Influence of Benzo(a)pyrene on Different Epigenetic Processes
Abstract
:1. General Introduction
2. Epigenetic Changes and Factors Regulating Them
3. BaP Changes Global and Gene Specific DNA Methylation
Hypomethylation Induced by Benzo(a)pyrene and the Role of Poly(ADP-ribose) Glycohydrolase Silencing in DNA
4. Epigenome-Wide DNA Methylation and Its Mediation Role in BaP-Associated Lung Cancer Development
Impact of Benzo[a]pyrene-2ʹ-Deoxyguanosine Lesions on Methylation of DNA
5. Prenatal Exposure to PAHs and BaP and Changes in Methylation Levels
6. The Changes in Histone Methylation and Acetylation
Paternal Exposure to Hydroxylated PAHs Metabolites Significantly Affects the Birth Weight of a Newborn—The Role of Methylation in the H19 Gene
7. Changes in the Level of Various microRNAs as a New Factor in Response to BaP Exposure
8. The Intergenerational Toxic Effects on BaP Exposure Via Interference of the Circadian Rhythm
9. BaP Osteotoxicity and the Regulatory Roles of Epigenetic Factors; Intergenerational Osteotoxicity in Non-Exposed F3 Generation
10. Long-Term Exposure to BaP Inhibits Expression of ERα, CYP19a and VTG1 Genes and Is Toxic to Embryos and Sex Differentiation
11. Exposure to BaP in Mixture of PAHs Leads to Changes in DNA Modulation and RNA (hydroxy)methylation
12. Summary
13. Conclusions
- Depending on the concentration, type of cell and organism, BaP disrupts DNA methylation processes upstream or downstream, and epigenetic effects are then passed on to the offsprings even in the third generation.
- Offsprings paternally exposed to BaP, show more severe DNA damage and a higher degree of DNA hypermethylation than offsprings maternally exposed (e.g., fish studies).
- Epigenetic abnormalities in lung cells exposed to BaP may lead to cancer development.
- BaP exhibits epigenotoxicity by disrupting methylation processes both of the entire epigenome and of promoters of individual genes.
- This compound affects expression of histones and triggers expression of various miRNAs that dysregulate gene expression in cell.
- Epigenetic changes in response to BaP exposure are mainly due to the formation of CpG-BPDE adducts, and are associated with inhibition of DNA methyltransferases activity and increased histone deacetylases activity.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC Working Groups Benzo[a]pyrene. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono100F-14.pdf (accessed on 14 December 2021).
- Susanto, A.D.; Yusril, N.; Zaini, J.; Nuwidya, F. Comparison of Serum Benzo(a)pyrene Diol Epoxide—Protein Adducts Level between Kretek Cigarette Smokers and Nonsmokers and the Related Factors. J. Nat. Sci. Biol. Med. 2021, 12, 52. [Google Scholar] [CrossRef]
- Siddique, R.; Zahoor, A.F.; Ahmad, H.; Zahid, F.M.; Karrar, E. Impact of different cooking methods on polycyclic aromatic hydrocarbons in rabbit meat. Food Sci. Nutr. 2021, 9, 3219–3227. [Google Scholar] [CrossRef]
- Migdał, W.; Walczycka, M.; Migdał, Ł. The Levels of Polycyclic Aromatic Hydrocarbons in Traditionally Smoked Cheeses in Poland. Polycycl. Aromat. Compd. 2020, 1–13. [Google Scholar] [CrossRef]
- Schreiberová, M.; Vlasáková, L.; Vlček, O.; Šmejdířová, J.; Horálek, J.; Bieser, J. Benzo[a]pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere 2020, 11, 955. [Google Scholar] [CrossRef]
- He, Y.; Yang, C.; He, W.; Xu, F. Nationwide health risk assessment of juvenile exposure to polycyclic aromatic hydrocarbons (PAHs) in the water body of Chinese lakes. Sci. Total Environ. 2020, 723, 138099. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, C.; Liu, H.; Jia, W.; Sun, H. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci. Rep. 2020, 10, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olgun, B.; Doğan, G. Polycyclic aromatic hydrocarbon concentrations in soils of greenhouses located in Aksu Antalya, Turkey. Water Sci. Technol. 2020, 81, 283–292. [Google Scholar] [CrossRef]
- Amadou, A.; Praud, D.; Coudon, T.; Deygas, F.; Grassot, L.; Faure, E.; Couvidat, F.; Caudeville, J.; Bessagnet, B.; Salizzoni, P.; et al. Risk of breast cancer associated with long-term exposure to benzo[a]pyrene (BaP) air pollution: Evidence from the French E3N cohort study. Environ. Int. 2021, 149, 106399. [Google Scholar] [CrossRef]
