Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions
Abstract
:1. Introduction
2. Non-Functionalised Acellular Scaffolds
2.1. Biological Acellular Scaffolds
2.2. Polymeric Scaffolds
2.3. Conductive Scaffolds
Scaffold Composition | Model | Protocol Followed to Induce MI | Post MI Timing of Scaffold Application | Follow Up | Biological Effects | Ref. |
---|---|---|---|---|---|---|
Biological Scaffolds | ||||||
Decellularised porcine myocardium | Male SD rats | Permanent LAD ligation | Immediately (implanted) | Up to 4 weeks | ↑ Cell attachment viability and infiltration, ↑ Vasculogenesis, ↑ EF, ↑ FS | [21] |
Myocardial matrix | Female SD rats | Ischemia reperfusion | 8 weeks (injected) | Up to 5.5 weeks | = LVEDV, = LVESV, ↑ apical wall thickening, ↓ Fibrosis, ↑ Cardiac muscle contraction-related gene expression, ↓ Fibrotic pathway-related gene expression | [27] |
CorMatrix ECM | Male Landrace pigs | Ischemia reperfusion | 75 min (implanted) | Up to 6 weeks | ↑ LV wall thickness, ↓ Scar formation, ↓ Fibrosis, ↑ Vasculogenesis | [31] |
CorMatrix ECM | Male Fischer rats | Ischemia reperfusion | 3 weeks (implanted) | Up to 14 weeks | ↑ Vasculogenic paracrine response, Stimulation pro-reparative pathways, ↑ Blood vessel assembly | [32] |
CorMatrix ECM | Clinical study (NCT02887768) | (implanted) | Up to 6 months | ↓ Scar burden, ↓ Perfusion of infarcted myocardium | [33] | |
VentriGel | Clinical study (NCT02305602) | (injected) | Up to 6 months | ↑ Exercise capacity, = EF, = infarct size | [36] | |
nmECM | Male BALB/cJ mice | Permanent LAD ligation | Immediately (injected) | Up to 6 weeks | ↓ EDA, ↓ ESA, ↑ FAC, ↑ FS, ↑ EF, ↓ Fibrosis, ↑ Angiogenesis | [38] |
Human AM | Female SD rats | Ischemia reperfusion | 2 days (injected) | 4 weeks | ↑ EF, ↑ FS, ↓ Infarct size, ↓ Fibrosis | [41] |
Decell-AM | Male BALB/c mice | Permanent LAD ligation | Immediately (implanted) | 4 weeks | ↓ Infarct size, ↑ Wall thickness, ↑ Contractile function | [42] |
Polymeric Scaffolds | ||||||
PGS-PCL | Male SD rats | Permanent LAD ligation | 2 days (implanted) | Up to 4 weeks | ↓ Ventricular wall thinning, ↓ Infarct size, ↓ Apoptosis, ↑ Vascular density, ↑ M2 macrophage infiltration | [46] |
SAP-(RADA)4-SDKP | Adult male SD rats | Permanent LAD ligation | Immediately (injected) | 4 weeks | ↓ Fibrosis, ↑ Microvasculature, ↓ Inflammatory response, ↓ Infarct size, ↑ EF, ↑ FS, = LVEDD, ↓ LVESD | [56] |
Capgel | Male SD rats | Permanent LAD ligation | Immediately (injected) | Up to 8 weeks | ↑ FS, ↑ Blood vessels | [61] |
Algisyl | Clinical Study (NCT01311791) | (injected) | Up to 1 year | ↑ Exercise capacity, = EF, = LVEDD, = LV function, size and mass | [64] | |
BCM | Clinical study (NCT01226563) | (injected) | Up to 6 months | = LV remodelling No clinical benefits | [65] | |
HA | Adult male Dorset sheep | LAD ligation | 30 min (injected) | Up to 8 weeks | ↑ LV wall thickness, = LVEDV, ↓ LVESV, ↓ LV dilation, ↑ EF | [69] |
Starch | Male SD rats | LAD ligation | Acute MI model | [70] | ||
Immediately (implanted) | Up to 12 weeks | ↓ LVEDD, ↓ LVESD, ↑ EF, ↑ FS, ↑ LV wall thickness, ↓ Fibrosis, ↓ Infarct size, ↓ myocyte hypertrophy, ↓ Inflammation | ||||
Subacute MI model: | ||||||
1 week (implanted) | Up to 3 weeks | = LVEDD, = LVESD, ↑ EF, ↑ FS, ↑ LV wall thickness, ↓ Fibrosis, ↓ Infarct size, ↓ myocyte hypertrophy | ||||
SF | Male SD rats | Permanent LAD ligation | 7 days (injected) | Up to 12 weeks | ↑ FS, ↑ EF, ↑ LV wall thickness, ↓ Fibrosis, ↓ LV enlargement | [72] |
CS | Male SD rats | Permanent LAD ligation | 1 h (injected) | Up to 16 weeks | ↓ Infarct size, ↑ Angiogenesis, ↓ LVEDD, ↓ LVESD, ↑ EF | [77] |
Acetylated CS | Male Wistar rats | Permanent LAD ligation | 4 weeks (implanted) | Up to 4 weeks | ↑ EF, ↑ FS, ↓ LVESV, ↓ LVEDV, = Capillaries number per cardiomyocytes, ↓ Fibrosis, = Proinflammatory cytokines expression | [78] |
Poly(NIPAAm-co-HEMA-co-MAPLA) | Female Yorkshire swine | Permanent LAD ligation | 3 weeks (injected) | Up to 8 weeks | ↑ EF, = LVEDV, = LVESV, ↑ FAC, ↓ Scar size, ↑ LV wall thickness, ↑ LV stiffness, ↑ Cell infiltration, ↑ Tissue integration, ↑ Vascular maturation | [79] |
Dex-PCL-HEMA/PNIPAAm | Male SD rats | Permanent LAD ligation | Immediately (injected) | 12 weeks | ↓ LVEDD, ↓ LVESD, ↓ LVEDP, ↑ FS, ↓ Cardiac hypertrophy ↑ Scar thickness, ↓ Infarct size, ↓ Fibrosis | [80] |
Gelatin methacryloyl | C57BL6 mice | Permanent LAD ligation | Immediately (implanted) | 3 weeks | ↑ LV anterior wall thickness, ↓ LV posterior wall thickness, = LVEDD, = LVESD, ↑ FS, ↓ Scar formation | [81] |
Conductive scaffolds | ||||||
rGO/silk | Male SD rats | Permanent LAD ligation | Immediately (implanted) | 4 weeks | ↑ EF, ↑ FS, ↑ Angiogenesis, ↑ Cardiomyocyte survival, ↑ Contractile function, Resistance to ventricular fibrillation | [87] |
PAMB-G hydrogel | Female SD rats | Permanent LAD ligation | 1 week (injected) | 4 weeks | ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ Scar Size, ↑ Scar thickness, ↓ Immune cells infiltration, ↑ Electrical conduction, ↓ Arrhythmias, Synchronises cardiomyocyte contraction | [88] |
HA-CHO/HHA | Male SD rats | LAD ligation | Immediately (injected) | 4 weeks | ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ LVESV, ↓ LVEDV, ↑ Electrical conduction, ↓ Fibrosis, ↓ Infarct sizes, ↑ Wall thickness, ↑ Angiogenesis | [89] |
GelDA/DA-Py | Immediately (painted) | |||||
PPY-HI | Female SD rats | LAD ligation | 1 week (injected) | Up to 12 weeks | ↑ FS, ↑ EF, ↓ LVESV, = LVEDV, ↑ Angiogenesis, ↓ Fibrotic scar resistivity, ↓ QRS/QT intervals, ↓ Arrhythmia, ↑ Electrical conduction, Synchronise cardiomyocyte contraction. | [90] |
(GO-Au)-CS | Male Wistar rats | LAD ligation | Immediately (implanted) | Up to 5 weeks | ↑ Conductivity, ↑ Conduction velocity and contractility, ↑ QRS interval, ↑ EF, ↑ FS, ↑ LVEDD, = LVESD | [91] |
GO-OPF | Male SD rats | LAD ligation | Immediately (injected) | Up to 4 weeks | ↓ Infarct sizes, ↑ Wall thickness, ↑ FS, ↑ EF, ↓ LVESV, = LVEDV, ↑ Neovascularisation, ↑ Electrical conductance, ↑ Cardiac repair | [92] |
Gelatin/Pyrrole-dopamine | Male SD rats | LAD ligation | Immediately (painted) | 4 weeks | ↑ FS, ↑ EF, ↓ LVESV, ↓ LVEDV, ↓ QRS interval, ↓ Fibrosis, ↓ Infarct sizes, ↑ Wall thickness, ↑ Revascularisation | [93] |
3. Functionalised Acellular Scaffolds
3.1. Acellular Scaffolds Coupled with ECM Components
3.2. Acellular Scaffolds Coupled with Exogenous Cardioprotective Compounds
3.3. Acellular Scaffolds Coupled with Growth Factors
3.4. Acellular Scaffolds Coupled with Extracellular Vesicles
3.5. Acellular Scaffolds Coupled with Peptides/Proteins
3.6. Acellular Scaffolds Coupled with Enzymes Inhibitors
3.7. Acellular Scaffolds Coupled with Drugs
3.8. Acellular Scaffolds Coupled with Gene Therapy
Scaffold Composition | Delivered Molecules | Model | Protocol Followed to Induce MI | Timing of Scaffold Application Post-MI | Follow Up | Biological Effects | Ref. |
---|---|---|---|---|---|---|---|
Acellular scaffolds coupled with ECM components | |||||||
PECUU-ECM | ECM components | Female Lewis rats | LAD ligation | 2 weeks (implanted) | Up to 8 weeks | ↓ ESA, ↓ EDA, ↑ FAC, ↓ Scar formation, ↑ LV wall thickness, ↑ Angiogenesis | [94] |
PECUU-ECM | ECM components | Female Lewis rats | LAD ligation | 8 weeks (implanted) | Up to 8 weeks | ↓ LV dilation, ↓ Infarct size, ↑ LV stiffness, ↑ EF, ↑ FS, = ESA, = EDA, = LV thickness | [96] |
Acellular scaffolds coupled with exogenous compounds | |||||||
PLGA/gelatine | Adenosine | Female landrace pigs | Ischemia reperfusion | 5 min (implanted) | 12 weeks | ↑ pro-survival RISK signalling pathways, ↓ Inflammation, ↓ Fibrosis | [98] |
PCL | Nitric Oxide | Male SD rats | Ischemia reperfusion | Acute MI model | [99] | ||
Immediately (implanted) | 4 weeks | ↑ EF, ↑ FS, ↓ LVEDD, ↓ LVESD, ↓ Apoptosis, ↓ Inflammation, ↑ Angiogenesis, ↑ CM survival, ↓ Collagen deposition | |||||
Chronic MI model | |||||||
