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Abstract: DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing.
To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here,
we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented
smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a
relaxed p-value criterion (p < 107*). We conduct DNAm age analyses using the Horvath-multi
tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium
(RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost
significantly differentially methylated CpG probes in blood and RPE. Results show poor performance
of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However,
we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed
hypomethylation at cg04953735 within RPTOR (p = 6.51 x 107%; Ap = —11.95%). IPA CNA in the
RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In
conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a
role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.

Keywords: age-related macular degeneration; epigenetic clock; DNA methylation; ageing; retinal
pigment epithelium; whole blood

1. Introduction

Ageing is a complex physiological process characterised by progressive loss of tissue
functionality and an increased risk of death [1]. DNA methylation (DNAm) is the most
widely studied epigenetic modification in ageing [2]. Epigenetic clocks, which estimate
chronological age based on DNA methylation age (DNAm age) are promising biomarkers
of human ageing, designed around well-established patterns of DNAm changes over an
individual’s lifespan [2-5]. Several epigenetic clocks have been developed [6]. With few
exceptions, most individual CpG probes selected for the epigenetic clocks have poor to
moderate DNAm age predictive performance [7]. However, the weighted combination
of many CpG probes, usually 300-400, results in highly accurate single and pan tissue
DNAm age predictors [7]. Horvath’s multi-tissue [3], Hannum's [4], and the Skin & Blood
epigenetic clocks [8] were constructed using penalised multivariate elastic net regression
models that select CpG probes for each respective clock by minimising the residual error of
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predicting age while removing redundant coefficients from the model. Importantly, they
differ based on tissue types used in clock training data [3,4,8]. From a biological perspective,
the epigenetic clocks are believed to reflect the function of the “epigenetic maintenance
system” (EMS), a measure of cumulative work used to maintain epigenetic stability in the
genome [3]. A positive or negative deviation of estimated DNAm age from chronological
age is termed “epigenetic age acceleration” (EAA). Positive EAA is physiologically nec-
essary early in life, when rapid cellular development demands that epigenetic stability is
maintained [7]. Positive EAA is also reported in individuals with age-related neurodegen-
erative diseases including Alzheimer’s [9] and Parkinson'’s disease [10], in addition to some
cancers [11]. However, significant negative EAA has been identified in the cerebellum
of extremely elderly humans (>100 years old) and in certain cancers [12-15], acting as a
predictor of poor prognostic outcomes in the latter [15]. Together these studies indicate
that both positive and negative accelerations of epigenetic age represent cellular adaptive
responses to genomic/epigenomic instability, contributors to age-related disease [7].

Age-related macular degeneration (AMD) is a degenerative disease affecting the reti-
nal pigment epithelium (RPE) and retina, representing a foremost cause of blindness with
global projection estimates of 288 million cases by 2040 [16-18]. The greatest non-modifiable
risk factor for AMD is advanced age [16], whereas smoking is the most significant mod-
ifiable risk factor [19-22]. Studies investigating a role for DNAm in AMD to date have
primarily focused on site and region specific DNAm changes and their association with
altered transcriptional profiles of individual genes [23-27]. Smoking as well as ageing exert
direct effects on DNAm, with established DNAm changes occurring at specific CpG probes
in blood of smokers [28,29]. Positive EAA calculated using Horvath’s multi tissue clock
has also been observed in lung tissues of smokers [30]. Therefore, major AMD risk factors,
such as ageing and smoking, influence epigenetic ageing and EMS responses. However,
to date, analysis of epigenetic ageing using the epigenetic clocks has not been applied to
primary sites of pathogenesis in AMD including RPE, or even blood samples of patients
with AMD. In addition, a link between smoking status and epigenetic ageing in AMD has
not been investigated.

Epigenetic age estimations and DNAm signatures are often tissue-type
dependent [12,31]. In this study, we investigate a role for epigenetic ageing in AMD
by performing DNAm age estimations using the Horvath multi-tissue [3], Hannum [4],
and Skin & Blood [8] epigenetic clocks on age-matched RPE and whole blood from patients
with AMD and healthy controls. The Horvath’s multi-tissue and Skin & Blood epigenetic
clock were chosen due to favourable cross-tissue performance [3,8], and Hannum's clock
because it was constructed using solely whole blood-derived data from a cohort spanning
a large age range (19-101 years) [4]. All three were chosen based on alleged robustness of
chronological age prediction [3,4,8]. Firstly, we assess the reliability of different epigenetic
clocks in the RPE and blood. Secondly, we analysed EAA in Normal and AMD affected
RPE and whole blood. We also conducted a secondary analysis assessing an association
of smoking status with EAA in AMD whole blood. Furthermore, we conducted Inge-
nuity Pathway Analysis Causal Network Analysis (IPA CNA) in age-matched Normal
and AMD-affected RPE and whole blood. We posit a role for RPTOR, which encodes the
Regulatory Associated Protein of mTOR Complex 1 (Raptor) as a common master regulator
of methylation changes in the RPE in AMD, which also displays differential methylation in
whole blood of AMD patients.