- Kim, K.E.; Cho, D.; Park, H.J. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016, 152, 126–134. [Google Scholar] [CrossRef]
- Korsh, J.; Shen, A.; Aliano, K.; Davenport, T. Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature. Breast Care 2015, 10, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, E.N.; Hajeb, P.; Selamat, J.; Razis, A.F.A. Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: A Tool for Assessing Human Cancer Risk. Asian Pac. J. Cancer Prev. 2016, 17, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Petit, P.; Maître, A.; Persoons, R.; Bicout, D.J. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries. Environ. Int. 2019, 124, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Birkett, N.; Al-Zoughool, M.; Bird, M.; Baan, R.A.; Zielinski, J.; Krewski, D. Overview of biological mechanisms of human carcinogens. J. Toxicol. Environ. Health Part B 2019, 22, 288–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Chan, Y.-T.; Tan, H.-Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer 2020, 19, 79. [Google Scholar] [CrossRef]
- Jobe, E.M.; Zhao, X. DNA Methylation and Adult Neurogenesis. Brain Plast. 2017, 3, 5–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Leung, F.C.C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 2004, 20, 1170–1177. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, G.; Qian, G.W.J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 2016, 17, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, A.; Baer-Dubowska, W. Markery epigenetyczne w diagnostyce: Metody oceny metylacji DNA. J. Lab. Diag. 2009, 45, 167–173. [Google Scholar]
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res. 2018, 6, 10. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Y.; Zhou, N.; Tang, K.; Lau, W.B.; Lau, B.; Wang, W.; Xu, L.; Yang, Z.; Huang, S.; et al. Epigenetics in ovarian cancer: Premise, properties, and perspectives. Mol. Cancer 2018, 17, 109. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Gunasekaran, K.; Sasidharan, S.; Mathan, V.J.; Perumal, E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol. Rep. 2020, 7, 583–595. [Google Scholar] [CrossRef]
- Piletič, K.; Kunej, T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016, 90, 2405–2419. [Google Scholar] [CrossRef]
- Loginov, V.I.; Rykov, S.V.; Fridman, M.V.; Braga, E.A. Methylation of miRNA genes and oncogenesis. Biochemistry 2015, 80, 145–162. [Google Scholar] [CrossRef]
- Carlos-Reyes, Á.; Lopez-Gonzalez, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.; La Vega, H.A.-D.; De La Cruz, O.N.H.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Pop, S.; Enciu, A.M.; Tarcomnicu, I.; Gille, E.; Tanase, C. Phytochemicals in cancer prevention: Modulating epigenetic al-terations of DNA methylation. Phytochem. Rev. 2019, 18, 1005–1024. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, E.; Reszka, E.; Jablonska, E.; Balcerczyk, A.; Broncel, M.; Bukowska, B. Glyphosate affects methylation in the promoter regions of selected tumor suppressors as well as expression of major cell cycle and apoptosis drivers in PBMCs (in vitro study). Toxicol. Vitr. 2020, 63, 104736. [Google Scholar] [CrossRef]
- Woźniak, E.; Reszka, E.; Jabłońska, E.; Mokra, K.; Balcerczyk, A.; Huras, B.; Zakrzewski, J.; Bukowska, B. The selected epigenetic effects of aminomethylphosphonic acid, a primary metabolite of glyphosate on human peripheral blood mononuclear cells (in vitro). Toxicol. Vitr. 2020, 66, 104878. [Google Scholar] [CrossRef]
- Bukowski, K.; Wysokinski, D.; Mokra, K.; Wozniak, K. DNA damage and methylation induced by organophosphate flame retardants: Tris(2-chloroethyl) phosphate and tris(1-chloro-2-propyl) phosphate in human peripheral blood mononuclear cells. Hum. Exp. Toxicol. 2019, 38, 724–733. [Google Scholar] [CrossRef]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Health 2018, 39, 309–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Feng, Z.; Tang, M.-S. Preferential Carcinogen−DNA Adduct Formation at Codons 12 and 14 in the Human K-ras Gene and Their Possible Mechanisms. Biochemistry 2003, 42, 10012–10023. [Google Scholar] [CrossRef]
