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Abstract: Spatial transcriptomics (ST) is transforming the way we can study gene expression and
its regulation through position-specific resolution within tissues. However, as in bulk RNA-Seq,
transposable elements (TEs) are not being studied due to their highly repetitive nature. In recent
years, TEs have been recognized as important regulators of gene expression, and thus, TE expression
analysis in a spatially resolved manner could further help to understand their role in gene regulation
within tissues. We present SpatialTE, a tool to analyze TE expression from ST datasets and show its
application in somatic and diseased tissues. The results indicate that TEs have spatially regulated
expression patterns and that their expression profiles are spatially altered in ALS disease, indicating
that TEs might perform differential regulatory functions within tissue organs. We have made
SpatialTE publicly available as open-source software under an MIT license.

Keywords: spatial transcriptomics; transposable elements; gene regulation; spinal cord & brain;
kidney; amyotrophic lateral sclerosis disease

1. Introduction

RNA-sequencing (RNA-Seq) has transformed the way we can study gene expression
and its regulation. This is due to the ability to detect transcripts at a whole-genome scale
in an unbiased manner (i.e., it does not require a priori knowledge of which genes to
study) [1]. Although the method has expanded the knowledge on mechanisms of gene
regulation, in recent years, efforts have been made to obtain transcriptomes with greater
cellular resolution, as the standard bulk RNA-Seq protocol represents a transcriptome
“average” (i.e., the expression of all cells from the sampled tissue is mixed) [2]. Recently,
single-cell RNA-Seq (scRNA-Seq) methods have been developed, allowing a significant
advance in terms of the transcripts expressed by specific cell types, further improving
gene expression analysis in highly heterogeneous tissues (i.e., brain, spinal cord, kidneys,
etc.) [3]. An innovation, parallel to scRNA-Seq is that of spatial transcriptomics (ST), in
which transcriptomes are obtained from a well-defined spatial location within the tissue [2].
Briefly, in ST, a tissue section is placed on a glass slide with a grid of spots, each of which
has a microarray of oligonucleotides (also known as “capture probes”) that allow the direct
capture of the mRNAs from the grids maintaining their spatial position. Then, cDNA
libraries are prepared and sequenced using standard DNA sequencing technologies, which
in turn allows the estimation of transcriptomic profiles at each spatial spot [1,4]. Currently,
there are two generations of ST: the original ST method, developed in 2016, that allows the
capture of transcriptomes from spots of 100 µm in diameter, and 200 µm of center-to-center
distance between the spots, limited to a total of 1007 spots per slide [2,4]; and the 10X ST
that decreases of the spot sizes and the center-to-center distance between them to 55 µm
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diameter and 100 µm, respectively, increasing the total spots per slide to 5000 [4]. So far, the
ST methods have been successfully applied in diseased and healthy tissues. Particularly,
the original ST has been used to study the tissue heterogeneity of several cancer types [5,6],
along with the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) [7].
Thus, it is now possible to assess the spatial activity of genes, a key step in understanding
differential gene regulation in highly heterogeneous tissues.

Transposable elements (TEs) are genetic segments that can move and replicate them-
selves within a genome [8]. TEs are classified into DNA transposons and retrotransposons,
the latter further subclassified into the LINEs (long interspersed nuclear elements), SINEs
(short interspersed nuclear elements) and LTRs (long terminal repeats). TEs are found ubiq-
uitously in exons, introns and intergenic non-coding regions in almost all genomes; they
occupy nearly 50% of the human and mouse genomes. Due to their potentially harmful
activity, most TEs are fragmented and carry mutations that render them inactive (labelled
as “old TEs”), with only a few amounts of TEs being intact, and highly identical to each
other (labelled as “young TEs”) [8]. Because of this, they were originally thought to be junk
DNA. However, transcriptional activation of TEs can still occur, and it has been associated
with a role in regulating gene expression [8,9]. Several algorithms have been developed
to study their expression in bulk RNA-Seq datasets [8]. According to the quantification
strategy used, the approaches can be divided into two categories: TEs quantification at the
subfamily/family level and at the locus-specific level. The first approaches circumvent the
multimapping problem by combining TE counts at the subfamily/family level, resulting in
a more accurate estimation of TE expression (in particular for younger TEs), but at the ex-
pense of losing their genomic location [8,10]. On the other hand, locus-specific approaches
work relatively well for old TEs because they have accumulated enough mutations that
differentiate them [11], but have problems with accurately estimating the expression of
young TEs, which are often highly similar between them earlier. Locus-specific approaches,
however, allow the study of the genomic vicinity of TEs, further helping to understand
their influence in genetic programs [12].