2. Results
2.1. Epigenetic Clocks Display Poor Performance in the RPE

We performed DNAm age estimation analysis on RPE and whole blood-derived ge-
nomic DNA (gDNA) using the Horvath multi-tissue, Hannum, and Skin & Blood epigenetic
clocks. RPE DNAm data was acquired from our previously described cohort (1 = 44) using
the Illumina Infinium HumanMethylation450K BeadChip array (450K-array) [27]. Whole
blood-derived gDNA methylation data was acquired using the Illumina Infinium Methyla-
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tionEPIC BeadChip array (EPIC-array) from the Southampton Cohort (n = 30). DNAm age
estimations for all clocks assessed can be found in Supplementary Materials: Additional
File S1. In RPE, Horvath’s multi-tissue (Figure 1A), Hannum’s (Figure 1B), and the Skin
& Blood epigenetic clocks (Figure 1C) all performed poorly. Weak positive correlations
were observed between DNAm age and chronological age. In whole blood-derived gDNA,
Horvath’s multi-tissue (Figure 1D), Hannum’s (Figure 1E), and the Skin & Blood clocks
(Figure 1F) demonstrated better correlation between DNAm age and chronological age
compared to RPE. This suggests both improved predictive capability and better calibration
in whole blood. The Skin & Blood clock (Figure 1F) displayed the most accurate DNAm
age estimation of all three clocks assessed.
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Figure 1. Epigenetic clocks perform poorly in RPE. Linear regressions of estimated DNAm age (years) with chronological
age (years) were performed on (A-C) RPE (n = 44) and (D-F) whole blood-derived (n = 30) gDNA samples, to assess the
performance of (A,D) Horvath’s multi-tissue clock, (B,E) Hannum’s clock, and (C,F) the Skin & Blood clock. (A-C) In
RPE gDNA, linear regressions of DNAm age estimation with chronological age are shown for: (A) Horvath’s multi-tissue
clock (R? = 0.27); (B) Hannum’s clock (R2 = 0.20); and (C) Skin & Blood clock (R? = 0.16). All demonstrated poor clock
performance and weak correlations. In whole blood-derived gDNA, linear regressions of DNAm age estimation with
chronological age for (D) Horvath’s multi tissue clock (R? = 0.53), (E) Hannum’s clock (R? = 0.67), and the (F) Skin & Blood
clock (R? = 0.74) demonstrated improved performance with the Skin & Blood clock showing the most accurate predictions.

2.2. Epigenetic Age Acceleration Is Not Associated with AMD

We next investigated whether AMD patients displayed a positive or negative EAA
when compared to Normal samples in both RPE [27] and whole blood-derived DNAm data.
We define EAA as DNAm age minus chronological age. In human donor RPE, a marked
and consistent negative mean EAA was observed in both Normal (7 = 19) and AMD
(n = 25) groups using Horvath’s multi-tissue (Normal; —40.85 years; AMD: —39.73 years)
(Figure 2A); Hannum’s (Normal: —46.43 years; AMD: —45.38 years) (Figure 2B); and
the Skin & Blood clock (Normal: —56.50 years; AMD: —55.10 years) (Figure 2C). When
considering both Normal (n = 16) and AMD (n = 14) whole blood samples, Horvath’s multi-
tissue clock displayed a small increase in EAA (Normal: +5.07 years; AMD: +3.53 years)
(Figure 2D); whereas the Hannum (Normal: —12.21 years; AMD: —13.69 years) (Figure 2E)
and Skin & Blood (Normal: —4.27 years; AMD: —6.78 years) clocks displayed decreases in
EAA across groups (Figure 2F). No significant difference was observed in EAA between
Normal and AMD groups across all clocks tested in the RPE (Figure 2A—C) and whole
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blood-derived gDNA (Figure 2D-F), suggesting no association of EAA with AMD across
these tissues.
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Figure 2. Epigenetic age acceleration is not associated with AMD. EAA analysis was conducted on AMD and Normal
samples in (A-C) RPE (AMD: n = 25; Normal: n = 19) and (D-F) whole blood-derived gDNA (AMD: n = 14; Normal: n = 16)
using (A,D) Horvath’s multi-tissue clock; (B,E) Hannum'’s clock; and the (C,F) Skin & Blood clock. No significant difference
in EAA was found for RPE using (A) Horvath’s multi-tissue clock (p = 0.5109); (B) Hannum’s clock (p = 0.7784); and the
(C) Skin & Blood clock (p = 0.5733), or in whole blood-derived gDNA using (D) Horvath’s multi-tissue clock (p = 0.3769);
(E) Hannum's clock (p = 0.6374); or the (F) Skin & Blood clock (p = 0.2939). Statistical analysis was performed using a
Mann-Whitney test.

