Anti-Rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression
Abstract
:1. Introduction
2. Results
2.1. Morphological Examination
2.2. Immunohistochemical Analysis
2.3. Linked Immunosorbent Assay
3. Discussion
4. Materials and Methods
4.1. Rheumatoid Arthritis Models
4.2. Animals and Treatments
4.3. Morphology Examination
4.4. Immunohistochemical Analysis
4.5. Linked Immunosorbent Assay
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, M.M.; Juneja, M.; Allen, J.; Kurrasch, R.H.; Chu, M.E.; Quattrocchi, E.; Manson, S.C.; Chang, D.J. Epidemiology and treatment of new-onset and established rheumatoid arthritis in an insured US population. Arthritis Care Res. 2015, 67, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, D.; Annette, H.M.; van der Helm-van, M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2018, 32, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.C.; Felson, D.T.; Helmick, C.G.; Arnold, L.M.; Choi, H.; Deyo, R.A.; Gabriel, S.; Hirsch, R.; Hochberg, M.C.; Hunder, G.G.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis Rheum. 2008, 58, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestein, G.S.; McInnes, I.B. Immunopathogenesis of rheumatoid arthritis. Immunity 2017, 46, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Croia, C.; Bursi, R.; Sutera, D.; Petrelli, F.; Alunno, A.; Puxeddu, I. One year in review 2019: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2019, 37, 347–357, PMID: 31111823. [Google Scholar] [PubMed]
- Cooper, N.J. Economic burden of rheumatoid arthritis: A systematic review. Rheumatology 2000, 39, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Nikiphorou, E.; Norton, S.; Young, A.; Dixey, J.; Walsh, D.; Helliwell, H.; Kiely, P. Early rheumatoid arthritis study and the early rheumatoid arthritis network, the association of obesity with disease activity, functional ability and quality of life in early rheumatoid arthritis: Data from the early rheumatoid arthritis study/early rheumatoid arthritis network UK prospective cohorts. Rheumatology 2018, 57, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- van Vilsteren, M.; Boot, C.R.; Knol, D.L.; van Schaardenburg, D.; Voskuyl, A.E.; Steenbeek, R.; Anema, J.R. Productivity at work and quality of life in patients with rheumatoid arthritis. BMC Musculoskelet Disord. 2015, 16, 107. [Google Scholar] [CrossRef] [Green Version]
- Purabdollah, M.; Lakdizaji, S.; Rahmani, A.; Hajalilu, M.; Ansarin, K. Relationship between sleep disorders, pain and quality of life in patients with rheumatoid arthritis. J. Caring Sci. 2015, 4, 233–241. [Google Scholar] [CrossRef]
- Fazal, S.A.; Khan, M.; Nishi, S.E.; Alam, F.; Zarin, N.; Bari, M.T.; Ashraf, G. A clinical update and global economic burden of rheumatoid arthritis. Endocr. Metab. Immune Disord. Drug Targets 2018, 18. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, Y.L.; Lee, S.M. Relation between functional ability and health-related quality of life of children with juvenile rheumatoid arthritis. J. Phys. Ther. Sci. 2015, 27, 837–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hefti, F. Juvenile rheumatoid arthritis. In Pediatric Orthopedics in Practice; Springer: Berlin/Heidelberg, Germany, 2015; pp. 661–665. [Google Scholar] [CrossRef] [Green Version]
- Kasapçopur, Ö.; Barut, K. Treatment in juvenile rheumatoid arthritis and new treatment options. Turk Pediatri Ars. 2015, 50, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, K.; Rizvi, S.; Syed, B. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov. 2016, 15, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Coondoo, A.; Phiske, M.; Verma, S.; Lahiri, K. Side-effects of topical steroids: A long overdue revisit. Indian Derm. Online J. 2014, 5, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Seth, J.; Parikh, D. Systemic side-effects of topical corticosteroids. Indian J. Derm. 2014, 59, 460–464. [Google Scholar] [CrossRef]
- Edrees, A.F.; Misra, S.N.; Abdou, N.I. Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: Correlation of TNF-alpha serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clin. Exp. Rheumatol. 2005, 23, 469–474. [Google Scholar]
- Ruperto, N.; Lovell, D.J.; Cuttica, R.; Wilkinson, N.; Woo, P.; Espada, G.; Wouters, C.; Silverman, E.D.; Paediatric Rheumatology International Trials Organisation; Pediatric Rheumatology Collaborative Study Group. A randomized, placebo-controlled trial of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis. Arthritis Rheum. 2007, 56, 3096–3106. [Google Scholar] [CrossRef] [PubMed]