4 weeks (implanted) | 4 weeks | ↑ EF, ↑ FS, ↓ Infarct size, ↓ Cardiac dilation | |||||
Pigs | Ischemia reperfusion | Immediately (implanted) | Up to 4 weeks | ↑ EF, ↑ FS, ↓ LVEDV, ↓ LVEDD, ↑ Cardiac Output, ↓ Infarct size, ↑ Neovascularisation, ↑ LV thickness, ↑ CM proliferation | |||
HBPAK-(HA-MA) | ROS scavenger and O2 generator | Male SD rats | LAD ligation | Immediately (injected) | 4 weeks | ↓ Apoptosis, ↑ Angiogenesis, ↓ Infarct size, ↓ Inflammation, ↑ EF, ↑ FS, ↓ LVEDV, ↓ LVESV | [103] |
Sodium-Alginate | Bioglass | Male SD rats | LAD occlusion | 7 days (injected) | 4 weeks | ↓ Apoptosis, ↑ Angiogenesis, ↓ Infarct size, ↑ EF, ↑ FS, ↓ LVEDD ↓ LVESD | [105] |
Acellular scaffolds coupled with growth factors | |||||||
Polycaprolactone/collagen type 1- | SP and IGF-1C | Female BALB/c mice | Permanent LAD ligation | Immediately (implanted) | 2 weeks | ↑ EF, ↓ LVESV, ↓ LVEDV, ↓ Collagen deposition, ↓ Fibrosis, ↓ Apoptosis, ↑ Endogenous stem cells recruitment, ↑ LV wall thickness, ↑ Vascularisation | [109] |
PLLA | GCSF | Male New Zealand white rabbits | Permanent LAD ligation | 4 weeks (implanted) | 2 weeks | ↑ EF, ↑ FS, ↓ LVESV, = LVEDV, = LVEDD, ↓ LVESD, ↓ Infarct size, ↑ Angiogenesis, ↑ ECM reorganisation | [111] |
Gelatin sheets | bFGF | Male rats (F344/NJcl-rnu/rnu) | Permanent LAD ligation | 4 weeks (implanted) | 4 weeks | ↑ FS, ↑ FAC, = LVEDD, ↓ Scar formation, ↑ Angiogenesis | [114] |
Dex-PCL-HEMA/PNIPAAm | bFGF | Male SD rats | LAD ligation | Immediately (injected) | 30 days | ↑ Angiogenesis, ↓ Collagen content, ↓ Infarct size, ↓ Apoptosis, ↑ EF, ↓ LVESD, ↓ LVEDD | [115] |
Gelatin sheets | bFGF | Male beagles’ canines | LAD ligation | 4 weeks (implanted) | Up to 4 weeks | = LVEDD, ↓ LVESD, ↑ FS, ↑ FAC, = EDA, = ESA, ↑ Vascular density | [116] |
Calcium alginate-CS | VEGF | Female SD rats | Permanent LAD ligation | 4 days (implanted) | Up to 4 weeks | ↑ FS, ↑ Scar thickness, ↓ Scar area, ↑ Angiogenesis | [117] |
Dex-PCL-HEMA/PNIPAAm | VEGF165 | Male SD rats | LAD ligation | Immediately (injected) | 30 days | ↑ Angiogenesis, ↓ Collagen content, ↓ Infarct size, ↓ Apoptosis, ↑ EF, ↓ LVESD, ↓ LVEDD | [118] |
Hydrazide-HA, ALD-HA and ALD-DS | AACs and VEGF | Male SD rats | LAD ligation | Immediately (injected) | 4 weeks | ↓ Cardiac hypertrophy, ↓ LVEDD, ↓ LVESD, ↑ LV wall thickness, ↓ Fibrosis, ↓ Inflammation, ↑ Revascularisation | [119] |
Alginate/ SF7calcium gluconate | VEGF and BMP9 | Male C57BL/6 mice | Permanent LAD ligation | Immediately (injected) | 4 weeks | ↑ Angiogenesis, ↓ Fibrosis, ↑ EF, ↑ FS | [120] |
Ureido-pyrimidinone-PEG | VEGF and IGF1 | Male OF1 mice | Reperfusion ischemic injury | Immediately (injected) | Up to 22 days | ↑ Angiogenesis, ↓ Fibrosis, ↑ Remuscularisation, ↑ EF, ↓ LVESV, = LVEDV | [121] |
PPC-ET/PEG | Citrate and Mydgf | Male SD rats | Permanent LAD ligation | Immediately (injected) | 4 weeks | ↑ EF, ↑ FS, ↓ LVESD, ↓ LVEDD, ↓ Infarct size, ↓ Fibrosis, ↑ LV thickness, ↑ Neovascularisation | [124] |
HEMA-HA | Neuregulin | Male Dorset sheep | Permanent LAD ligation | 10 min (injected) | 8 weeks | = Heart rate, = Mean Arterial Pressure, ↑ EF, = LVEDV, = LVESV, ↑ Stroke work index, ↑ Cardiac power index, ↑ LV contractility, ↓ Infarct size | [126] |
Alginate-hydrogel | GH | Wistar rats | Ischemia reperfusion | 10 min (injected) | 24 h | = Infarct size, ↓ VT-episodes, ↓ Sympathetic activation | [127] |
SF-Alginate | IGF-1 | Female SD rats | Permanent LAD ligation | 10 min (injected) | Up to 4 weeks | ↑ EF, ↓ Infarct size, ↑ LV wall thickness, ↓ Fibrosis | [128] |
PEG-VS/P1 | HGFdf | Adult male Wistar rats | Permanent LAD ligation | Immediately (injected) | 4 weeks | ↑ EF, ↑ FAC, ↑ Stroke volume, ↓ LVESV, ↓ LVEDV, ↓ Infarct size, ↑ Arteriole density | [129] |
HA-PEG-PLA | HGFdf and SDF-1α | Adult male Wistar rats | Permanent LAD ligation | Immediately (injected) | 4 weeks | ↑ Vessel density, ↓ Infarct size, ↓ LVESD, ↓ LV systolic area, ↓ LV diastolic area, ↑ EF, ↑ FS, ↑ FAC | [130] |
Male Dorset sheep | LAD occlusion | Immediately (injected) | 8 weeks | ↓ Infarct size, = EF, = LVEDV, = LVESV, ↓ End diastolic mass ↑ End systolic mass | |||
Decellularised myocardial ECM | ECM components and synthetic cardiac stromal cells, HGF, IGF, VEGF | Female SD rats | Permanent LAD ligation | Immediately (implanted) | 3 weeks | ↑ EF, ↑ FS, ↓ Infarct size, ↑ Viable cardiac tissue, ↑ Wall thickness, ↑ Angiomyogenesis, ↓ Apoptosis | [133] |
Female Yorkshire pigs | Permanent LAD ligation | 10 min (implanted) | 1 week | ↑ EF, ↑ FS, ↓ Infarct size, ↓ Fibrosis | |||
Acellular scaffolds coupled with Extracellular vesicles | |||||||
STG | EPCs derived EVs | Male Wistar rats | Ischemia reperfusion | Immediately (injected) | Up to 4 weeks | Maximum rate of systolic and diastolic pressure change, ↑ EF, ↓ LVESV, ↓ LVEDV, ↑ Vascular density, ↑ Inflammatory cell recruitment, ↓ Scar thickness | [137] |
(RADA)4-SDKP | MSCs derived EVs | Adult male Wistar rats | Permanent LAD ligation | Immediately (injected) | Up to 4 weeks | ↑ EF, ↑ FS, = LVEDD, ↑ Fibrosis, ↑ Angiogenesis, ↓ Macrophage infiltration | [140] |
GelMA | MSCs derived EVs | Male C57 BL mice | LAD ligation | Immediately (sprayed) | 4 weeks | ↓ Apoptosis, ↑ Angiogenesis, ↓ Scar size, ↑ Infarct thickness, ↑ EF | [141] |
Sodium alginate | MSCs derived EVs | Male SD rats | Permanent LAD ligation | 30 min (injected) | 4 weeks | ↓ Inflammation, ↓ Apoptosis, ↓ Infarct size, ↑ Angiogenesis, ↑ Scar thickness, ↑ EF, ↑ FS, = LVEDD, ↓ LVESD | [142] |
Collagen | iPS-CM derived EVs | Athymic nude SD rats | LAD ligation | Immediately (implanted) | Up to 4 weeks | ↓ Arrhythmic burden, ↓ Cell hypertrophy, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ Apoptosis, ↓ Infarct size | [143] |
Acellular scaffolds coupled with peptides/proteins | |||||||
ECM-derived collagen I | 7Ap | Female C57/B6 mice | Permanent LAD ligation | Immediately (injected) | Up to 2 weeks | ↑ Neo-vasculogenesis, ↓ Apoptosis, ↑ CM cycle progression, ↑ stem cells recruitment, ↓ LV wall fibrosis, ↓ wall thinness, ↑ LV Stroke volume, ↑ FS, ↑ EF, ↑ Cardiac output, ↓ LVEDD, = LVESD | [147] |
EDC/NHS/CS | rHCI rHCIII | Female C57BL/6 mice | LAD ligation | 7 days (injected) | 4 weeks | ↑ EF, ↑ FAC, ↓ LVESV, = LVEDV, ↑ Stroke volume, ↑ Cardiac output, ↓ Scar size, = Vascular density, ↑ Capillary density in the border zone, ↓ CM’s survival | [150] |
Sericin-genipin | Sericin | Male C57BL/6 mice | Permanent LAD ligation | Immediately (injected) | Up to 6 weeks | ↑ LV wall thickness, ↓ Scar thickness, ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ LVESV, ↓ LVEDV, ↓ Inflammatory response, ↑ Neovascularisation, ↓ Apoptosis, | [151] |
Decellularised ECM/ Collagen | Angiogenic peptide derived from VEGF | Male SD rats | LAD ligation | Immediately (injected) | Up to 12 weeks | ↑ EF, ↑ FS, = LVEDD, = LVESD, = LV anterior wall, = LV posterior wall, = Interventricular septum, ↑ Vascularisation, ↓ Apoptosis | [152] |
Acellular scaffolds coupled with enzymes inhibitors | |||||||
HA | rTIMPs | Male pigs | Permanent LAD ligation | Immediately (injected) | Up to 4 weeks | ↓ EF, ↑ LVEDV, ↓ LV dilation, ↓ LV thinness, ↓ Left atrial size, ↓ pulmonary capillary wedge pressure, ↑ Contractile function ↓ Transcriptional profile of myofibroblasts and profibrotic pathways | [160] |
PNIPAAm copolymer | MMP-2 inhibitor peptide | Male SD rats | Lad Ligation | 30 min (injected) | 4 weeks | ↓ LV dilation, ↑ Wall thickness, ↑ Collagen type III/I ratio, ↑ Myofibroblast density, ↓ Fibrosis ↑ FS, ↑ EF, ↓ LVESV, ↓ LVEDV | [161] |
Fibrin/Heparin | TIMP-3, FGF-2, SDF-1α | Male SD rats | Permanent LAD ligation | 5 min (injected) | Up to 8 weeks | ↑ FAC, ↑ EF, ↓ LVESV, ↓ LVEDV ↓ LV wall thinness, ↓ Ventricular dilation, ↑ cardiac function, ↓ Fibrosis, ↓ Apoptosis, ↑ CM survival, ↑ Stem cell recruitment, ↓ Inflammation, ↑ Angiogenesis | [162] |