2.3. Smokers Display Increased Epigenetic Age Acceleration Compared to Non-Smokers

Smoking is the most significant modifiable risk factor for AMD [19]. Information on
smoking status was available for whole blood-derived gDNA samples from the Southamp-
ton Cohort. Therefore, we investigated the association of smoking with EAA in whole
blood-derived gDNA using univariate analysis comparing Smokers and Non-Smokers. We
found significant increases in EAA in Non-Smoker compared to Smoker groups using the
Horvath multi-tissue epigenetic clock (Non-Smoker: —0.43 years; Smoker: +7.12 years)
(Figure 3A). Using the Hannum (Non-Smoker: —17.26 years; Smoker: —10.38 years)
(Figure 3B) and Skin & Blood (Non-Smokers: —9.11 years; Smoker: —3.32 years) (Figure 3C)
epigenetic clocks, we found larger mean negative EAAs across groups but still observed
significant increases in EAA when comparing Non-Smoker and Smoker groups.
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Figure 3. Epigenetic age acceleration is associated with smoking but not AMD in whole blood. EAA analysis was conducted
using DNAm microarray data to compare differences from Smoker (n = 19) and Non-Smoker (1 = 11) whole blood gDNA
using the (A) Horvath multi-tissue, (B) Hannum and, (C) Skin & Blood epigenetic clocks. EAA analysis was further
stratified to compare differences amongst the following four groups: Normal Non-Smoker (n = 6); AMD Non-Smoker
(n = 5); Normal Smoker (n = 10); AMD Smoker (1 = 9) using (D) Horvath’s multi-tissue, (E) Hannum'’s and (F) the Skin &
Blood epigenetic clocks. Smokers displayed a significant increase in EAA using (A) Horvath’s multi-tissue clock (p = 0.0071),
(B) Hannum'’s clock (p = 0.0014), and (C) the Skin & Blood clock (p = 0.0025) when compared to Non-Smoker groups.
Following stratification into four separate groups, no significant differences were observed following one-way ANOVA
when analysing (D) Horvath’s multi-tissue epigenetic clock, but were identified using the (E) Hannum and (F) Skin & Blood
epigenetic clocks (Supplementary Materials: Additional File S2, Table S5). Following application of the TukeyHSD post-hoc
test, no significant differences were identified when comparing Normal Non-Smoker and AMD Non-Smoker, in addition
to Normal Smoker and AMD Smoker groups using the (E) Hannum and (F) Skin & Blood epigenetic clocks. Significant
differences were identified when comparing EAA between AMD Non-Smokers and Normal Smokers using the (E) Hannum
and (F) Skin & Blood epigenetic clocks. When comparing AMD Non-Smoker and AMD Smoker groups, no significant
difference was found when comparing the (E) Hannum epigenetic clock, however a significant increase in EAA was found
using the (F) Skin & Blood epigenetic clock (for individual p-values, see Supplementary Materials: Additional File S2,
Table S6). Statistical analysis was performed using (A—-C) an unpaired T-test of means and an (D-F) Ordinary one-way
ANOVA followed by the (E,F) TukeyHSD post-hoc test. (* p < 0.05). (** p < 0.01).

2.4. AMD Smokers Display Positive Epigenetic Age Acceleration Using the Skin & Blood
Epigenetic Clock

50f16

We next investigated whether presence of AMD was associated with EAA in Smokers
and Non-Smokers, and whether smoking status was associated with EAA in AMD or
Normal samples using whole blood-derived gDNA. We stratified our analysis to compare
the following four groups: Normal Non-Smoker (1 = 6); AMD Non-Smoker (1 = 5); Normal
Smoker (n = 10); and AMD Smoker (1 = 9), using the Horvath multi-tissue (Figure 3D), Han-
num (Figure 3E), and Skin & Blood (Figure 3F) epigenetic clocks, respectively. Individual
p-values for each respective comparison across all clocks tested are listed in Supplementary
Materials: Additional File S2, Tables S5 and Sé6.

Firstly, we performed a one-way ANOVA for the Horvath multi-tissue (Figure 3D),
Hannum (Figure 3E) and Skin &Blood (Figure 3F) epigenetic clocks. A Benjamini-Hochberg
FDR correction was applied to F-test values for each one-way ANOVA (Supplementary
Materials: Additional File S2, Table S5). The Horvath multi-tissue clock did not display
significant FDR-adjusted p-values (Figure 3D). However, the Hannum (Figure 3E) and
Skin & Blood (Figure 3F) epigenetic clocks did display significant FDR-adjusted p-values
and were selected for the TukeyHSD post-hoc test to assess differences across groups.
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Details of the one-way ANOVA with the applied TukeyHSD post-hoc test are found in
Additional File S2, Table Sé. Significant differences were identified in EAA between AMD
Non-Smokers and Normal Smokers using the Hannum (* p = 0.0334, mean year difference:
—8.42 years) and Skin & Blood clocks (** p = 0.0064, mean year difference: —8.94 years).
However, we did not observe any differences in EAA between Normal Non-Smoker
compared to AMD Non-Smoker; and Normal Smoker compared to AMD Smoker groups
using the Hannum (Figure 3E) and Skin & Blood (Figure 3F) epigenetic clocks, suggesting
that disease state is not associated with positive or negative EAA in Smokers. We next
sought to assess whether smoking was associated with EAA in Normal and AMD patients.
Normal Smoker patients did not display any increase in EAA compared to Normal Non-
smokers. However, in AMD patients, smoking was associated with a significant positive
EAA when compared to Non-Smokers in AMD using the Skin & Blood epigenetic clock
(* p = 0.0335, mean year difference: —7.347 years). (Figure 3E,F).

