Figure 5).
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Figure 5. Overview of the mechanisms of the crosstalk between H2S and JA, SA, ETH, and Pro to
regulate plant response to abiotic stresses. A gene or protein marked with a red asterisk means
that the protein can be persulfided. H2S, hydrogen sulfide; LCD, L-cysteine desulfhydrase; DES,
desulfhydrase; SA, salicylic acid; JA, jasmonic acid; ETH, ethylene; Pro, proline; APX, ascorbate
peroxidase; SOD, superoxide dismutase; GR, glutathione reductase; POD, peroxidase; CAT, catalase;
ACO1, 1-aminocyclopropane-1-carboxylic acid oxidase 1; ACO2, 1-aminocyclopropane-1-carboxylic
acid oxidase 2; P5CR, proline-5-carboxylate reductase; PDH, proline dehydrogenase.

6.2. Crosstalk between H2S and ETH in Response to Abiotic Stresses

Ethylene induced H2S biosynthesis in guard cells in tomatoes under osmotic stress [94].
Moreover, the effect of ethylene on resisting osmotic stress was reversed by H2S scav-
enger HT or H2S synthetic inhibitor PAG, suggesting a downstream component of H2S
in ethylene-triggered stomatal closure under osmotic stress. Further, H2S induced the
persulfidation of 1-aminocyclopropane-1-carboxylic acid oxidase1 (ACO1) and ACO2, and
restrained their expressions. As a result, H2S negatively regulated ethylene generation in
response to osmotic stress [94]. These results are parallel with a recently published mecha-
nism of waterlogging damage resistance in peach (Prunus persica L. Batsch) seedlings [95],
in which H2S restrained over-synthesis of ethylene as well as inhibited oxidative damage
under waterlogging stress (Figure 5).

6.3. Crosstalk between H2S and JA in Response to Abiotic Stresses

JA is another phytohormone kind signal transmitter with extensive modulation func-
tions in plant root elongation [96], anthocyanin accumulation and trichome initiation [97],
stamen development and flowing [98], leaf senescence [99], and stress resistance [100].
A recent study announced a critical role of JA in inhibiting stomatal development in A.
thaliana [101]. Furthermore, JA positively modified LCD activity and H2S production.
The JA-deficient mutants represented a high stomatal density phenotype, which could be
reversed by exogenous H2S, whereas the H2S synthesis-deficient mutants lcd displayed
similar stomatal development phenotype as the JA-deficient mutants, which could be
rescued by H2S donor NaHS but not by JA [102]. Thus, H2S may act as a downstream
member of JA in stomatal development (Figure 5).
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6.4. Crosstalk between H2S and Pro in Response to Abiotic Stresses

Pro is a kind of organic osmolyte with a wide distribution in plant cells. Previous stud-
ies have demonstrated the increase of Pro after the application of signal transmitter agents
in defense of abiotic stresses [89,103,104]. Pretreatment with exogenous H2S increased
endogenous Pro content, and the activities and transcription levels of proline-5-carboxylate
reductase (P5CR) and proline dehydrogenase (PDH) in foxtail millet, whereas H2S scav-
enger or inhibitor reduced the above effects [105]. Moreover, the combined application
of H2S and Pro resulted in preferable growth status, stomatal movement, and oxidative
remission under stress conditions. These results indicate a cooperation of Pro and H2S
under adverse environments (Figure 5).

7. Conclusions and Outlook

The disadvantageous environment conditions cause oxidative damage, ionic imbal-
ance, and osmotic stress to plants, resulting in a weakened growth and development
status. H2S can reinforce plant tolerance to these stresses through constructing a luxuriant
crosstalk with other signal molecules, such as NO, ABA, Ca2+, H2O2, SA, ETH, JA, Pro,
and MT. The genes regulated by H2S and other molecules under abiotic stress conditions
are displayed in Table 1. There exists a legible clue that environmental stresses and various
signal transmitters stimulate endogenous H2S generation and improve the activities of
H2S synthesis enzymes under the stress condition. Meanwhile, H2S represents a feed-
back manner to enhance the signal cascades in inducing the accumulation of some signal
messengers, especially NO, ABA, and Ca2+. In addition, the existence of DES1-related
auto-persulfidation and persulfidation may be the reason for the extensive inspiration of
its enzyme activity in different stress conditions. In summary, H2S acts as a downstream
signal member in cooperation with ABA, H2O2, SA, ETH, JA, and MT, but an upstream
signal member of Pro under stress condition. Nevertheless, the crosstalk between H2S, NO,
and Ca2+ represents a two-side signal cascades manner, whereas relationships between
H2S and other signal molecules vary on account of the specific stress pattern.

Multiple types of research need to be done to explore the point-to-point mechanism
within the crosstalk between H2S and one single signal transducer under abiotic stress
conditions. Firstly, the feedback molecular mechanism of H2S and NO, and the interactions
within protein persulfidation, S-sulfhydration, and S-nitrosylation, remain unclear. Next,
more post-translational modification proteins need to be discovered and identified that
are triggered by H2S in ABA- or NO-dependent signal pathways under stress condition.
Finally, new signal messengers related to H2S activity are waiting to be discovered.