Glutathione modified collagen | GST-TIMP-bFGF | Male SD rats | LAD ligation | Immediately (injected) | 4 weeks | ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↑ Wall thickness, ↓ Collagen deposition, ↑ Vascularisation | [163] |
Acellular scaffolds coupled with drugs | |||||||
PLGA-PEG-PLGA | Col | Male C57BL/6 mice | LAD ligation | Immediately (injected) | 4 weeks | ↓ Inflammation, ↓ Fibrosis, ↓ Apoptosis, ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ Ventricular wall stiffening | [166] |
EMH/ PDA NPs | SaB | SD rats | Coronary artery ligation | Immediately (injected) | 4 weeks | ↑ FS, ↑ EF, ↓ LVEDD, ↓ LVESD, ↓ Apoptosis, ↓ Fibrosis, ↑ LV wall thickness, ↑ Vascularisation | [169] |
HB-PBAEs/HA-SH | Tanshinone IIA | Rats | Permanent LAD ligation | Immediately (injected) | Up to 4 weeks | ↓ Ventricular dilation, ↑ FS, ↑ EF, ↑ LV wall thickness, ↓ LVESD, = LVESV, ↑ Heart rate, ↑ LVSP, ↓ Myocardial relaxation time, ↓ LV maximum upstroke velocity, ↑ LV maximum descent velocity, ↓ Infarct size, ↓ Inflammation | [170] |
DrugMAP-PEG | Forskolin and Repsox | Female SD rats | Ischemia reperfusion | 2 days (injected) | 5 weeks | ↓ Infarct size, ↑ Wall thickness, ↓ LVESV, ↓ LVEDV, ↑ EF, ↑ Cell infiltration, ↑ Angiogenesis, ↓ Fibrosis, ↑ Cell migration, ↑ Inflammatory response, | [171] |
Poly(thioketal) urethane | Methylprednisolone | Male SD rats | LAD ligation | 30 min (implanted) | Up to 4 weeks | ↑ EF, ↑ FS, ↓ LVEDV, ↓ LVESV, ↓ LVESD, ↓ LV dilation, ↑ LV thickness, ↓ Infarct size, ↑ Revascularisation | [173] |
Acellular scaffolds coupled with gene therapy | |||||||
PEUU-PEEUU | Recombinant AAV | Female Lewis rats | LAD ligation | 3 days (injected) | Up to 12 weeks | ↑ LV wall thickness, ↑ Cell infiltration, ↓ EDA, ↑ FAC, ↑ EF | [176] |
Gelatine and silicate | AAV-miR-1825 | Female C57BL/6 mice | Permanent LAD ligation | Immediately (injected) | Up to 4 weeks | ↑ EF, ↑ FS, ↓ LV dilation, ↓ Infarct size, ↑ CM proliferation | [181] |
HA | miR-302 | Male C57BL/6 mice | Ischemia reperfusion | Immediately (injected) | Up to 4 weeks | ↑ CM proliferation and regeneration at the infarct border zone, ↓ LVESV, ↓ LVEDV, ↑ EF, ↑ FS, = Infarct size, = Apoptosis, = Vascular density, ↓ LVEDD, ↓ LVESD | [183] |
Thiolated HA-PEG diacrylate | miR-29B | C57BL/6 mice | Ischemia reperfusion | 45 min (injected) | Up to 5 weeks | ↑ EF, ↑ FS, = Scar area, = Heart mass, = LVESV, = LVEDV, = Collagen fibres and elastin between infarct, ↑ Collagen fibres at infarct border, = Collagen fibre orientation & quantity, ↓ Elastin at infarct border zone, = ECM proteins expression, ↑ Blood vessel density | [187] |
Gelatine | Antagomir-92a | Male SD rats | Ischemia reperfusion | Immediately (implanted) | Up to 2 weeks | ↑ Angiogenesis, ↑ Stem cells accumulation, ↑ Cardiomyogenesis, ↓ LVEDD, ↑ FS | [190] |
PEGCHO/MSN | miRNA-21-5p | Male Yucatan mini pigs | LAD ligation | Immediately (injected) | Up to 4 weeks | ↑ EF, = LVESV, = LVEDV, = LV posterior wall thickness, ↓ Fibrosis, ↓ Infarct size, ↑ Vascularisation, ↓ Inflammation | [191] |
4. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Anderson, J.L.; Morrow, D.A. Acute myocardial infarction. N. Engl. J. Med. 2017, 376, 2053–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahit, M.C.; Kochar, A.; Granger, C.B. Post-myocardial infarction heart failure. JACC Heart Fail. 2018, 6, 179–186. [Google Scholar] [CrossRef]
- Fuchs, M.; Schibilsky, D.; Zeh, W.; Berchtold-Herz, M.; Beyersdorf, F.; Siepe, M. Does the heart transplant have a future? Eur. J. Cardiothorac. Surg. 2019, 55, i38–i48. [Google Scholar] [CrossRef]
- Marui, A.; Kimura, T.; Nishiwaki, N.; Komiya, T.; Hanyu, M.; Shiomi, H.; Tanaka, S.; Sakata, R. Three-year outcomes after percutaneous coronary intervention and coronary artery bypass grafting in patients with heart failure: From the CREDO-Kyoto percutaneous coronary intervention/coronary artery bypass graft registry cohort-2. Eur. J. Cardiothorac. Surg. 2015, 47, 316–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, M.A.; Ashley, E.A.; Fedak, P.W.; Hawkins, N.; Januzzi, J.L.; McMurray, J.J.; Parikh, V.N.; Rao, V.; Svystonyuk, D.; Teerlink, J.R. Mind the gap: Current challenges and future state of heart failure care. Can. J. Cardiol. 2017, 33, 1434–1449. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.C.; Ho, B.X.; Soh, B.-S. Mending a broken heart: Current strategies and limitations of cell-based therapy. Stem Cell Res. Ther. 2020, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, M.; Di Pasquale, E. Toward cardiac regeneration: Combination of pluripotent stem cell-based therapies and bioengineering strategies. Front. Bioeng. Biotechnol. 2020, 5, 455. [Google Scholar] [CrossRef] [PubMed]
- Bar, A.; Cohen, S. Inducing endogenous cardiac regeneration: Can biomaterials connect the dots? Front. Bioeng. Biotechnol. 2020, 8, 32175315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Bao, M.; Nie, Y. Extracellular matrix–based biomaterials for cardiac regeneration and repair. Heart Fail. Rev. 2021, 26, 1231–1248. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Wojakowski, W.; Lemarchand, P.; Lunde, K.; Tendera, M.; Bartunek, J.; Marban, E.; Assmus, B.; Henry, T.D.; Traverse, J.H. Meta-analysis of cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ. Res. 2015, 116, 1346–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover-Plow, J.; Gong, Y. Challenges for heart disease stem cell therapy. Vasc. Health Risk Manag. 2012, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J. Suspect science leads to pause in stem cell trial. Science 2018, 362, 513. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Serpooshan, V.; Zhang, J. Engineering human cardiac muscle patch constructs for prevention of post-infarction LV remodeling. Front. Cardiovasc. Med. 2021, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Investig. 2017, 127, 1600–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhao, Q.; Kong, W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol. 2018, 68, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Derrick, C.J.; Noël, E.S. The ECM as a driver of heart development and repair. Development 2021, 19, 1320. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, M.P.; Kai, D.; Ghasemi-Mobarakeh, L.; Ramakrishna, S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed. Mater. 2011, 6, 055001. [Google Scholar] [CrossRef]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahabipour, F.; Banach, M.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering. Int. J. Cardiol. 2017, 228, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Kc, P.; Zhang, G. In vivo assessment of decellularized porcine myocardial slice as an acellular cardiac patch. ACS Appl. Mater. Interfaces 2019, 11, 23893–23900. [Google Scholar] [CrossRef]
- Melhem, M.; Jensen, T.; Reinkensmeyer, L.; Knapp, L.; Flewellyn, J.; Schook, L. A hydrogel construct and fibrin-based glue approach to deliver therapeutics in a murine myocardial infarction model. J. Vis. Exp. 2015, 91, e52562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methe, K.; Bäckdahl, H.; Johansson, B.R.; Nayakawde, N.; Dellgren, G.; Sumitran-Holgersson, S. An alternative approach to decellularize whole porcine heart. Biores. Open Access 2014, 3, 327–338. [Google Scholar] [CrossRef]
- Jeffords, M.E.; Wu, J.; Shah, M.; Hong, Y.; Zhang, G. Tailoring material properties of cardiac matrix hydrogels to induce endothelial differentiation of human mesenchymal stem cells. ACS Appl. Mater. Interfaces 2015, 7, 11053–11061. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Pawan, K.; Copeland, K.M.; Liao, J.; Zhang, G. A thin layer of decellularized porcine myocardium for cell delivery. Sci. Rep. 2018, 8, 16206. [Google Scholar] [CrossRef] [PubMed]