2.5. Differentially Methylated CpG Probes Identified in Whole Blood gDNA from AMD Patients

We next investigated DNAm differences at individual CpG probes in AMD (n = 14)
and Normal (1 = 16) whole blood-derived gDNA using DNAm data generated by the EPIC-
array. We conducted differentially methylated locus (DML) and differential region (DMR)
analysis between AMD and Normal samples. All AMD samples used in our analysis from
the Southampton Cohort were AREDS grade 2 (78%) or grade 3 (22%). No significant CpG
probes or regions were identified in our cohort following FDR multiple testing correction in
our DML or DMR analysis [32]. However, applying an unadjusted p-value cut-off criterion
of p <10~ [27], we identified 21 differentially methylated CpG probes between AMD
and Normal groups (Table 1). We identified five promoter based CpG probes, 14 gene
body based CpG probes, and two intergenic probes. Across the top 21 variable probes
(p < 10~%), we observed low mean p-value differences between AMD and Normal samples
(AB) (AP £ <5%) with two CpG probes displaying large effect sizes (A £ >10%). The
largest effect size was identified in RPTOR (cg04953735, Intron 3, A = —11.95%). For
a scatter plot representing methylation (3-values, please see Supplementary Materials:
Additional File S2, Figure S1. c¢g04953735 within RPTOR co-localised with H3K4mel and
H3K27ac enrichment using layered data in seven cell lines from ENCODE, UCSC genome
browser, suggestive of methylation differences occurring within an active enhancer region.
In addition, cg04953735 lies within a predicted 2032bp enhancer region (GeneHancer:
GH17J080678) within intron 3 of RPTOR, 134008bp upstream of a predicted interaction
region within the TSS200 of RPTOR.
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Table 1. Differentially methylated CpG probes identified in whole blood of patients with AMD using a relaxed p-value criterion (p < 1074).

Probe 1.D. Gene LD. logFC Unadjusted p-Value AR (* £>10%) Chromosome:Position (Hg19) Relation to CpG Island Relation to Gene
€g24522809 UPP2 —0.472041082 1.01 x 107 -3.35 chr2:158851594 Open Sea T55200
cg15985873 NOX5 0.41292444 1.40 x 107° 2.82 chr15:69264323 Open Sea Body (Intron)
cg21175976 BLK —0.922913398 1.53 x 10~ —9.49 chr8:11421337 Island Body (Intron)
cg07212053 UBE4A 0.480522948 1.87 x 1072 1.1 chr11:118230307 Island Body (1st Exon)
cg14426911 SEMAb5A —0.637685904 2.07 x 1072 —4.36 chr5:9363104 Open Sea Body (Intron)
cg05306123 INTS7 0.52368943 2.60 x 1072 4.33 chr1:212159068 Open Sea Body (Intron)
cg06569202 DBP 0.511049469 4.21 x 1072 1.42 chr19:49140842 Island TS5200
cg12917056 PDC 0.545557387 4.38 x 107> 4.38 chr1:186416576 OpenSea Body (Intron)
cg12855166 MYOI1D —0.955212746 4.56 x 107° —0.88 chr17:30846586 Island Body (Intron)
cg23282837 CSMD3 —0.554156229 5.06 x 107> —2.92 chr8:114449418 Open Sea TS5200
cg17303711 ZSCAN22 0.472499092 527 x 107> 1.68 chr19:58838235 Island TSS200
cgl17303822 - 1.107838488 5.40 x 1072 8.89 chr4:120992550 Open Sea Intergenic
€g22945982 VWAS 0.827121348 5.85 x 107> 4.52 chr13:42443309 Open Sea Body (Intron)
cg04953735 RPTOR —0.731183406 6.51 x 107° —11.95* chr17:78652628 Open Sea Body (Intron)
cg08636246 RSBN1 0.400242281 7.37 x 107° 1.14 chr1:114354993 Island Body (1st Exon)
cgl7247365 WWOX —0.787476578 7.97 x 107° —9.56 chr16:78275151 Open Sea Body (Intron)
cg03380182 - 0.777809274 8.36 x 107° 10.68 * chr1:244065456 Open Sea Intergenic
cg13955747 TMEM18 0.301564284 8.38 x 107° 1.54 chr2:677585 Island TS5200
€g22541572 LRCH1 0.662406112 8.71 x 107° 4.64 chr13:47237047 Open Sea Body (Intron)
cg07642595 LAMP1 —0.545207974 9.06 x 107> —6.63 chr13:113952548 South Shore Body (Intron)
cg09228785 CD82 0.574387376 9.91 x 107° 8.33 chr11:44630602 Open Sea Body (Intron)

Differential methylation analysis of EPIC-array data from AMD (1 = 14) and Normal (n = 16) whole blood-derived gDNA samples. Differentially methylated probes were identified using a relaxed p-value
criterion (p < 0.0001). * denotes CpG probes displaying a methylation difference of >10% [A > 10%]. AR (mean 3 value AMD—mean {3 value control), TSS (transcription start site), Body (gene body), and

Intergenic (Intergenic region not mapping to known gene).
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2.6. Ingenuity Pathway Causal Network Analysis Identified RPTOR as a Master Regulator of
Methylation Changes in RPE

We performed moderated t-tests using limma and conducted IPA CNA on the top
301 most significantly differentially methylated CpG probes in blood, based on a p-value
threshold of p < 1073 between AMD and Normal groups. Following filtering of CpG
probes in intergenic areas and assigning multiple CpG probes mapping to a single gene as
one single gene, the IPA CNA in blood revealed 212 genes for analysis. Supplementary
Materials: Additional File S3, demonstrates the full results of IPA CNA for the top most
differentially methylated CpG probes between AMD and Normal samples in blood. We also
assessed the top most variable probes from our published genome wide DNA methylation
dataset obtained from RPE [27]. We performed IPA CNA by scoring against the disease
terms “macular degeneration” (Figure 4). No master regulators were identified among
the top 301 most significantly differentially methylated probes (p < 10~3) using whole
blood-derived gDNA from the Southampton Cohort that scored against the term “macular
degeneration” (Additional File S3). However, in the RPE, IPA CNA identified inhibition
of RPTOR (Figure 4) as master regulator for methylation changes amongst the top most
significantly differentially methylated CpG probes that scored against the term “macular
degeneration” in AMD RPE [27]. Full results of IPA CNA for the top most significantly
differentially methylated CpG probes between AMD and Normal samples in RPE, are
shown in Supplementary Materials: Additional File S3. In addition, the predicted inhibition
of RPTOR in AMD RPE leads to the predicted inhibition of CTNNBI encoding beta-catenin,
predicted to activate the disease term “macular degeneration”.