Previously, we described the transcriptional landscape of TEs during the progression
of ALS using the SOD1G93A mouse as a model [13]. Since the work used bulk RNA-Seq
datasets, we were unable to examine the expression of TEs in specific regions of the ALS-
afflicted spinal cords. Recently, the Phatnani group performed ST of ALS spinal cords from
the same mouse model. Although they described the spatial patterns of expression of genes
during the disease progression, the group did not examine TEs expression. In this work,
we take advantage of those datasets and others to present SpatialTE, a pipeline to analyze
TEs from datasets obtained by either the original ST or the 10X ST approaches. We applied
SpatialTE to data from ALS diseased mouse spinal cord and show that TEs are indeed
expressed in distinct spatial locations. We expanded the use of SpatialTE to other highly
heterogeneous tissues (brain and kidney), in which the 10X ST approach has been used.
In these datasets we also found expressed TEs, and that some of them are differentially
expressed in specific regions. In sum, our results suggest that TEs might play regulatory
roles that depend on the cells and their location within the tissues.

2. Results

2.1. Spatially Resolved TE Expression of p120 Spinal Cord Sections from SOD1G93A Mice

The SOD1G93A mice is a well-characterized model to study ALS since it accurately
recapitulates the disease progression seen in humans (motor neurons death, muscle weak-
ness, and lower limb paralysis at p120) [13–15]. The Phatnani group applied the original
ST in spinal cords of SOD1G93A mice. Previously, using bulk RNAseq from whole spinal
cords, we found differential activation of TE in the SOD1G93A model [13]). However, we
were unable to know whether the TE activities were specific to some regions of the spinal
cord i.e., to cells present within the spinal cord. With the development of SpatialTE, we
expected to overcome these problems and answer three basic questions: (1) Is it possible
to determine changes in TEs expression using data generated with the original ST (spinal
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cord)? (2) Do regions of the ALS spinal cord sections, known to be differentially afflicted
by the disease, show differences in the activity of TEs? (3) If so, what subclasses of TEs are
spatially transcribed TEs altered in ALS spinal cords?

Applying SpatialTE to the original ST datasets from the SOD1G93A spinal cords, we
find that TEs are ubiquitously expressed (Figure 1). Interestingly, the expression of TEs
was higher in the dorsal and ventral horns, than the expression observed in more medial
or distal regions of the spinal cord (Figure 1, right panels). This is an interesting finding
because the cell population most affected during ALS is located within the ventral horn [16].

Figure 1. TE expression in the p120 SOD1G93A mice using samples obtained with the original ST.
SRA accession corresponding to each sample is indicated at the left; “H&E”: hematoxylin and
eosin-stained tissue; “All TEs”: TE expression per spot over the tissue. Expression levels correspond
to log2 normalized counts, with the colour scale indicated at the right (lower values in light yellow,
with higher values in dark red).

Then, we analyzed the TE expression according to the categories of LINE, SINE, LTR,
and DNA transposons (Figure 2). This analysis revealed that all categories, besides the
DNA TEs, contribute to the total TE expression. These results are in agreement with
evidence indicating that some LTRs and non-LTR TEs (i.e., LINEs and SINEs) are activated
in the disease [17]. Thus, our results reveal differences between the TE classes (Figure 2).
The specific influence of different TE classes on ALS disease progression has not been fully
elucidated. Here, we show that there are subtle differences between the transcriptional
activation of LINE, SINE, and LTR TEs across the spinal cord, allowing us to speculate
that particular TEs might influence the disease in different manners. Previous studies
have indicated that both LTR and LINE TEs activate during the disease, yet their actual
contribution to neurodegeneration has not been fully elucidated [13,18,19]. With our work,
we confirm these previous findings and further expand the TE repertoire by showing that
SINEs also become transcriptionally activated. Moreover, taking advantage of the spatial
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resolution, the finding of TEs expressed in the ventral horn regions could further suggest
that they might influence neurodegeneration.