- Sirry, M.S.; Butler, J.R.; Patnaik, S.S.; Brazile, B.; Bertucci, R.; Claude, A.; McLaughlin, R.; Davies, N.H.; Liao, J.; Franz, T. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J. Mech. Behav. Biomed. Mater. 2016, 63, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.D.; Tran, E.; Spang, M.; Wang, R.; Gaetani, R.; Luo, C.G.; Braden, R.; Hill, R.C.; Hansen, K.C.; DeMaria, A.N. Injectable myocardial matrix hydrogel mitigates negative left ventricular remodeling in a chronic myocardial infarction model. Basic Transl. Sci. 2021, 6, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Dziki, J.L.; Badylak, S.F. Extracellular matrix for myocardial repair. Adv. Exp. Med. Biol. 2018, 1098, 151–171. [Google Scholar]
- Mosala Nezhad, Z.; Poncelet, A.; De Kerchove, L.; Gianello, P.; Fervaille, C.; El Khoury, G. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: A systematic review. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Vasanthan, V.; Biglioli, M.; Hassanabad, A.F.; Dundas, J.; Matheny, R.G.; Fedak, P.W. CorMatrix Cor™ PATCH for epicardial infarct repair. Future Cardiol. 2021, 17, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Mewhort, H.E.; Turnbull, J.D.; Satriano, A.; Chow, K.; Flewitt, J.A.; Andrei, A.-C.; Guzzardi, D.G.; Svystonyuk, D.A.; White, J.A.; Fedak, P.W. Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. J. Heart Lung Transplant. 2016, 35, 661–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewhort, H.E.; Svystonyuk, D.A.; Turnbull, J.D.; Teng, G.; Belke, D.D.; Guzzardi, D.G.; Park, D.S.; Kang, S.; Hollenberg, M.D.; Fedak, P.W. Bioactive extracellular matrix scaffold promotes adaptive cardiac remodeling and repair. JACC Basic Transl. Sci. 2017, 2, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Svystonyuk, D.A.; Mewhort, H.E.; Hassanabad, A.F.; Heydari, B.; Mikami, Y.; Turnbull, J.D.; Teng, G.; Belke, D.D.; Wagner, K.T.; Tarraf, S.A. Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Sci. Rep. 2020, 10, 9459. [Google Scholar] [CrossRef]
- Lederman, L. Cell-based, cell-free patches for cardio repair. Genet. Eng. Biotechnol. News 2018, 38, 20–22. [Google Scholar] [CrossRef]
- O’Dwyer, J.; Wylie, R.; Cryan, S.A.; Duffy, G.P.; Dolan, E.B. Cardiac responses to biomaterials. In Handbook of Biomaterials Biocompatibility; Elsevier: Amsterdam, The Netherlands, 2020; pp. 573–599. [Google Scholar]
- Traverse, J.H.; Henry, T.D.; Dib, N.; Patel, A.N.; Pepine, C.; Schaer, G.L.; DeQuach, J.A.; Kinsey, A.M.; Chamberlin, P.; Christman, K.L. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl. Sci. 2019, 4, 659–669. [Google Scholar] [CrossRef]
- Suarez, S.L.; Rane, A.A.; Muñoz, A.; Wright, A.T.; Zhang, S.X.; Braden, R.L.; Almutairi, A.; McCulloch, A.D.; Christman, K.L. Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomater. 2015, 26, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Long, D.W.; Huang, Y.; Chen, W.C.; Kim, K.; Wang, Y. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomater. 2019, 87, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.-H.; Jin, J.; Joe, J.-H.; Song, Y.-S.; So, B.-I.; Lim, S.M.; Cheon, G.J.; Woo, S.-K.; Ra, J.-C.; Lee, Y.-Y. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: Comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012, 21, 1687–1696. [Google Scholar] [CrossRef]
- Roy, R.; Kukucka, M.; Messroghli, D.; Kunkel, D.; Brodarac, A.; Klose, K.; Geißler, S.; Becher, P.M.; Kang, S.K.; Choi, Y.-H. Epithelial-to-mesenchymal transition enhances the cardioprotective capacity of human amniotic epithelial cells. Cell Transplant. 2015, 24, 985–1002. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.J.; Delrosario, L.; Fang, J.; Wong, S.Y.; Fang, Q.; Sievers, R.; Kotha, S.; Wang, A.; Farmer, D.; Janaswamy, P. Development of injectable amniotic membrane matrix for postmyocardial infarction tissue repair. Adv. Healthc. Mater. 2020, 9, 1900544. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Haase, T.; Ma, N.; Bader, A.; Becker, M.; Seifert, M.; Choi, Y.-H.; Falk, V.; Stamm, C. Decellularized amniotic membrane attenuates postinfarct left ventricular remodeling. J. Surg. Res. 2016, 200, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.M.; Bernaerts, K.V.; Harings, J.A.; Jockenhoevel, S.; Ghazanfari, S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater. 2018, 79, 60–82. [Google Scholar] [CrossRef] [PubMed]
- Gultekinoglu, M.; Öztürk, Ş.; Chen, B.; Edirisinghe, M.; Ulubayram, K. Preparation of poly (glycerol sebacate) fibers for tissue engineering applications. Eur. Polym. J. 2019, 121, 109297. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, K.; Kai, D.; Li, Z.; Loh, X.J. Polyester elastomers for soft tissue engineering. Chem. Soc. Rev. 2018, 47, 4545–4580. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, D.; Huang, S.; Yang, Q.; Song, B.; Guo, Y.; Shen, A.; Yuan, Z.; Li, S.; Qing, F.L. Elastic 3D-printed hybrid polymeric scaffold improves cardiac remodeling after myocardial infarction. Adv. Healthc. Mater. 2019, 8, 1900065. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.J.; Christman, K.L. Designing acellular injectable biomaterial therapeutics for treating myocardial infarction and peripheral artery disease. JACC Basic Transl. Sci. 2017, 2, 212–226. [Google Scholar] [CrossRef]
- Portnov, T.; Shulimzon, T.R.; Zilberman, M. Injectable hydrogel-based scaffolds for tissue engineering applications. Rev. Chem. Eng. 2017, 33, 91–107. [Google Scholar] [CrossRef]
- Yuan, X.; He, B.; Lv, Z.; Luo, S. Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Adv. 2014, 4, 53801–53811. [Google Scholar] [CrossRef]
- Carlini, A.S.; Gaetani, R.; Braden, R.L.; Luo, C.; Christman, K.L.; Gianneschi, N.C. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat. Commun. 2019, 10, 1735. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.A.; Taylor, N.L.; Shi, S.; Wang, B.K.; Jalan, A.A.; Kang, M.K.; Wickremasinghe, N.C.; Hartgerink, J.D. Highly angiogenic peptide nanofibers. ACS Nano 2015, 9, 860–868. [Google Scholar] [CrossRef] [Green Version]
- French, K.M.; Somasuntharam, I.; Davis, M.E. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv. Drug Deliv. Rev. 2016, 96, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, X.-P.; Janic, B.; Rhaleb, N.-E.; Harding, P.; Nakagawa, P.; Peterson, E.L.; Carretero, O.A. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1176–H1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, G.E.; Rhaleb, N.-E.; Nakagawa, P.; Liao, T.-D.; Liu, Y.; Leung, P.; Dai, X.; Yang, X.-P.; Carretero, O.A. N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clin. Sci. 2014, 126, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, S.W.; Ji, S.T.; Kim, Y.J.; Jang, W.B.; Oh, J.-W.; Kim, J.; Yoo, S.Y.; Beak, S.H.; Kwon, S.-M. Engineered M13 nanofiber accelerates ischemic neovascularization by enhancing endothelial progenitor cells. Tissue Eng. Regen. Med. 2017, 14, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Firoozi, S.; Pahlavan, S.; Ghanian, M.-H.; Rabbani, S.; Tavakol, S.; Barekat, M.; Yakhkeshi, S.; Mahmoudi, E.; Soleymani, M.; Baharvand, H. A cell-free SDKP-conjugated self-assembling peptide hydrogel sufficient for improvement of myocardial infarction. Biomolecules 2020, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 2019, 11, 042001. [Google Scholar] [CrossRef] [PubMed]
- Raus, R.A.; Nawawi, W.M.F.W.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2021, 16, 280–306. [Google Scholar] [CrossRef]