Prediction Legend
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Figure 4. Ingenuity Pathway Analysis Causal Network Analysis identifies RPTOR as a master regulator for DNA methy-

lation changes in AMD RPE. (A) Ingenuity Pathway Analysis Causal Network Analysis was performed on the top most
differentially methylated probes identified by the 450K-array in AMD human RPE gDNA samples. RPTOR inhibition was
identified as a master upstream regulator of SKI, GTF2H4, CORO2B, FAIM2, BDNF, and EIF2AK3. RPTOR inhibition was
also found to inhibit CTNNB1, which inhibits ascorbic acid, predicted to activate the term “macular degeneration” in IPA.
(B) Prediction legend for the Ingenuity Pathway Analysis Causal Network Analysis.

3. Discussion

This is the first study to our knowledge formally evaluating whether EAA is associated
with AMD and important risk factor covariates including smoking status. We sought
to address whether EAA is observed in the RPE [27], as it is a primary site of AMD
pathogenesis, and in whole blood, as the epigenetic clocks have been widely applied and
validated in blood-derived gDNA.

In the RPE, we observed a marked negative EAA across all groups with no significant
differences in EAA between AMD and Normal samples using all three clocks. This result
cannot be characterised as true negative age acceleration because of poor performance
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of the epigenetic clocks in RPE [33]. The consistent poor correlation of predicted DNAm
age with chronological age observed in the RPE markedly improved when analysing
whole blood-derived gDNA data, explained by the datasets used to train each respective
epigenetic clock [3,4,8]. Although we might expect any non-zero EAA in the RPE to also
be associated with weak correlation, our findings are key in illustrating the potential
biological and technical deviations present when assaying RPE samples as opposed to
whole blood using the epigenetic clocks. Non-zero deviations do indeed have an impact
on the accuracy and correlation of the estimates; however, we posit that the epigenetic
age is always underestimated in RPE rather than errors being positively and negatively
distributed around the mean. This suggests clock calibration issues in RPE or a currently
unknown biological phenomenon, although the better predictive capacity of the clocks in
blood supports the former assumption. As such, we believe the poor accuracy of epigenetic
clocks in RPE is a key finding, especially in the context of age-dependent hypermethylation
of ELOVL? in ageing ocular tissues increasingly referenced as a reliable biomarker [4,8,34].
The data provided welcomes the generation of multivariate models to further delineate the
complexity of ageing in RPE or address the current calibration issues with existing clocks.

Reasonable performance of each respective epigenetic clock in whole blood, however,
strengthens the observation of no association of EAA with AMD in blood, though this
remains open to further investigation in the RPE, which can be addressed using a bespoke
RPE epigenetic clock with greater predictive accuracy. The highly accurate skeletal mus-
cle [35] and breast tissue [36] epigenetic clocks have set precedents to this approach. These
clocks share little overlap in CpG probe selection with Horvath’s multi-tissue clock suggest-
ing that bespoke clocks capture separate tissue specific epigenetic ageing processes [36].
Therefore, construction of a tissue-specific RPE clock is necessary for future studies to
capture the specific epigenetic ageing processes in the RPE.

A strength of this study was having information regarding the smoking status of AMD
patients from which blood samples were taken, allowing stratified analyses to investigate
whether smoking was associated with EAA in AMD. Smoking, the greatest modifiable
risk factor for AMD, substantially increases AMD relative risk (RR) with RR of disease
varying from 2.7 to 6.6 in current smokers in unrelated mixed-gender cohorts [19-22]. In
accordance with previous studies examining EAA using Horvath’s multi-tissue clock on
DNAm data from lung tissue of smokers [30], we observed a significant positive EAA in
all three epigenetic clocks tested. The three clocks are predictors of chronological ageing
and display a degree of CpG probe overlap [6], however each clock captures facets of a
diverse, often tissue-type specific ageing process [6]. Taken together, our results suggest
that smoking exerts a significant and broad effect on DNAm age in blood and further
regulates biological ageing across several tissue types. To confirm whether this effect is
present in the RPE, future studies will require smoking status documentation.