Figure 2. TE expression by class in the p120 SOD1G93A spinal cord. Samples are indicated by their SRA accession to the
left, and each TE class is indicated above. Expression levels correspond to log2 normalized counts, with the colour scale
indicated at the right of each panel

2.2. Spatially Resolved TE Expression in the Adult Mouse Brain

In addition to our interest in ALS spinal cords, we wanted to examine whether
SpatialTE could be used in a highly heterogeneous tissue, such as the brain. We know
activation of TEs occurs in the germline during early development [20,21] and also in
neurons [22–24]. Despite these data, very little is known about the spatial distribution
(i.e., expression) of TEs in different regions of the brain. Thus, using SpatialTE on 10X ST
datasets from adult mouse brain, we aimed to uncover the TE repertoire and assess their
spatial expression across the brain.

TE expression could be seen across all brain sections, with each class showing differ-
ential patterns of activity (Figure 3, Table 1). In the coronal brain section, there is a marked
expression of SINEs at the subcortical areas (Figure 3, top third column), with LINEs show-
ing subtle expression in these regions, but particularly increased levels at the thalamus
(Figure 3, top second column). By contrast, LTRs show slightly marked expression in the
brain cortex (Figure 3, top fourth column). For sagittal anterior datasets, both SINEs and
LTRs show consistent inter-sample expression (i.e., they show similar levels and spatial
distribution of expression in both replicas). SINEs are increased in the cerebral cortex,
hippocampus and hypothalamus, whereas LTR levels are elevated in the olfactory bulb
and cerebral cortex. LINEs on the other hand, show similar patterns of spatial expression
but in different magnitudes (less expression in sample 1 than sample 2). Similar to LTRs,
the spatial expression of LINEs seems to occur mainly in the cerebral cortex and olfactory
bulb. In the sagittal posterior samples, SINEs and LTRs are also the predominant TE
classes. SINEs are spatially restricted to the hippocampus, hypothalamus (in agreement
with the results from the sagittal anterior samples), and cerebellum, whereas LTRs are
strongly expressed in the cerebellum. LINEs expression, albeit not as marked, seems to
preferentially occur in the cerebral cortex, hypothalamus, and cerebellum. Surprisingly,
we also found DNA TEs expressed. TEs from this class are rarely studied, because they
only represent a small fraction of the murine genome (between 1–2%). However, across all
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brain sections, we found that the DNA TEs were heterogeneously expressed, without an
apparent spatial preference, indicating that they are less likely to play a significant role.

Figure 3. TE expression by class in the adult mice brain. Brain sections are indicated at the left, and
the expression of each of the TE classes (indicated above) are shown. Expression levels correspond to
log2 normalized counts, with the colour scale indicated at the top of each plot. “H&E”: hematoxylin
and eosin-stained tissue.

Table 1. Average log2 (fold enrichment) 1 TE classes across spatial regions of analyzed tissues.

Organ Section LINE SINE LTR DNA

Brain

Coronal 0.170 −0.189 0.200 −0.245
Sagittal Anterior 1 0.320 0.266 0.678 0.483
Sagittal Anterior 2 0.364 0.473 0.262 0.622
Sagital Posterior 1 0.269 0.264 0.506 0.739
Sagital Posterior 2 0.318 0.527 0.403 0.751

Kidney Coronal 0.729 0.311 0.519 0.253
1 All fold enrichments are statistically significant (adjusted p-value < 0.05, Supplementary File S3).

In summary, these results indicate that TEs have differential spatial expression, further
suggesting that TEs contribute in specific ways to gene regulatory network characteristics
of each brain region.
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2.3. Spatially Resolved TE Expression in the Adult Mouse Kidney

Finally, we wanted to use SpatialTE on samples in which TEs have not been studied.
For this, we used corresponding coronal sections of the adult mice kidney (Figure 4). To
the best of our knowledge, TE expression in healthy kidneys has not been analyzed.

Figure 4. TE expression by class in the adult mice kidney, coronal section. Each TE class is indicated above. Expression
levels correspond to log2 normalized counts, with the colour scale indicated at the top of each plot. “H&E”: Hematoxylin
and Eosin-stained tissue. A green oval has been added to the H&E figure to highlight the medulla.

Our results show that DNA TEs seem to have no spatial preferences. Their expression
levels, although relatively high, are distributed throughout the kidney (Figure 4). LINEs
and SINEs, on the other side show low levels of expression, with a few limited spots in a
portion of the cortex (Figure 4, column 3). LTRs are the ones showing the most marked
spatial preferences in expression, being predominantly activated in the medulla (Figure 4).
This region is among the most important for proper kidney functioning, as its activities
involve the modulation of urine concentration [25]. Thus, our results show that indeed TEs
are differentially expressed in kidneys, and that their expression, at least for some of the
TE, is spatially controlled. Moreover, the results suggest that TEs play a regulatory role in
regions of the kidney (medulla vs. cortex).