- Sabbah, H.N.; Wang, M.; Gupta, R.C.; Rastogi, S.; Ilsar, I.; Sabbah, M.S.; Kohli, S.; Helgerson, S.; Lee, R.J. Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail. 2013, 1, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Picatoste, B.; Njerve, I.U.; Ishikawa, K.; Aguero, J.; Vahl, T.; Hammoudi, N.; Sanz, J.; Narula, J.; Hajjar, R.J. Intracoronary delivery of bioabsorbable alginate matrix (IK-5001) ameliorates adverse post-infarction left ventricular remodeling and improves left ventricular function in a porcine model of reperfused myocardial infarction. Circulation 2015, 132, A18200. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Willenberg, B.J.; Qi, Y.; Simmons, C.S.; Rubiano, A.; Ferreira, L.F.; Huo, T.; Petersen, J.W.; Ruchaya, P.J.; Wate, P.S. An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats. Int. J. Cardiol. 2016, 220, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anker, S.D.; Coats, A.J.; Cristian, G.; Dragomir, D.; Pusineri, E.; Piredda, M.; Bettari, L.; Dowling, R.; Volterrani, M.; Kirwan, B.-A. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur. Heart J. 2015, 36, 2297–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.J.; Hinson, A.; Bauernschmitt, R.; Matschke, K.; Fang, Q.; Mann, D.L.; Dowling, R.; Schiller, N.; Sabbah, H.N. The feasibility and safety of Algisyl-LVR™ as a method of left ventricular augmentation in patients with dilated cardiomyopathy: Initial first in man clinical results. Int. J. Cardiol. 2015, 199, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L.; Lee, R.J.; Coats, A.J.; Neagoe, G.; Dragomir, D.; Pusineri, E.; Piredda, M.; Bettari, L.; Kirwan, B.A.; Dowling, R. One-year follow-up results from AUGMENT-HF: A multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur. J. Heart Fail. 2016, 18, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Zeymer, U.; Douglas, P.S.; Al-Khalidi, H.; White, J.A.; Liu, J.; Levy, H.; Guetta, V.; Gibson, C.M.; Tanguay, J.-F. Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J. Am. Coll. Cardiol. 2016, 68, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Grumezescu, A.M.; Bejenaru, L.E. Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol. 2018, 59, 71–76. [Google Scholar] [PubMed]
- Abdalla, S.; Makhoul, G.; Duong, M.; Chiu, R.C.; Cecere, R. Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 767–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsey, S.M.; McGarvey, J.R.; Wang, H.; Nikou, A.; Arama, L.; Koomalsingh, K.J.; Kondo, N.; Gorman, J.H., III; Pilla, J.J.; Gorman, R.C. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 2015, 69, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Rodell, C.B.; Lee, M.E.; Wang, H.; Takebayashi, S.; Takayama, T.; Kawamura, T.; Arkles, J.S.; Dusaj, N.N.; Dorsey, S.M.; Witschey, W.R. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ. Cardiovasc. Interv. 2016, 9, e004058. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Liu, Y.; Bai, A.; Cai, H.; Bai, Y.; Jiang, W.; Yang, H.; Wang, X.; Yang, L.; Sun, N. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 2019, 3, 632–643. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The biomedical use of silk: Past, present, future. Adv. Healthc. Mater. 2019, 8, 1800465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kambe, Y.; Yamaoka, T. Biodegradation of injectable silk fibroin hydrogel prevents negative left ventricular remodeling after myocardial infarction. Biomater. Sci. 2019, 7, 4153–4165. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res. Int. 2015, 2015, 915. [Google Scholar] [CrossRef] [Green Version]
- Rami, L.; Malaise, S.; Delmond, S.; Fricain, J.C.; Siadous, R.; Schlaubitz, S.; Laurichesse, E.; Amédée, J.; Montembault, A.; David, L. Physicochemical modulation of chitosan-based hydrogels induces different biological responses: Interest for tissue engineering. J. Biomed. Mater. Res. Part A 2014, 102, 3666–3676. [Google Scholar] [CrossRef] [PubMed]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Fiamingo, A.; Montembault, A.; Boitard, S.-E.; Naemetalla, H.; Agbulut, O.; Delair, T.; Campana-Filho, S.r.P.; Menasché, P.; David, L. Chitosan hydrogels for the regeneration of infarcted myocardium: Preparation, physicochemical characterization, and biological evaluation. Biomacromolecules 2016, 17, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Henning, R.J.; Khan, A.; Jimenez, E. Chitosan hydrogels significantly limit left ventricular infarction and remodeling and preserve myocardial contractility. J. Surg. Res. 2016, 201, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Domengé, O.; Ragot, H.; Deloux, R.; Crépet, A.; Revet, G.; Boitard, S.E.; Simon, A.; Mougenot, N.; David, L.; Delair, T. Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: Impact of the acetylation degree of chitosan. Acta Biomater. 2021, 119, 125–139. [Google Scholar] [CrossRef]
- Matsumura, Y.; Zhu, Y.; Jiang, H.; D’Amore, A.; Luketich, S.K.; Charwat, V.; Yoshizumi, T.; Sato, H.; Yang, B.; Uchibori, T. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials 2019, 217, 119289. [Google Scholar] [CrossRef]
- Wen, Y.; Li, X.-y.; Li, Z.-y.; Wang, M.-l.; Chen, P.-p.; Liu, Y.; Zhang, X.-z.; Jiang, X.-j. Intra-myocardial delivery of a novel thermosensitive hydrogel inhibits post-infarct heart failure after degradation in rat. J. Cardiovasc. Transl. Res. 2020, 13, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Ptaszek, L.M.; Portillo Lara, R.; Shirzaei Sani, E.; Xiao, C.; Roh, J.; Yu, X.; Ledesma, P.A.; Hsiang Yu, C.; Annabi, N.; Ruskin, J.N. Gelatin methacryloyl bioadhesive improves survival and reduces scar burden in a mouse model of myocardial infarction. J. Am. Heart Assoc. 2020, 9, e014199. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.R.; Krogh-Madsen, T.; Christini, D.J. Computational approaches to understanding the role of fibroblast-myocyte interactions in cardiac arrhythmogenesis. BioMed Res. Int. 2015, 46, 5714. [Google Scholar] [CrossRef] [Green Version]
- Bunch, T.J.; Hohnloser, S.H.; Gersh, B.J. Mechanisms of sudden cardiac death in myocardial infarction survivors: Insights from the randomized trials of implantable cardioverter-defibrillators. Circulation 2007, 115, 2451–2457. [Google Scholar] [CrossRef] [Green Version]
- Dhein, S.; Salameh, A. Remodeling of cardiac gap junctional cell–cell coupling. Cells 2021, 10, 2422. [Google Scholar] [CrossRef]
- Navaei, A.; Moore, N.; Sullivan, R.T.; Truong, D.; Migrino, R.Q.; Nikkhah, M. Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues. RSC Adv. 2017, 7, 3302–3312. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, L.; Lan, L.; Gao, Y.; Zhang, Q.; Dawit, H.; Mao, J.; Guo, L.; Shen, L.; Wang, L. Conductive biomaterials for cardiac repair: A review. Acta Biomater. 2021, 4, 18. [Google Scholar] [CrossRef]
- Zhao, G.; Feng, Y.; Xue, L.; Cui, M.; Zhang, Q.; Xu, F.; Peng, N.; Jiang, Z.; Gao, D.; Zhang, X. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater. 2021, 3, 73. [Google Scholar] [CrossRef]
- Zhang, C.; Hsieh, M.-H.; Wu, S.-Y.; Li, S.-H.; Wu, J.; Liu, S.-M.; Wei, H.-J.; Weisel, R.D.; Sung, H.-W.; Li, R.-K. A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 2020, 231, 119672. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Cui, C.; Huang, Y.; Liu, Y.; Fan, C.; Han, X.; Yang, Y.; Xu, Z.; Liu, B.; Fan, G. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat myocardial infarction. ACS Appl. Mater. Interfaces 2019, 12, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, J.; Li, S.-H.; Wang, L.; Sun, Y.; Xie, J.; Ramnath, D.; Weisel, R.D.; Yau, T.M.; Sung, H.-W. The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials 2020, 258, 120285. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Sareen, N.; Abu-El-Rub, E.; Ashour, H.; Sequiera, G.L.; Ammar, H.I.; Gopinath, V.; Shamaa, A.A.; Sayed, S.S.E.; Moudgil, M. Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci. Rep. 2018, 8, 15069. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, X.; Liu, W.; Wang, C.; Shen, Y.; Zhang, F.; Zhu, H.; Sun, H.; Chen, J.; Lam, J. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics 2018, 8, 3317. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, Y.; Wang, H.; Xu, Z.; Chen, J.; Bao, R.; Tan, B.; Cui, Y.; Fan, G.; Wang, W. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv. Mater. 2018, 30, 1704235. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, A.; Yoshizumi, T.; Luketich, S.K.; Wolf, M.T.; Gu, X.; Cammarata, M.; Hoff, R.; Badylak, S.F.; Wagner, W.R. Bi-layered polyurethane–extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016, 107, 1–14. [Google Scholar] [CrossRef]