Table 1. Genes regulated by H2S and other molecules under abiotic stress conditions.

Crosstalk between
H2S and other

Molecules
Stresses Plant Species Tissue Regulated Genes References

H2S and NO salt stress Medicago sativa seeds APX-1, APX-2, and Cu/Zn-SOD [39]
Hordeum vulgare L. seedlings HvHA, HvVHA-β, HvSOS1, HvVNHX2,

HvAKT1 and HvHAK4 [22]
Solanum lycopersicum seedlings SlL-DES, SlCAS and SlCS [40]

drought M. sativa L. leaves GST17, Cu/ZnSOD, FeSOD, NR, cAPX, PIP [48]
hypoxia stress Zea mays L. seedlings P4H, ADH, CRT1, GS, CYP51 and ME [43]

cadmium stress M. sativa L. seedlings Cu/Zn–SOD, APX and POD [31]
cobalt stress Triticum aestivum L. seedlings RbcL [32]

aluminum stress Glycine max L. seedlings MATE13, MATE47, MATE58, MATE74,
MATE79, MATE84, and MATE87 [34]

H2S and ABA drought Oryza sativa L. seedlings NCED2, NCED3, NCED5, AREB1, AREB8,
bZIP23 and LEA3 [54]

Arabidopsis seedlings
TPC1, GORK, SKOR, KCO1, MYP5, ACA9,

ACA11, CAX1, SLAC1, AKT1A, KT2, KC1 and
KAT1

[55]

T. aestivum L. leaves and roots TaZEP, TaNCED, TaAAO and TaSDR [56]
Arabidopsis thaliana - MAPKs [57]

chromium stress A. thaliana seedlings LCD [72]
nickel stress Cucurbita pepo L. seedlings CDPK and PCS1 [74]

H2S and Ca2+ chromium stress Setaria italica seedlings MT3A, PCS, CaM, CBL and CDPK [71]

H2S-H2O2 cadmium stress Brassica rapa. seedlings Br_UPB1A, Br_UPB1B↑; Bra035235, Bra033551,
Bra006423, ra023639 [89]

cadmium stress Cucumis sativus L. roots
CsVHA-A, CsVHA-B, CsVHA-a1, CsVHA-a2,

CsVHA-a3, CsVHA-c1, CsVHA-c2 and
CsVHA-c3

[82]
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Table 1. Cont.

Crosstalk between
H2S and other

Molecules
Stresses Plant Species Tissue Regulated Genes References

H2S, NO and H2O2 salt or low temperature C. sativus L. roots CsHA1, CsHA2, CsH4, CsH8, CsH9 and CsHA10 [83]
dehydration Trifolium repens seedlings bZIP37, bZIP107, DREB2, DREB4 and

WRKY108715 [84]
H2S and ETH osmotic stress S. lycopersicum seedlings LeACO1 and LeACO2 [94]
H2S and Pro cadmium stress Foxtail millet seedlings PDH and P5CR [105]

APX, ascorbate peroxidase; SOD, superoxide dismutase; HA, H+-ATPase; VNHX2, vacuolar Na+/H+ antiporter; VHA-β, H+-ATPase
subunit β; HAK4, high-affinity K+ uptake system; L-DES, L-cysteine desulfhydrase; CAS, β-cyanoalanine synthase; CS, L-cysteine
synthase; P4H, prolyl 4-hydroxylase; ADH, alcohol dehydrogenase; CRT1, calcium binding protein; CYP51, cytochrome P450 14a-sterol
demethylase; GS, glutamate synthase 1; ME, NADP-dependent malic enzyme; POD, peroxidase; rbcL, rubisco large subunit; NCED, 9′-cis-
epoxycarotenoid dioxygenase; TPC1, two pore segment channel 1; GORK, guard cell outward-rectifying Kþ channel; SKOR, SKI family
transcriptional corepressor; KCO, outward-rectifying K+ channel; ACA, adenylyl cyclase-associated protein; CAX, calcium exchanger;
SLAC1, slow anion channel associated 1; AKT, Arabidopsis potassium transporter; KC1, potassium channel 1; KAT1, potassium channel in
Arabidopsis thaliana 1; ZEP, zeaxanthin epoxidase; AAO, abscisic aldehyde oxidase; SDR, short-chain dehydrogenase; MAPK, mitogen-
activated protein kinase; LCD, L-cysteine desulfhydrase; CDPK, Ca2+-dependent protein kinase; PCS, phytochelatin; CaM, calmodulin; CBL,
calcineurin B-like; ACO, 1-aminocyclopropane-1-carboxylic oxidase; PDH, proline dehydrogenase; P5CR, proline-5-carboxylate reductase.
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