3. Methods
3.1. SpatialTE Implementation

SpatialTE employs a strategic application of several alignment metrics to subsequently
assess the expression of TEs from datasets generated using either the original ST or the
10X ST (Figure 5). However, each approach requires different inputs due to the way the
files are handled in their corresponding computational tools. To process datasets generated
with the original ST, the ST pipeline [26] is employed, generating a matrix that contains the
expression of genes from all spatial spots, and a BAM file with the reads that correspond
to the exons of annotated genes. On the other hand, the SpaceRanger tool is used for the
analysis of 10X ST datasets. It generates a gene expression matrix and a BAM file that
contains all aligned reads. Thus, for SpatialTE in the original ST modality, a customized call
of the ST pipeline is done to keep all aligned reads, and for the 10X ST modality, it starts
directly from the BAM file. Regardless of the modality, a TE annotation file is required, such
as the one obtained with RepeatMasker (the gold standard tool to annotate transposable
and other repetitive elements). The RepeatMasker annotation files for several organisms
(such as Homo sapiens, Mus musculus, and others) are readily available at the UCSC genome
browser database [27] and the NCBI Genome database. SpatialTE is packed with a script
that conveniently transforms the output of RepeatMasker to the appropriate format. The
bases for SpatialTE are all the reads that are mapped to non-exonic regions of the genome,
which are not further considered in the standard ST analysis.
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Figure 5. Workflow of SpatialTE. Dashed boxes correspond to the input files (shown with a file
icon and a name) for SpatialTE according to the ST technology used (Old or 10×). The green
box corresponds to the run of the external tool ST pipeline (which performs read alignment and
identification of gene expression per spatial spot), whereas yellow boxes correspond to key processes
within SpatialTE. First, TEs having at least 1 read are selected. Second, for these selected TEs two
metrics are calculated: Coverage (percentage of TE bases covered by reads) and the mapping score
(number of uniquely mapped reads aligned to the TE divided by the total number of reads aligned
by the TE). Third, TEs can be filtered by a user-defined coverage threshold (default = 0, i.e., keep all
TEs). Finally, SpatialTE generates two outputs according to the mapping score of the TEs (output
files, TEs by locus and TEs by classes).

Due to their repetitive nature, the main problem for examining TE expression with
any type of RNA-Seq data are multi-mapper reads. Although, old TEs have accumulated
mutations [11] that make possible a unique alignment of reads to them. The second step in
SpatialTE is to find which TEs have at least 1 read. Then, for these TEs, two metrics are
calculated: coverage and mapping score.

The coverage is defined as the percentage of the TE bases covered by reads and is
calculated using BEDTools [28]. All TEs with a coverage equal to or above a user-defined
threshold are kept (default value = 0, i.e., all results are reported). Higher coverage
values can be used to detect full-length TEs, while lower coverage values can be used to
include shorter TE transcriptional variants (i.e., TEs having only a fraction of their locus
transcribed) [8]. An issue with the coverage metric is that it does not take into account the
proportion of unique- and multi-mapper reads. Thus, the mapping score (MS) is calculated
afterward. MS for a particular TEi is calculated as the number of uniquely mapped reads
(UMRs) to TEi divided by the number of uniquely mapped reads to TEi plus the number of
multi-mapped reads (MMRs) to TEi:

MS(TEi) =
UMRs TEi

UMRs TEi + MMRs TEi

In this way, the MS represents a filter for TEs based on the ambiguity of the reads
aligning to it. MSs near or equal to 100 would represent TEs whose expression can be
more accurately assessed at the locus level, whereas lower MSs represent TEs in which
there is less certainty on their expressed levels at a specific locus. Afterward, TEs are split
into two groups: locus-specific and subfamily-specific. Locus-specific TEs are those TEs
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that have an MS equal to or above a user-defined value (default = 100, i.e., TEs having
only UMRs), whereas subfamily-specific TEs are TEs having an MS equal or lower than a
user-defined value (default = 0, i.e., TEs having only MMRs). Subfamily-specific TEs are
further processed to report expression levels summarized at the subfamily level, instead of
a locus-specific level, as there is no certainty from which locus a TE with MS = 0 comes
from. Finally, for each TE group, the results are provided as a TSV matrix containing
the TE identifiers as columns, and spot coordinates as rows. Thus, the results are readily
integrable into subsequent analysis by using any of the tools that are publicly available for
ST analysis.