- Ajaj, Y.; Akingbesote, N.D.; Qyang, Y. PECUU-ECM Patches: The future of ischemic heart disease repair. JACC Basic Transl. Sci. 2021, 6, 464–466. [Google Scholar] [CrossRef]
- Silveira-Filho, L.M.; Coyan, G.N.; Adamo, A.; Luketich, S.K.; Menallo, G.; D’Amore, A.; Wagner, W.R. Can a biohybrid patch salvage ventricular function at a late time point in the post-infarction remodeling process? JACC Basic Transl. Sci. 2021, 6, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Rossello, X.; Yellon, D.M. The RISK pathway and beyond. Basic Res. Cardiol. 2018, 113, 2. [Google Scholar] [CrossRef] [Green Version]
- Cristallini, C.; Vaccari, G.; Barbani, N.; Cibrario Rocchietti, E.; Barberis, R.; Falzone, M.; Cabiale, K.; Perona, G.; Bellotti, E.; Rastaldo, R. Cardioprotection of PLGA/gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury: A feasibility study. J. Tissue Eng. Regen. Med. 2019, 13, 1253–1264. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Qian, M.; Jin, D.; Hao, T.; Pan, Y.; Wang, H.; Wu, S.; Liu, S.; Wang, F. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat. Commun. 2021, 12, 4501. [Google Scholar] [CrossRef] [PubMed]
- Rassaf, T.; Totzeck, M.; Hendgen-Cotta, U.B.; Shiva, S.; Heusch, G.; Kelm, M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res. 2014, 114, 1601–1610. [Google Scholar] [CrossRef]
- Divakaran, S.; Loscalzo, J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J. Am. Coll. Cardiol. 2017, 70, 2393–2410. [Google Scholar] [CrossRef]
- Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.-S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med. 2017, 5, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Yao, Y.; Li, J.; Duan, Y.; Nakkala, J.R.; Feng, X.; Cao, W.; Wang, Y.; Hong, L.; Shen, L. A reactive oxygen species scavenging and O2 generating injectable hydrogel for myocardial infarction treatment in vivo. Small 2020, 16, 2005038. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Cao, X.; Zhuang, J.; Chen, X.F. The cardioprotective effect and mechanism of bioactive glass on myocardial reperfusion injury. Biomed. Mater. 2021, 16, 045044. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhu, Y.; Liu, G.; Yuan, Z.; Li, H.; Zhao, Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed. Pharmacother. 2020, 129, 110382. [Google Scholar] [CrossRef]
- Hwang, H.; Kloner, R.A. Improving regenerating potential of the heart after myocardial infarction: Factor-based approach. Life Sci. 2010, 86, 461–472. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, Q.; Shao, X.; Zhang, T.; Xue, C.; Shi, S.; Zhao, D.; Lin, Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI 3K/Akt signal pathway. Cell Prolif. 2017, 50, e12390. [Google Scholar] [CrossRef] [Green Version]
- Dehlin, H.M.; Levick, S.P. Substance P in heart failure: The good and the bad. Int. J. Cardiol. 2014, 170, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.; Zhang, Y.; Zhu, D.; Zhao, Z.; Kim, D.-H.; Kim, S.H.; Kong, D. In situ cardiac regeneration by using neuropeptide substance P and IGF-1C peptide eluting heart patches. Regen. Biomater. 2018, 5, 303–316. [Google Scholar] [CrossRef] [Green Version]
- D’Amario, D.; Leone, A.M.; Borovac, J.A.; Cannata, F.; Siracusano, A.; Niccoli, G.; Crea, F. Granulocyte colony-stimulating factor for the treatment of cardiovascular diseases: An update with a critical appraisal. Pharmacol. Res. 2018, 127, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Spadaccio, C.; Nappi, F.; De Marco, F.; Sedati, P.; Taffon, C.; Nenna, A.; Crescenzi, A.; Chello, M.; Trombetta, M.; Gambardella, I. Implantation of a poly-L-lactide GCSF-functionalized scaffold in a model of chronic myocardial infarction. J. Cardiovasc. Transl. Res. 2017, 10, 47–65. [Google Scholar] [CrossRef] [Green Version]
- Le, T.M.; Morimoto, N.; Mitsui, T.; Notodihardjo, S.C.; Munisso, M.C.; Kakudo, N.; Kusumoto, K. The sustained release of basic fibroblast growth factor accelerates angiogenesis and the engraftment of the inactivated dermis by high hydrostatic pressure. PLoS ONE 2019, 14, e0208658. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Feng, G.; Zhang, J.; Xing, J.; Huang, D.; Lian, M.; Zhang, W.; Wu, W.; Hu, Y.; Lu, X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int. J. Neurosci. 2021, 131, 625–633. [Google Scholar] [CrossRef]
- Li, Z.; Masumoto, H.; Jo, J.-i.; Yamazaki, K.; Ikeda, T.; Tabata, Y.; Minatoya, K. Sustained release of basic fibroblast growth factor using gelatin hydrogel improved left ventricular function through the alteration of collagen subtype in a rat chronic myocardial infarction model. Gen. Thorac. Cardiovasc. Surg. 2018, 66, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Li, X.; Yuan, M.; Wan, W.; Hu, M.; Wang, X.; Jiang, X. Intramyocardial delivery of bFGF with a biodegradable and thermosensitive hydrogel improves angiogenesis and cardio-protection in infarcted myocardium. Exp. Ther. Med. 2017, 14, 3609–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, M.; Minakata, K.; Masumoto, H.; Yamamoto, M.; Yonezawa, A.; Ikeda, T.; Uehara, K.; Yamazaki, K.; Ikeda, T.; Matsubara, K. A therapeutic angiogenesis of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel sheets in a canine chronic myocardial infarction model. Heart Vessel. 2018, 33, 1251–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodness, J.; Mihic, A.; Miyagi, Y.; Wu, J.; Weisel, R.D.; Li, R.-K. VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomater. 2016, 45, 169–181. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, X.; Li, X.; Hu, M.; Wan, W.; Wen, Y.; He, Y.; Zheng, X. Intramyocardial delivery of VEGF 165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessel. 2016, 31, 963–975. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, Y.; Liu, Y.; Yang, R.; Liu, B.; Li, J.; Xu, Z.; Zhang, Q.; Yang, J.; Liu, W. Artificial apoptotic cells/VEGF-loaded injectable hydrogel united with immunomodification and revascularization functions to reduce cardiac remodeling after myocardial infarction. Nano Today 2021, 39, 101227. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, T.; Chen, W.; Wang, X.; Li, J.; Chen, Y.; Yu, Y.; Shen, Z.; Yu, Q.; Zhang, Y. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioact. Mater. 2021, 6, 520–528. [Google Scholar] [CrossRef] [PubMed]
- van den Boomen, M.; Kause, H.B.; van Assen, H.C.; Dankers, P.Y.; Bouten, C.V.; Vandoorne, K. Triple-marker cardiac MRI detects sequential tissue changes of healing myocardium after a hydrogel-based therapy. Sci. Rep. 2019, 9, 19366. [Google Scholar] [CrossRef] [PubMed]
- Korf-Klingebiel, M.; Reboll, M.R.; Klede, S.; Brod, T.; Pich, A.; Polten, F.; Napp, L.C.; Bauersachs, J.; Ganser, A.; Brinkmann, E. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 2015, 21, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Cully, M. MYDGF promotes heart repair after myocardial infarction. Nat. Rev. Drug Discov. 2015, 14, 164–165. [Google Scholar] [CrossRef]
- Yuan, Z.; Tsou, Y.-H.; Zhang, X.-Q.; Huang, S.; Yang, Y.; Gao, M.; Ho, W.; Zhao, Q.; Ye, X.; Xu, X. Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl. Mater. Interfaces 2019, 11, 38429–38439. [Google Scholar] [CrossRef] [PubMed]