- Wojciechowski, M.F.; Meehan, T. Inhibition of DNA methyltransferases in vitro by benzo[a]pyrene diol epoxide-modified substrates. J. Biol. Chem. 1984, 259, 9711–9716. [Google Scholar] [CrossRef]
- Sadikovic, B.; Haines, T.R.; Butcher, D.T.; Rodenhiser, D.I. Chemically induced DNA hypomethylation in breast carcinoma cells detected by the amplification of intermethylated sites. Breast Cancer Res. 2004, 6, R329–R337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadikovic, B.; Rodenhiser, D.I. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol. Appl. Pharmacol. 2006, 216, 458–468. [Google Scholar] [CrossRef]
- Damiani, L.A.; Yingling, C.M.; Leng, S.; Romo, P.E.; Nakamura, J.; Belinsky, S.A. Carcinogen-Induced Gene Promoter Hypermethylation Is Mediated by DNMT1 and Causal for Transformation of Immortalized Bronchial Epithelial Cells. Cancer Res. 2008, 68, 9005–9014. [Google Scholar] [CrossRef] [Green Version]
- Tommasi, S.; Kim, S.-I.; Zhong, X.; Wu, X.; Pfeifer, G.P.; Besaratinia, A. Investigating the Epigenetic Effects of a Prototype Smoke-Derived Carcinogen in Human Cells. PLoS ONE 2010, 5, e10594. [Google Scholar] [CrossRef]
- Tabish, A.M.; Poels, K.; Hoet, P.; Godderis, L. Epigenetic Factors in Cancer Risk: Effect of Chemical Carcinogens on Global DNA Methylation Pattern in Human TK6 Cells. PLoS ONE 2012, 7, e34674. [Google Scholar] [CrossRef] [Green Version]
- Corrales, J.; Fang, X.; Thornton, C.; Mei, W.; Barbazuk, W.; Duke, M.; Scheffler, B.; Willett, K. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2014, 163, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Yauk, C.L.; Polyzos, A.; Rowan-Carroll, A.; Kortubash, I.; Williams, A.; Kovalchuk, O. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environ. Mol. Mutagen. 2008, 49, 26–35. [Google Scholar] [CrossRef]
- Huang, H.; Hu, G.; Cai, J.; Xia, B.; Liu, J.; Li, X.; Gao, W.; Zhang, J.; Liu, Y.; Zhuang, Z. Role of poly(ADP-ribose) glycohydrolase silencing in DNA hypomethylation induced by benzo(a)pyrene. Biochem. Biophys. Res. Commun. 2014, 452, 708–714. [Google Scholar] [CrossRef]
- Fang, X.; Thornton, C.; Scheffler, B.E.; Willett, K.L. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environ. Toxicol. Pharmacol. 2013, 36, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, S.; An, X.; Tan, W.; Pang, D.; Ouyang, H. Toxicological effects of benzo[a]pyrene on DNA methylation of whole genome in ICR mice. Cell. Mol. Boil. 2015, 61, 115–119. [Google Scholar]
- Zhang, C.M.; Sun, Z.X.; Wang, Z.L.; Chen, J.S.; Chang, Z.; Zhu, L.; Ma, Z.H.; Peng, Y.J.; Xu, Z.A.; Wang, S.Q. Abnormal methylation of spermatozoa induced by benzo(a)pyrene in rats. Hum. Exp. Toxicol. 2019, 38, 846–856. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, F.; Zheng, J.; Li, S.; Qiang, M. Chronic Administration of Benzo(a)pyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation. PLoS ONE 2016, 11, e0149574. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Subach, O.M.; Baskunov, V.B.; Darii, M.V.; Maltseva, D.V.; Alexandrov, D.A.; Kirsanova, O.V.; Kolbanovskiy, A.; Kolbanovskiy, M.; Johnson, F.; Bonala, R.; et al. Impact of Benzo[a]pyrene-2′-deoxyguanosine Lesions on Methylation of DNA by SssI and HhaI DNA Methyltransferases. Biochemisty 2006, 45, 6142–6159. [Google Scholar] [CrossRef]
- Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019, 26, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Smith, L.E.; Feng, Z.; Tang, M.S.; Lee, H.S.; Pfeifer, G.P. Methylated CpG Dinucleotides Are the Preferential Targets for G-to-T Transversion Mutations Induced by Benzo[a]pyrene Diol Epoxide in Mammalian Cells: Similarities with the p53 Mutation Spectrum in Smoking-associated Lung Cancers. Cancer Res. 2001, 61, 7110–7117. [Google Scholar] [PubMed]
- Meng, H.; Li, G.; Wei, W.; Bai, Y.; Feng, Y.; Fu, M.; Guan, X.; Li, M.; Li, H.; Wang, C.; et al. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. J. Hazard. Mater. 2021, 416, 125839. [Google Scholar] [CrossRef] [PubMed]