SpatialTE is implemented as an open-source Bash script, with instructions detailing
its usage available at the README file in the GitHub repository, publicly available at:
https://github.com/bvaldebenitom/SpatialTE (accessed on 15 October 2021).

3.2. Benchmarking and Validation

Due to the lack of proper ST simulation tools, it is not feasible to extensively test
SpatialTE with synthetic data. There are no other tools to study TEs in ST data; thus,
we cannot compare our tool to others that could be similar. Nonetheless, we designed
a small proof-of-concept experiment using data from a real ST sequencing experiment.
First, we took advantage of the fact that ST sequencing is done using a paired-end layout
in which spatial information is in read 1 and expressed RNA information is in read 2.
We selected all the reads that belonged to 2 spots of the sample SRR7895713 sample: the
11 × 5 and the 10 × 10 spots (Figure S1). Then, we randomly selected LINEs and LTRs
matching the available number of molecules at each spot. For each randomly selected
TE in the respective spot, a random number of reads was generated using the Polyester
RNA-Seq read simulator in single-end mode [29]. For the spot 11 × 5, a total of 6420
reads were generated, whereas for the 10 × 10 spot, a total of 9593 reads were generated
(Supplementary Tables S1 and S2). The simulated file was used as the right read, and the
spatial information for the respective spots (11 × 5 for LINEs, 10 × 10 for LTRs, Figure S2)
was used as the left read. These files were then used as input for SpatialTE. Since the spatial
location and molecule information belonged to a real experiment (SRR7895713), we used
the respective H&E image to visually inspect the results of SpatialTE. Moreover, because
we knew the ground truth spatial position and expression levels of these TEs, we were able
to analyze and compare the expression estimates obtained with SpatialTE against the real
expression levels. Overall, this experiment allowed the researchers to test the accuracy of
SpatialTE in correctly assigning TE expression to each spatial spot, and the accuracy of its
expression estimates. With this test, we confirmed that in terms of spatial coordinates, no
errors were detected. This indicates that our tool can precisely reveal the location of TE
expression across the studied tissues Additionally, we found that there is higher correlation
to real expression levels between the expression estimation at the subfamily level than
those at the locus-specific level (Figure S3). These tests and their results are further detailed
in Supplementary File S1.

3.3. SpatialTE Data Analysis

SpatialTE was applied to publicly available datasets generated using either the original
ST or the 10X ST. Since all the datasets were obtained from mice, the Mus musculus mm10
genome was used along both the gene and transposable element annotation, all obtained
from the UCSC genome browser database [27].

The original ST dataset used corresponded to samples generated from the spinal
cord of p120 SOD1G93A mice. The raw reads FASTQ files are available at the Sequence
Read Archive (SRA accessions SRR7895712 and SRR7895713), while the corresponding
hematoxylin and eosin stained tissue images are available at the Gene Expression Om-
nibus database (GEO accessions GSM3399315 and GSM3399316). The 1000L7 barcode file
required to perform spatial demultiplexing of these samples is available at GEO accession
GSE120374. SpatialTE was then used in the original ST mode, and the TE Subfamily count

https://github.com/bvaldebenitom/SpatialTE
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matrix by spatial position output was used in the subsequent analysis. Generation of
figures depicting TE expression over the H&E images was done using the st_data_analysis
tool from the ST Analysis package [26], with options “–image-files” indicating the corre-
sponding H&E jpg file, “–counts” using the SpatialTE output, “–use-log-scale” to report
results in log-normalized scale and “–show-genes” indicating the main TE classes LINE,
SINE, LTR and DNA.

The 10X ST datasets were obtained from the 10X Genomics Spatial Gene Expression
datasets webpage. The datasets used in this work correspond to mouse brain (1 coronal,
2 sagittal anterior, 2 sagittal posterior) and kidney (1 coronal) sections. URLs to each
dataset are indicated in Supplementary File S2. SpatialTE was used in the 10X ST mode,
and the TE subfamily count matrix by spatial position output was used in the subsequent
analysis. TE spatial analysis was done using the R [30] package Seurat v4 [31], using the
functions “Load10X_Spatial” to load the data, “SCTransform” to perform count normal-
ization, “RunPCA”, “FindNeighbors”, “FindClusters” and “RunUMAP” collectively to
perform dimension reduction, “SpatialDimPlot” to visualize the clusters over the H&E im-
age, and “SpatialFeaturePlot” to visualize the main TE classes LINE, SINE, LTR and DNA.
Additionally, the “FindAllMarkers” function was used to determine whether any of these
TE classes were over-expressed in specific spatial regions, and its statistical significance
(Supplementary File S3).