- Rupert, C.E.; Coulombe, K.L. The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomark. Insights 2015, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E.; Goldstone, A.B.; Wang, H.; Purcell, B.P.; Shudo, Y.; MacArthur, J.W.; Steele, A.N.; Paulsen, M.J.; Edwards, B.B.; Aribeana, C.N. A bioengineered neuregulin-hydrogel therapy reduces scar size and enhances post-infarct ventricular contractility in an Ovine large animal model. J. Cardiovasc. Dev. Dis. 2020, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Kontonika, M.; Barka, E.; Roumpi, M.; Vilaeti, A.D.; Baltogiannis, G.G.; Vlahos, A.P.; Agathopoulos, S.; Kolettis, T.M. Intra-myocardial growth hormone administration ameliorates arrhythmogenesis during ischemia–reperfusion in rats. J. Electrocardiol. 2017, 50, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wu, Y.; Chen, W.; Li, J.; Wang, X.; Chen, Y.; Yu, Y.; Shen, Z.; Zhang, Y. Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J. Mater. Chem. B 2020, 8, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.N.; Cai, L.; Truong, V.N.; Edwards, B.B.; Goldstone, A.B.; Eskandari, A.; Mitchell, A.C.; Marquardt, L.M.; Foster, A.A.; Cochran, J.R. A novel protein-engineered hepatocyte growth factor analog released via a shear-thinning injectable hydrogel enhances post-infarction ventricular function. Biotechnol. Bioeng. 2017, 114, 2379–2389. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.N.; Paulsen, M.J.; Wang, H.; Stapleton, L.M.; Lucian, H.J.; Eskandari, A.; Hironaka, C.E.; Farry, J.M.; Baker, S.W.; Thakore, A.D. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine 2020, 127, 154974. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ibrahim, A.; Cheng, K.; Wu, Z.; Liang, W.; Malliaras, K.; Sun, B.; Liu, W.; Shen, D.; Cheol Cho, H. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells 2014, 32, 2397–2406. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Ibrahim, A.; Hensley, M.T.; Shen, D.; Sun, B.; Middleton, R.; Liu, W.; Smith, R.R.; Marbán, E. Relative roles of CD 90 and c-kit to the regenerative efficacy of cardiosphere-derived cells in humans and in a mouse model of myocardial infarction. J. Am. Heart Assoc. 2014, 3, e001260. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Ozpinar, E.W.; Su, T.; Tang, J.; Shen, D.; Qiao, L.; Hu, S.; Li, Z.; Liang, H.; Mathews, K. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci. Transl. Med. 2020, 12, 9683. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Chiabotto, G.; Favaro, E.; Deregibus, M.C.; Camussi, G. Role of extracellular vesicles in stem cell biology. Am. J. Physiol. Cell Physiol. 2019, 317, C303–C313. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.G.-E.; Cheng, K.; Marbán, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014, 2, 606–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffey, A.C.; Chen, M.H.; Venkataraman, C.M.; Trubelja, A.; Rodell, C.B.; Dinh, P.V.; Hung, G.; MacArthur, J.W.; Soopan, R.V.; Burdick, J.A. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J. Thorac. Cardiovasc. Surg. 2015, 150, 1268–1277. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Wang, L.L.; Zaman, S.; Gordon, J.; Arisi, M.F.; Venkataraman, C.M.; Chung, J.J.; Hung, G.; Gaffey, A.C.; Spruce, L.A. Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovasc. Res. 2018, 114, 1029–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Xiang, M.; Meng, D.; Sun, N.; Chen, S. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells Int. 2016, 2016, 8362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolova, V.; Ludwig, A.-K.; Hornung, S.; Rotan, O.; Horn, P.A.; Epple, M.; Giebel, B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011, 87, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Firoozi, S.; Pahlavan, S.; Ghanian, M.-H.; Rabbani, S.; Barekat, M.; Nazari, A.; Pakzad, M.; Shekari, F.; Hassani, S.-N.; Moslem, F. Mesenchymal stem cell-derived extracellular vesicles alone or in conjunction with a SDKP-conjugated self-assembling peptide improve a rat model of myocardial infarction. Biochem. Biophys. Res. Commun. 2020, 524, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Cui, X.; Zhang, Z.; Xu, Y.; Guo, J.; Soliman, B.G.; Lu, Y.; Qin, Z.; Wang, Q.; Zhang, H. Injection-free delivery of MSC-derived extracellular vesicles for myocardial infarction therapeutics. Adv. Healthc. Mater. 2021, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Li, Q.; Zhang, L.; Wang, Y.; Zhong, Z.; Zhao, J.; Lin, X.; Wang, J.; Zhu, K.; Xiao, C. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics 2019, 9, 7403. [Google Scholar] [CrossRef]
- Liu, B.; Lee, B.W.; Nakanishi, K.; Villasante, A.; Williamson, R.; Metz, J.; Kim, J.; Kanai, M.; Bi, L.; Brown, K. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat. Biomed. Eng. 2018, 2, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, R.A.; Weeks, K.L. Histone deacetylases in cardiovascular and metabolic diseases. J. Mol. Cell. Cardiol. 2019, 130, 151–159. [Google Scholar] [CrossRef]
- Tang, J.; Yan, H.; Zhuang, S. Histone deacetylases as targets for treatment of multiple diseases. Clin. Sci. 2013, 124, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Yang, J.; Wei, Y.; Wang, H.; Jiao, R.; Moraga, A.; Zhang, Z.; Hu, Y.; Kong, D.; Xu, Q. Histone Deacetylase 7-derived peptides play a vital role in vascular repair and regeneration. Adv. Sci. 2018, 5, 1800006. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, D.; Wei, Y.; Wu, Y.; Cui, W.; Liuqin, L.; Fan, G.; Yang, Q.; Wang, Z.; Xu, Z. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater. 2019, 86, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, N.J.; Sofrenovic, T.; Kuraitis, D.; Ahmadi, A.; McNeill, B.; Deng, C.; Rayner, K.J.; Zhong, Z.; Ruel, M.; Suuronen, E.J. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials 2015, 39, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Saludas, L.; Pascual-Gil, S.; Prósper, F.; Garbayo, E.; Blanco-Prieto, M. Hydrogel based approaches for cardiac tissue engineering. Int. J. Pharm. 2017, 523, 454–475. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.; McNeill, B.; Podrebarac, J.; Hosoyama, K.; Sedlakova, V.; Cron, G.; Smyth, D.; Seymour, R.; Goel, K.; Liang, W. Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nat. Commun. 2019, 10, 4866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhang, C.; Zhang, J.; Sun, N.; Huang, K.; Li, H.; Wang, Z.; Huang, K.; Wang, L. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater. 2016, 41, 210–223. [Google Scholar] [CrossRef]
- Feng, M.; Liu, X.; Hou, X.; Chen, J.; Zhang, H.; Song, S.; Han, X.; Shi, C. Specific angiogenic peptide binding with injectable cardiac ECM collagen gel promotes the recovery of myocardial infarction in rat. J. Biomed. Mater. Res. Part A 2020, 108, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.C.; Lee, B.K.; Rao, R.; Lin, F.; Morin, D.P.; Zweibel, S.L.; Buxton, A.E.; Pletcher, M.J.; Vittinghoff, E.; Olgin, J.E. Predicting persistent left ventricular dysfunction following myocardial infarction: The PREDICTS study. J. Am. Coll. Cardiol. 2016, 67, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.P.; Jung, M.; Lindsey, M.L. MMP-9 signaling in the left ventricle following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H190–H198. [Google Scholar] [CrossRef] [Green Version]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [PubMed] [Green Version]
- Prabhu, S.D.; Frangogiannis, N.G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Kampourides, N.; Tziakas, D.; Chalikias, G.; Papazoglou, D.; Maltezos, E.; Symeonides, D.; Konstantinides, S. Usefulness of matrix metalloproteinase-9 plasma levels to identify patients with preserved left ventricular systolic function after acute myocardial infarction who could benefit from eplerenone. Am. J. Cardiol. 2012, 110, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-F.; Huang, P.-H.; Chiang, C.-H.; Hsu, C.-Y.; Leu, H.-B.; Chen, J.-W.; Lin, S.-J. Usefulness of plasma matrix metalloproteinase-9 level in predicting future coronary revascularization in patients after acute myocardial infarction. Coron. Artery Dis. 2013, 24, 23–28. [Google Scholar] [CrossRef]
- Cerisano, G.; Buonamici, P.; Parodi, G.; Santini, A.; Moschi, G.; Valenti, R.; Migliorini, A.; Colonna, P.; Bellandi, B.; Gori, A.M. Early changes of left ventricular filling pattern after reperfused ST-elevation myocardial infarction and doxycycline therapy: Insights from the TIPTOP trial. Int. J. Cardiol. 2017, 240, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Purcell, B.P.; Barlow, S.C.; Perreault, P.E.; Freeburg, L.; Doviak, H.; Jacobs, J.; Hoenes, A.; Zellars, K.N.; Khakoo, A.Y.; Lee, T. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after myocardial infarction: Effects on left ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H814–H825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Fu, M.; Xu, Z.; Zhang, B.; Li, Z.; Li, H.; Zhou, X.; Liu, X.; Duan, Y.; Lin, P.-H. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules 2017, 18, 2820–2829. [Google Scholar] [CrossRef] [PubMed]