Using the Skin & Blood clock, which demonstrated the greatest predictive accuracy
for chronological age in our whole blood samples, we found significant positive EAA
in AMD Smokers compared to Non-Smokers, a finding not replicated in the Horvath
multi-tissue [3] and Hannum epigenetic clocks [4]. One explanation for this may lie in
confounding factors affecting clock performance based on the age range of patient samples
used in our study, which included RPE/blood from patients > 50 years old. Previous
studies have demonstrated failure of both the Horvath multi-tissue and Hannum epigenetic
clocks to accurately predict chronological age in older cohorts [12,33,37]. It is proposed
that this occurs due to methylation saturation (i.e., select CpG probes reaching either
0 or 100% methylation later in life), in addition to confounding from other age related
processes [33]. In the case of Horvath’s multi-tissue epigenetic clock, poor predictive
capability in elderly samples can be partially attributed to lower representation of tissues
from elderly individuals in test data [33]. Inaccurate prediction of DNAm age in elderly
individuals has also been shown to be a facet of Hannum'’s clock [33], where test data
individuals were aged between 19-101 years [4]. Therefore, the reasons for less precise age
prediction in older individuals using the Hannum/Horvath clock are not entirely clear.
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However, previous poor performance in older datasets for the Horvath multi-tissue and
Hannum clocks may explain why the Skin & Blood clock performed best out of all three
clocks tested in blood-derived gDNA. While the Skin and Blood clock has also shown a
degree of error in elderly samples due to age confounding [37], it consistently outperforms
predictive capacity in blood samples when compared to Horvath’s multi tissue clock and
Hannum'’s clock, a finding confirmed in this study [7,37]. Therefore, our observation that
smokers with AMD exhibit accelerated epigenetic ageing compared to Non-Smokers with
AMD is strengthened by identifying this effect in the clock with the greatest predictive
accuracy for the demographic age and tissue type represented in our dataset.

To support our analyses of epigenetic ageing in AMD, we performed DML analysis
in AMD whole blood-derived gDNA. In line with previous microarray-based studies in
blood of patients with AMD [26], we were unable to identify significantly differentially
methylated CpG probes following FDR-adjusted multiple testing correction. However,
using a p-value cut-off criterion of p < 10~# [27], we identified 21 differentially methylated
CpG probes, with no overlap between our top 21 most variable probes and those observed
in other genome-wide studies [26,27]. Small effect size was observed amongst our top most
variable probes (A3 < 5%), consistent with the effect sizes reported in the literature [23,26].
We propose that this effect is similar to the ageing process outlined by Horvath’s multi-
tissue clock, whereby DNAm levels at individual CpG probes correlate poorly with age, but
the composite effect of a larger number of probes represents consistent and reproducible
epigenetic changes occurring during the ageing process [3]. Collectively, our finding
suggests that a composite effect of small methylation changes at a number of CpG probes
drives early and intermediate AMD, representing a more accurate picture of DNAm
changes occurring during AMD development [3,38].

We next investigated a causal relationship for methylation changes using IPA CNA
at the top 301 most significantly differentially methylated CpG probes in blood and top
significantly differentially methylated CpG probes in the RPE, identified in our previ-
ous study [27]. IPA CNA may detect novel master upstream regulators acting through
intermediate downstream regulators affecting gene expression [39], in this case using
directional log-fold methylation changes as a proxy for expression changes. IPA CNA
creates networks based on known interactions within the IPA knowledge base [39]. While
the causal relationship of methylation changes between genes is less defined than that of
gene expression differences, IPA CNA can be used to identify master regulators [39]. IPA
CNA maps differentially methylated probes to genes, and then maps these genes to disease
states, such as AMD. However, previous studies identified bias in gene-set analysis applied
to high throughput DNAm data [40]. The reason for this is the key assumption in GSA that
genes have, a priori, the same probability of appearing in the list regardless of experimental
condition [40]. In the case of DNAm data, this can lead to bias due to differences in the
prevalence of CpG probes associated with different genes [40]. IPA accounts for this bias
by recognising a gene that appears multiple times in a list only once. In this context, we
were unable to identify master regulators of genes of differentially methylated CpG probes
in our top 301 significantly differentially methylated CpG probes in whole blood, however
we identified inhibition of RPTOR as the putative upstream master regulator in AMD
RPE [27].

Importantly, in blood, we also identified the largest methylation change of any probe
within RPTOR, with a substantial decrease in methylation (A = —11.5%; p = 6.51 X 1075).
Raptor is an adaptor protein involved in regulating the activity of Mammalian Target of
Rapamycin Complex-1 (mTORC1), by facilitating recruitment of substrates to the mTOR
kinase [41] which regulates ageing, cellular growth, stress responses and inhibits au-
tophagy [42]. mTOR plays a central role in ageing and is implicated in proteostasis,
mitochondprial function and cellular senescence [43]. Raptor inhibition has been shown in
human donor AMD RPE concurrent with increased mTOR activation [42] a finding corrobo-
rated by previous evidence showing that primary RPE cell cultures from elderly individuals
display increased mTORCT1 activity [44]. Of further relevance, overactive mTORC1 has
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been shown to indirectly downregulate the expression of protein kinase ER-like Kinase
(PERK), a key component of the unfolded protein response, in mouse embryonic fibrob-
lasts [45]. EIF2AK3, the gene encoding PERK, displays significant downregulation in AMD
RPE [27]. Together, these findings support key roles for upregulated mTORC1 activity
and inhibition of RPTOR in AMD, although further experimental evidence is required to
confirm this association.

We acknowledge that whilst there is added utility in the assessment of epigenetic
ageing in primary affected disease tissues such as RPE in AMD, epigenetic ageing pro-
cesses in peripheral tissues, such as blood, may still provide useful insights to gener-
ate a systemic ageing profile associated with AMD. In this context, evidence suggests
that although AMD is primarily an ocular disease, systemic factors contribute to disease
development [26,46]. The growing body of evidence identifying DNAm changes both
in RPE [27] and in blood [26] of AMD patients is important as altered epigenetic main-
tenance processes implicated in ageing and ageing-related diseases, may potentially be
reversed. Lu et al. recently demonstrated that epigenetic ageing is not a unidirectional
process, as induced ectopic expression of the OCT4, SOX2 and KLF4 genes in mouse retinal
ganglion cells reversed vision loss in mouse models of glaucoma and ageing, associated
with restoration of a youthful DNAm age [47].