4. Conclusions

Spatial transcriptomics (ST) is increasing the understanding of the changes that occur
in gene expression changes on a genome-wide scale across tissue sections. It is expected
that as the technology advances, the uses of ST will become a common practice in cell
biology research. To increase the potential of the analyses performed by ST, we developed
SpatialTE, a quantitative bioinformatic tool that allows the examination and analysis of TE
expression from datasets obtained by ST from tissues, such as the brain, spinal cord, kidney,
etc. According to our benchmarking and validation experiment, SpatialTE can precisely
pinpoint the spatial location of TE expression. Although there are a few caveats to be
aware of. For example, when the TE expression was analyzed at the locus level, we found
that between 12–30% of TE reads were not accurately assigned (Supplementary File S1).
This was likely because (1) some TEs could be labeled as “young”, which are difficult
to study using short reads (i.e., they complicate the read mapping process and posterior
locus-specific read assignment), and (2) some TEs share high similarity to other subfamilies,
such as the L1_Mus1 TEs, whose members are similar between them, and also similar to
members of the L1Md_F2 subfamily (Figure S4).

ALS is a fatal neurodegenerative disorder in which motor neurons, present in the
ventral horn of the spinal cord, die as the disease progresses in time. Unfortunately, the
cellular and molecular mechanisms underlying the ALS are still unclear, although several
labs have described major changes in gene expression as motor neurons get sick. We have
been interested in the role that TEs play as potential regulatory elements of genes in ALS,
and thus analyzed TEs expression in bulk RNAseq datasets from whole ALS spinal cords
(SOD1G93A mouse model). To our surprise, major changes in TEs expression, including
some of their subclasses, can be observed only in ALS spinal cords, when compared to
healthy spinal cords. Despite the findings, we could not determine the contribution of
different cells to the overall changes in TEs expression in ALS. We believe ST can help
answer the question and thus developed SpatialTE and applied it to ST datasets from ALS
spinal cords at the end stage of the disease as a proof of concept. Using SpatialTE, we were
able to identify TEs that were expressed in particular areas of the ALS spinal cord (ventral,
medial and dorsal horn). We showed that mainly TEs of the LINE, SINE, and LTR groups
contributed to the overall changes in the TEs expression, results that were consistent with
our previous studies using bulk RNAseq datasets. Now, thanks to SpatialTE, we can begin
to associate the TE expression with spatially identified cells in the spinal cord, ventral horn
areas, dominated by motor neurons, versus medial and dorsal horn areas, enriched with
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specific interneurons and sensory neurons. Interestingly, our analysis shows TE expression
in both ventral and dorsal horns but little change in medial regions. It is important to note
that during ALS progression, and at the end stage, most motor neurons have already died
(i.e., apoptosis and other mechanisms), leaving spaces filled with reactive glial cells. A
similar type of gliosis has been reported to occur at the dorsal horn of ALS spinal cords.
Thus, we believe that the TE changes observed show the TEs signature of reactive glial
cells within the ALS afflicted spinal cord. Further temporal analysis of ST and spatial TEs
are necessary to pinpoint the TE signature that belongs to motor neurons and glial cells.
Therefore, SpatialTE enables analysis of the TE expression at the cellular and spatial levels,
improving our knowledge about the role of TEs in gene regulation during disease.

Understanding the role of TEs in gene regulation is relevant to many other degen-
erative diseases that occur in the brain or in peripheral organs. As a proof of principle,
we performed TE expression analysis in several brain and kidney sections. Remarkably,
SpatialTE was able to detect spatial “signatures” for TEs in different regions of the brain
and the kidney. The role of such differences in TEs expression is unclear, but it is possible
to speculate that specific cells regulate their expression in a region-specific manner. Again,
future studies will benefit from SpatialTE and begin to shed light on the mechanisms
behind these differences in TEs expression, and importantly, clarify whether TEs play a
role in regulating gene expression in a cell-specific manner.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222413623/s1.
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