- Herbstman, J.B.; Tang, D.; Zhu, D.; Qu, L.; Sjödin, A.; Li, Z.; Camann, D.; Perera, F.P. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood. Environ. Health Perspect. 2012, 120, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Joubert, B.; Håberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.; Huang, Z.; Hoyo, C.; Midttun, Ø.; Uicab, L.C.; et al. 450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [CrossRef] [Green Version]
- Suter, M.; Ma, J.; Harris, A.S.; Patterson, L.; Brown, K.A.; Shope, C.; Showalter, L.; Abramovici, A.; Aagaard-Tillery, K.M. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 2011, 6, 1284–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kalia, V.; Perera, F.; Herbstman, J.; Li, T.; Nie, J.; Qu, L.; Yu, J.; Tang, D. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ. Int. 2017, 99, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; He, Z.; Ma, J.; Zhang, B.; Sheng, Z.; Bin, P.; Cheng, J.; Niu, Y.; Dong, H.; Lin, H.; et al. Global and MGMT promoter hypomethylation independently associated with genomic instability of lymphocytes in subjects exposed to high-dose polycyclic aromatic hydrocarbon. Arch. Toxicol. 2013, 87, 2013–2022. [Google Scholar] [CrossRef]
- Ouyang, B.; Baxter, C.S.; Lam, H.-M.; Yeramaneni, S.; Levin, L.; Haynes, E.; Ho, S.-M. Hypomethylation of Dual Specificity Phosphatase 22 Promoter Correlates With Duration of Service in Firefighters and Is Inducible by Low-Dose Benzo[a]Pyrene. J. Occup. Environ. Med. 2012, 54, 774–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavanello, S.; Bollati, V.; Pesatori, A.C.; Kapka, L.; Bolognesi, C.; Bertazzi, P.A.; Baccarelli, A. Global and gene-specific promoter methylation changes are related toanti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int. J. Cancer 2009, 125, 1692–1697. [Google Scholar] [CrossRef]
- Pavanello, S.; Pesatori, A.-C.; Dioni, L.; Hoxha, M.; Bollati, V.; Siwinska, E.; Mielzynska, D.; Bolognesi, C.; Bertazzi, P.-A.; Baccarelli, A. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis 2010, 31, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.-Y.; Levin, L.; Talaska, G.; Cheung, Y.Y.; Herbstman, J.; Tang, D.; Miller, R.L.; Perera, F.; Ho, S.-M. Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5’-CpG Methylation of Interferon-γ in Cord White Blood Cells. Environ. Health Perspect. 2012, 120, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Yang, L.Q.; Huang, H.Y.; Pang, L.; Yang, X.F.; Yi, Y.J.; Ren, X.H.; Li, J.; Zhuang, Z.X.; Liu, J.J. Repression of Bio-tin-Related Proteins by Benzo[a]Pyrene-Induced Epigenetic Modifications in Human Bronchial Epithelial Cells. Int. J. Toxicol. 2016, 35, 336–343. [Google Scholar] [CrossRef]
- Sadikovic, B.; Andrews, J.; Carter, D.; Robinson, J.; Rodenhiser, D.I. Genome-wide H3K9 Histone Acetylation Profiles Are Altered in Benzopyrene-treated MCF7 Breast Cancer Cells. J. Biol. Chem. 2008, 283, 4051–4060. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Lu, Z.; Liu, Z.; Wang, L.; Qiang, M. Methylation of Imprinted Genes in Sperm DNA Correlated to Urinary Polycyclic Aromatic Hydrocarbons (PAHs) Exposure Levels in Reproductive-Aged Men and the Birth Outcomes of the Offspring. Front. Genet. 2021, 11, 1706. [Google Scholar] [CrossRef]
- Lizárraga, D.; Gaj, S.; Brauers, K.J.; Timmermans, L.; Kleinjans, J.C.; Van Delft, J.H.M. Benzo[a]pyrene-Induced Changes in MicroRNA–mRNA Networks. Chem. Res. Toxicol. 2012, 25, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, H.; Li, Y.; Wu, J.; Greenlee, A.R.; Yang, C.; Jiang, Y. The role of miR-506 in transformed 16HBE cells induced by anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide. Toxicol. Lett. 2011, 205, 320–326. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Liu, C.; Duan, H.; Zeng, X.; Zhang, B.; Li, X.; Zhao, J.; Tang, S.; Li, Z.; et al. Aberrant Expression of miR-638 Contributes to Benzo(a)pyrene-Induced Human Cell Transformation. Toxicol. Sci. 2012, 125, 382–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnaiah, S.Y.; Wu, G.; Altman, B.; Growe, J.; Rhoades, S.D.; Coldren, F.; Venkataraman, A.; Olarerin-George, A.O.; Francey, L.J.; Mukherjee, S.; et al. Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. Cell Metab. 2017, 25, 961–974.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patke, A.; Murphy, P.J.; Onat, O.E.; Krieger, A.C.; Özçelik, T.; Campbell, S.S.; Young, M.W. Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 2017, 169, 203–215.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.-H.; Liu, Y.; Zeb, R.; Chen, F.-Y.; Chen, H.-Y.; Wang, K.-J. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm. Environ. Pollut. 2020, 267, 115437. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Au, D.W.-T.; Guo, J.; Winkler, C.; Kong, R.Y.-C.; Seemann, F. Benzo[a]pyrene osteotoxicity and the regulatory roles of genetic and epigenetic factors: A review. Crit. Rev. Environ. Sci. Technol. 2021, 1–39. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Q.; Zhu, B.; Lan, Y.; Duan, S. Long-Term Exposure to Benzo[a]Pyrene Affects Sexual Differentiation and Embryos Toxicity in Three Generations of Marine Medaka (Oryzias Melastigma). Int. J. Environ. Res. Public Health 2020, 17, 970. [Google Scholar] [CrossRef] [Green Version]
- Duca, R.-C.; Grova, N.; Ghosh, M.; Do, J.-M.; Hoet, P.H.M.; Vanoirbeek, J.A.J.; Appenzeller, B.M.R.; Godderis, L. Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Sci. Rep. 2018, 8, 10577. [Google Scholar] [CrossRef] [Green Version]
Type of Epigenetic Change | Observed Effects | References | |
---|---|---|---|
Global methylation | Increased global metylation: | Mouse embryonic fibroblast cells | [39] |
Human bronchial epithelial cells (16HBE cells) | [35] | ||
Mouse embryonic fibroblast cells | [39] | ||
Normal human bronchial epithelial cells (NHBE) | [31] | ||
Decreased global methylation: | Human bronchial epithelial cell line (16HBE) | [40] | |
Zebrafish embryos | [38] | ||
Zebrafish embryos | [41] | ||
IRC mice | [42] | ||
Children, whose mothers smoked during pregnancy | [51] | ||
No changes in global methylation: | Human cells | [36] | |
TK6 cells | [37] | ||
Single gene promoters methylation and gene expression | Increased methylation in gene promoter and decreased expression in gene promoter | IFNγ—Jurkat cells and 53 women and childrenfrom the Columbia cohort | [58] |
NR2B—C57BL mice | [44] | ||
H19—302 reproductive-aged males (22–46 years old) | [61] | ||
PER1—medaka fish Oryzias melastigma | [67] | ||
Biotinidase and holocarboxylase synthetaseHuman Bronchial Epithelial Cells (16HBE) | [59] | ||
828 hypermethylated genes in rats | [43] | ||
Decreased methylation in gene promoter | 3 227 hypomethylated genes in rats | [43] | |
Decreased gene expression | ERα, CYP19a and VTG1 expression—Oryzias Melastigma | [69] | |
Histone modifications | Reduction in acetylation levels on H3 and H4 histones | Human bronchial epithelial cells (16HBE) | [59] |
Increase in histone deacetylases HDAC2 and HDAC3 | Human bronchial epithelial cells (16HBE) | [59] | |
Changes in H3K9 histone acetylation | Breast cancer cells (MCF7) | [60] | |
Changes in miRNA level | Decreased expression | miR-506 in cancer cells (16HBE-T) | [63] |
Increased expression | miR-638 in breast cancer (BRCA1) | [64] | |
mikroRNA-29b, mikroRNA-26a-1* i mikroRNA-122* (HepG2 cells) | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowska, B.; Sicińska, P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. Int. J. Mol. Sci. 2021, 22, 13453. https://doi.org/10.3390/ijms222413453
Bukowska B, Sicińska P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. International Journal of Molecular Sciences. 2021; 22(24):13453. https://doi.org/10.3390/ijms222413453
Chicago/Turabian StyleBukowska, Bożena, and Paulina Sicińska. 2021. "Influence of Benzo(a)pyrene on Different Epigenetic Processes" International Journal of Molecular Sciences 22, no. 24: 13453. https://doi.org/10.3390/ijms222413453
APA StyleBukowska, B., & Sicińska, P. (2021). Influence of Benzo(a)pyrene on Different Epigenetic Processes. International Journal of Molecular Sciences, 22(24), 13453. https://doi.org/10.3390/ijms222413453