A limitation of this study lies in the sample size used to investigate differences in
methylation between AMD and Normal whole blood-derived gDNA with insufficient
power to detect FDR-adjusted differentially methylated CpG probes. This may also un-
derlie the absence of EAA associated in AMD. However, a previous EWAS investigating
DNAm differences in whole blood failed to identify significant differential methylation
following FDR-adjustment using a significantly increased cohort size (AMD, n = 198; Con-
trol, n = 100) [26]. Therefore, future studies investigating both differential methylation and
EAA will require greater samples sizes [26,27].

In conclusion, our findings of positive EAA using all three epigenetic clocks in Smok-
ers, and in Smokers with AMD using the most appropriate Skin & Blood epigenetic clock
represents an important avenue for further development [47]. Furthermore, our identifica-
tion of RAPTOR as master regulator of DNAm changes in AMD RPE supports its role in
both ageing and AMD and provides a key target for future functional studies.

4. Materials and Methods
4.1. Sample Collection, Grading and DNA Extraction

Peripheral whole blood samples and gDNA were extracted from individuals within
the Southampton Case-Control Cohort (referred to as the “Southampton Cohort”) in a
manner described previously [48]. Demographic information was provided including age
(years), gender (male or female), and smoking status (Smoker or Non-Smoker) (Supple-
mentary Materials: Additional File S2, Table S1). Age-matching statistics for the purpose of
this study comparing AMD and Normal groups, in addition to Non-Smoker and Smoker
groups, can be found in Supplementary Materials: Additional File S2, Tables S3 and S4.
Samples were obtained from individuals phenotyped according to the Age-Related Eye Dis-
ease Study (AREDS) classification (Additional File S2: Table S2) [49]. Samples from patients
exhibiting advanced AMD were excluded from the study. A total of 30 patient samples
including 16 Normal, 3 AREDS grade 2 (early AMD) and 11 AREDS grade 3 (intermediate
AMD) (AMD total, n = 14) were selected (Supplementary Materials: Additional File S2,
Table S1). Analysis of peripheral whole blood gDNA degradation levels were assessed
prior to bisulfite conversion for methylation analyses by performing gel electrophoresis in
a previously described manner [27].

4.2. Mumina Infinum MethylationEPIC BeadChip Array

DNAm levels were measured using the EPIC-array (Illumina Inc., San Diego, CA,
USA), interrogating 865 918 CpG sites covering >99% of RefSeq genes. Samples run on
the EPIC-array were randomized and balanced for disease status and smoking status to
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minimise chip and row specific effects. The EPIC-array was conducted at the Edinburgh
Clinical Research Facility (Edinburgh, UK) incorporating technical controls into the ex-
perimental design. In total, 500 ng (50 ng/pL) peripheral whole blood-derived gDNA
was bisulfite converted using the EZ-96 DNA methylation kit (Zymo Research, Irvine,
CA, USA) and hybridised to the EPIC-array according to the manufacturer’s instructions.
Quality control analysis was performed using GenomeStudio (v2011.1). Raw IDAT files
were then read into R (version 3.31) using the read.metharray.exp function within the minfi
package [50] The dataset and analysis of the Southampton Cohort has been deposited in
ArrayExpress with submission number: E-MTAB-11279.

4.3. Pre-Processing and Normalisation

EPIC-array data was analysed using functionality within the minfi package [50]. Each
sample was subjected to various quality control measures. Cell type proportions were
corrected using the estimateCellCounts2 function in R. Briefly, “CD8T”, “CD4T”, “NK”,
“Beell”, “Mono”, and “Neu” were deconvoluted from our mixed whole blood samples [51].
Furthermore, samples were checked for global hybridisation quality based on an average
probe detection p-value threshold of p > 0.05. Samples not meeting these criteria were
removed from the analysis. Individual CpG probes exceeding a detection p-value of
p > 0.01, indicating a failed position, were removed from the analysis. Probes located on
chromosomes X & Y and probes within two base pairs of a single nucleotide polymorphism
(SNP) with a minor allele frequency >0.05 were also removed, as well as probes previously
found to cross hybridise to multiple genomic locations [52,53]. Samples were normalised
using the Subset-quantile Within Array Normalisation (SWAN) algorithm to correct for
biases between type I and type II probe distributions [54]. Following filtering, 784,486 CpG
probes were available for downstream analysis.