- Awada, H.; Long, D.; Wang, Z.; Hwang, M.; Kim, K.; Wang, Y. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction. Biomaterials 2017, 125, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Shi, J.; Zhuang, Y.; Zhang, L.; Huang, L.; Yang, W.; Chen, B.; Chen, Y.; Xiao, Z.; Shen, H. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-demand growth factor delivery. Adv. Mater. 2019, 31, 1902900. [Google Scholar] [CrossRef]
- Hastings, C.L.; Roche, E.T.; Ruiz-Hernandez, E.; Schenke-Layland, K.; Walsh, C.J.; Duffy, G.P. Drug and cell delivery for cardiac regeneration. Adv. Drug Deliv. Rev. 2015, 84, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Akodad, M.; Fauconnier, J.; Sicard, P.; Huet, F.; Blandel, F.; Bourret, A.; de Santa Barbara, P.; Aguilhon, S.; LeGall, M.; Hugon, G. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int. J. Cardiol. 2017, 240, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi, J.; Zhang, Y.; Miao, J.; Zhao, Z.; Jin, X.; Liu, L.; Yu, L.; Shen, C.; Ding, J. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J. Mater. Chem. B 2020, 8, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Wang, Y.; Hu, J.; Wang, C.; Lu, S.; Mo, X. A method for preparation of an internal layer of artificial vascular graft co-modified with Salvianolic acid B and heparin. ACS Appl. Mater. Interfaces 2018, 10, 19365–19372. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, C.; Xu, L.; Gu, Y.; Ren, S.; Bai, H.; Zhou, Q.; Liu, X.; Lu, S.; Bi, X. An injectable peptide hydrogel with excellent self-healing ability to continuously release salvianolic acid B for myocardial infarction. Biomaterials 2021, 274, 120855. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Li, M.; Jia, H.; Han, X.; Zhang, J.; Zou, Y.; Tan, B.; Liang, W.; Shang, Y. Rebuilding postinfarcted cardiac functions by injecting TIIA@ PDA nanoparticle-cross-linked ROS-sensitive hydrogels. ACS Appl. Mater. Interfaces 2018, 11, 2880–2890. [Google Scholar] [CrossRef]
- Fang, J.; Koh, J.; Fang, Q.; Qiu, H.; Archang, M.M.; Hasani-Sadrabadi, M.M.; Miwa, H.; Zhong, X.; Sievers, R.; Gao, D.W. injectable drug-releasing microporous annealed particle scaffolds for treating myocardial infarction. Adv. Funct. Mater. 2020, 30, 2004307. [Google Scholar] [CrossRef]
- Zhi-cheng, H.; Yun-dai, C.; Yi-hong, R. Methylprednisolone improves microcirculation in streptozotocininduced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. 2011, 124, 923–929. [Google Scholar]
- Yao, Y.; Ding, J.; Wang, Z.; Zhang, H.; Xie, J.; Wang, Y.; Hong, L.; Mao, Z.; Gao, J.; Gao, C. ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. Biomaterials 2020, 232, 119726. [Google Scholar] [CrossRef]
- Fish, K.M. Advances in gene therapy for heart failure. Discov. Med. 2015, 19, 285–291. [Google Scholar]
- Nayerossadat, N.; Maedeh, T.; Ali, P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012, 75, 98152. [Google Scholar] [CrossRef]
- Gu, X.; Matsumura, Y.; Tang, Y.; Roy, S.; Hoff, R.; Wang, B.; Wagner, W.R. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials 2017, 133, 132–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaghan, M.; Pandit, A. RNA interference therapy via functionalized scaffolds. Adv. Drug Deliv. Rev. 2011, 63, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, M.; Greiser, U.; Wall, J.G.; O’Brien, T.; Pandit, A. Interference: An alteRNAtive therapy following acute myocardial infarction. Trends Pharmacol. Sci. 2012, 33, 635–645. [Google Scholar] [CrossRef]
- Monaghan, M.; Browne, S.; Schenke-Layland, K.; Pandit, A. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol. Ther. 2014, 22, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Castaño, I.M.; Curtin, C.M.; Shaw, G.; Murphy, J.M.; Duffy, G.P.; O’Brien, F.J. A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. J. Control. Release 2015, 200, 42–51. [Google Scholar] [CrossRef]
- Pandey, R.; Velasquez, S.; Durrani, S.; Jiang, M.; Neiman, M.; Crocker, J.S.; Benoit, J.B.; Rubinstein, J.; Paul, A.; Ahmed, R.P. MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. Am. J. Transl. Res. 2017, 9, 3120. [Google Scholar]
- Tian, Y.; Liu, Y.; Wang, T.; Zhou, N.; Kong, J.; Chen, L.; Snitow, M.; Morley, M.; Li, D.; Petrenko, N. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 2015, 7, ra238–ra279. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.L.; Liu, Y.; Chung, J.J.; Wang, T.; Gaffey, A.C.; Lu, M.; Cavanaugh, C.A.; Zhou, S.; Kanade, R.; Atluri, P. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 2017, 1, 983–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Gao, Y.; Zhang, X.; Lughmani, H.Y.; Kennedy, D.J.; Haller, S.T.; Pierre, S.V.; Shapiro, J.I.; Tian, J. A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS ONE 2020, 15, e0244065. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Taylor, N.E.; Lu, L.; Usa, K.; Cowley Jr, A.W.; Ferreri, N.R.; Yeo, N.C.; Liang, M. Renal medullary microRNAs in Dahl salt-sensitive rats: MiR-29b regulates several collagens and related genes. Hypertension 2010, 55, 974–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rooij, E.; Sutherland, L.B.; Thatcher, J.E.; DiMaio, J.M.; Naseem, R.H.; Marshall, W.S.; Hill, J.A.; Olson, E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 2008, 105, 13027–13032. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, M.G.; Holeiter, M.; Brauchle, E.; Layland, S.L.; Lu, Y.; Deb, A.; Pandit, A.; Nsair, A.; Schenke-Layland, K. Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng. Part A 2018, 24, 57–67. [Google Scholar] [CrossRef]
- Radmanesh, F.; Abandansari, H.S.; Ghanian, M.H.; Pahlavan, S.; Varzideh, F.; Yakhkeshi, S.; Alikhani, M.; Moradi, S.; Braun, T.; Baharvand, H. Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis. Angiogenesis 2021, 24, 657–676. [Google Scholar] [CrossRef]
- Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009, 324, 1710–1713. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Otani, H.; Iwasaki, M.; Yoshioka, K.; Shimazu, T.; Shiojima, I.; Tabata, Y. Antagomir-92a impregnated gelatin hydrogel microsphere sheet enhances cardiac regeneration after myocardial infarction in rats. Regen. Ther. 2016, 5, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, X.; Jin, R.; Chen, L.; Dang, M.; Cao, H.; Dong, Y.; Cai, B.; Bai, G.; Gooding, J.J. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021, 7, eabd6740. [Google Scholar] [CrossRef]
- Poliseno, L.; Tuccoli, A.; Mariani, L.; Evangelista, M.; Citti, L.; Woods, K.; Mercatanti, A.; Hammond, S.; Rainaldi, G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 2006, 108, 3068–3071. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perveen, S.; Rossin, D.; Vitale, E.; Rosso, R.; Vanni, R.; Cristallini, C.; Rastaldo, R.; Giachino, C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int. J. Mol. Sci. 2021, 22, 13054. https://doi.org/10.3390/ijms222313054
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. International Journal of Molecular Sciences. 2021; 22(23):13054. https://doi.org/10.3390/ijms222313054
Chicago/Turabian StylePerveen, Sadia, Daniela Rossin, Emanuela Vitale, Rachele Rosso, Roberto Vanni, Caterina Cristallini, Raffaella Rastaldo, and Claudia Giachino. 2021. "Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions" International Journal of Molecular Sciences 22, no. 23: 13054. https://doi.org/10.3390/ijms222313054
APA StylePerveen, S., Rossin, D., Vitale, E., Rosso, R., Vanni, R., Cristallini, C., Rastaldo, R., & Giachino, C. (2021). Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. International Journal of Molecular Sciences, 22(23), 13054. https://doi.org/10.3390/ijms222313054