4.4. Epigenetic Clock Analyses

DNAm age was calculated on DNAm data obtained from whole blood-derived gDNA
of Normal and AMD patients from the Southampton Cohort, analysed using the EPIC-
array, and DNAm data from ocular tissue (human RPE) of Normal and AMD patients
from our previously described cohort of individuals of European descent, analysed using
450K-array data (accessed from ArrayExpress: E-MTAB-7183) [date accessed: 24 May
2020]. [27]. DNAm age estimations were performed using Horvath’s multi-tissue [3],
Hannum'’s [4], and the Skin & Blood epigenetic [8] clocks using a publicly available online
calculator (available at: http://dnamage.genetics.ucla.edu/, accessed on 9 September
2021). For outputs of all epigenetic clock data in whole blood and RPE-derived gDNA,
please see Supplementary Materials: Additional File S1. We assessed the performance of
each respective clock on DNAm data derived from RPE gDNA (n = 44) using 450K-array
data from our previously described cohort [27]. We also assessed the performance of
these three clocks using whole blood-derived (n = 30) gDNA methylation data acquired
by EPIC-array from the Southampton Cohort. Performance was assessed using linear
regression of estimated DNAm age with chronological age of patient-derived samples
from each respective tissue type. EAA was calculated as the difference between estimated
DNAm age and chronological age (DNAm age-chronological age). Assessment for normal
distribution of data was performed using a Shapiro-Wilks Test for Normality prior to
conducting comparisons using statistical tests. Normality tests were passed following
a > 0.05. Non-parametric Mann-Whitney tests comparing EAA of whole blood-derived
gDNA samples and RPE-derived gDNA samples were performed across the groups: “AMD
vs Normal” in whole blood and RPE. Univariate analyses employing an unpaired ¢-test
comparing EAA was performed for: “Smoker vs Non-Smoker” groups. We stratified our
cohort into the following groups: Normal Non-Smoker (1 = 6); AMD Non-Smoker (1 = 5);
Normal Smoker (n = 10); and AMD Smoker (n = 9). We computed ANOVAs for each
respective epigenetic clock. We applied the FDR correction to the F Test values of each
ANOVA and, if significant following FDR adjustment, applied the TukeyHSD post-hoc test
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to determine significant differences between groups (Supplementary Materials: Additional
File S2, Tables S5 and S6). All statistical analysis was performed using R (version 3.31) and
GraphPad Prism (ver 8.0.2, GraphPhad Software Inc., San Diego, CA, USA).

4.5. Differentially Methylated CpG Probe and Region Analysis

To identify differentially methylated CpG probes, univariate statistical analysis for
each CpG probe was performed using the linear models for microarray data (Limma)
package [55]. To implement the linear models, we built a contrast matrix with coefficients
for “AMD” and “Normal”. Significance was determined based on a Benjamini-Hochberg
(BH)-adjusted False Discovery Rate (FDR) < 0.05. In a scenario where no differentially
methylated CpG probes were found using a BH-adjusted FDR < 0.05, an unadjusted
p-value criterion of p < 10~* was applied [27]. We assessed for differentially methylated
regions using DMRcate [56]. Regions were defined as blocks of 1000 nucleotides fitting a
gaussian kernel smoothed function. We considered a region to be differentially methylated
if its BH-corrected FDR was <0.1 and had an absolute mean beta fold change >0.1 (10%)).

4.6. Histone Modification Enrichment and GeneHancer Analysis

For the top most variable probes in whole blood DNAm data meeting the unad-
justed p-value criterion of p < 107%, analysis of histone modification enrichment was
performed using the overlaid H3K4Mel, H3K4Me3, and H3K27Ac track functions within
the Integrated Regulation track from the UCSC genome browser (available from: https:
//genome.ucsc.edu/cgi-bin/hgTrackUi?g=wgEncodeReg, accessed on 5 August 2021).
The layered H3K4Mel, H3K4Me3, and H3K27Ac tracks consist of Chromatin Immunopre-
cipitation Sequencing data from seven cell lines: GM12878, H1-hESC, HSMM, HUVEC,
K562, NHEK, and NHLF. GeneHancer analysis was performed using the Enhancer and Pro-
moter functions from GeneHancer track within the UCSC genome browser (available from:
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=geneHancer, accessed on 5 Au-
gust 2021) to identify putative enhancer and promoter elements signatures. Additionally,
interactions between predicted enhancers and regions within target genes were analysed
using the Interaction function within the Enhancer and Promoter from GeneHancer track.

4.7. Ingenuity Pathway Analysis

The Causal Network Analysis (CNA) function within Ingenuity Pathway Analysis
(IPA) was used to construct networks to investigate novel upstream regulators associ-
ated with AMD. Both direct and indirect relationships were considered in the general
settings. All node types and data sources were considered, and confidence gained using
experimentally observed and high (predicted) interactions. Interactions were considered
from available mammals (human, mouse, and rat). All tissue lines and mutations were
considered. CNA was performed against the disease term “macular degeneration” for the
variable probes from both respective datasets (RPE and blood) to identify master regulators
based on activation z-scores (z > 2.0). This was performed on the top most differentially
methylated probes that met the p-value criterion (p < 107°) in the RPE of patients with
AMD, as published in [27] (Additional File S3); in addition to the top-301 variable probes
(p < 1073) identified in blood-derived gDNA in patients with AMD (Additional File S3).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/1ijms222413457 /s1.
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AREDS Age-related Eye Disease Study
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DNAmM DNA methylation

DNAm Age DNA methylation age

EAA Epigenetic Age Acceleration

EMS Epigenetic Maintenance System

EPIC-array  Illumina Infinium MethylationEPIC BeadChip Array
FDR False Discovery Rate

gDNA Genomic DNA

IPA CNA Ingenuity Pathway Analysis; Causal Network Analysis
mTORC1 Mammalian Target of Rapamycin Complex 1

PERK Protein Kinase ER-like Kinase

RAPTOR Regulatory Associated Protein of mTOR Complex 1
RPE Retinal Pigment Epithelium

SWAN Subset-quantile Within Array Normalisation
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