- Markham, A.; Lamb, H.M. Infliximab. Drugs 2000, 59, 1341–1359. [Google Scholar] [CrossRef]
- Kreiner, F.; Galbo, H. Effect of etanercept in polymyalgia rheumatica: A randomized controlled trial. Arthritis Res. Ther. 2010, 12, R176. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, B.; Faulds, D. Etanercept. Drugs 1999, 57, 945–966. [Google Scholar] [CrossRef]
- Khanna, R.; Feagan, B.G. Safety of infliximab for the treatment of inflammatory bowel disease: Current understanding of the potential for serious adverse events. Expert Opin. Drug Saf. 2015, 14, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Bang, L.M.; Keating, G.M. Adalimumab. BioDrugs 2004, 18, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis: A review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Downey, C. Serious infection during etanercept, infliximab and adalimumab therapy for rheumatoid arthritis: A literature review. Int. J. Rheum. Dis. 2016, 19, 536–550. [Google Scholar] [CrossRef]
- Schiff, M.H.; Burmester, G.R.; Kent, J.D.; Pangan, A.L.; Kupper, H.; Fitzpatrick, S.B.; Donovan, C. Safety analyses of adalimumab (HUMIRA) in global clinical trials and US postmarketing surveillance of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A.; Cameron, C.; Noorbaloochi, S.; Cullis, T.; Tucker, M.; Christensen, R.; Ghogomu, E.T.; Coyle, D.; Clifford, T.; Tugwell, P.; et al. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: A systematic review and meta-analysis. Lancet 2015, 386, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Dixon, W.G. Rheumatoid arthritis: Biological drugs and risk of infection. Lancet 2015, 386, 224–225. [Google Scholar] [CrossRef]
- Nard, F.D.; Todoerti, M.; Grosso, V.; Monti, S.; Breda, S.; Rossi, S.; Montecucco, C.; Caporali, R. Risk of hepatitis B virus reactivation in rheumatoid arthritis patients undergoing biologic treatment: Extending perspective from old to newer drugs. World J. Hepatol. 2015, 7, 344–361. [Google Scholar] [CrossRef]
- Pappas, D.A.; Hooper, M.M.; Kremer, J.M.; Reed, G.; Shan, Y.; Wenkert, D.; Greenberg, J.D.; Curtis, J.R. Herpes zoster reactivation in patients with rheumatoid arthritis: Analysis of disease characteristics and disease-modifying antirheumatic drugs. Arthritis Care Res. 2015, 67, 1671–1678. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.; Serafino, L.; Bonali, C.; Terlizzi, N.; Fanizza, C.; Anecchino, C.; Lapaldula, G. Incidence of influenza-like illness into a cohort of patients affected by chronic inflammatory rheumatism and treated with biological agents. Reumatismo 2012, 64, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Corey, D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018, 46, 1584–1600. [Google Scholar] [CrossRef] [PubMed]
- Mallory, A.; Havens, M.L. Hastings, splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44, 6549–6563. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, H.; Kaushik, A.; Peer, S. A review of antisense therapeutic interventions for molecular biological targets in various diseases. Int. J. Pharmacol. 2011, 7, 294–315. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Repetskaya, A.I.; Kenyo, I.M.; Gorlov, M.V.; Kasich, I.N.; Krasnodubets, A.M.; Gal’chinsky, N.V.; Fomochkina, I.I.; Zaitsev, A.S.; et al. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: We should continue the journey. Molecules 2018, 23, 1302. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307–321. [Google Scholar] [CrossRef]
- Gidaro, T.; Servais, L. Nusinersen treatment of spinal muscular atrophy: Current knowledge and existing gaps. Dev. Med. Child Neurol. 2019, 61, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stebbins, C.C.; Petrillo, M.; Stevenson, L.F. Immunogenicity for antisense oligonucleotides: A risk-based assessment. Bioanalysis 2019, 11, 1913–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, M.S.; Hughes, S.G.; Singleton, W.; Yamashita, M.; Genovese, M.C. Results of a proof of concept, double-blind, randomized trial of a second generation antisense oligonucleotide targeting high-sensitivity C-reactive protein (hs-CRP) in rheumatoid arthritis. Arthritis Res Ther. 2015, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Kashihara, N.; Yamamura, M.; Okamoto, H.; Harada, S.; Maeshima, Y.; Okamoto, K.; Makino, H. Inhibition of rheumatoid synovial fibroblast proliferation by antisense oligonucleotides targeting proliferating cell nuclear antigen messenger RNA. Arthritis Rheum. 1997, 40, 1292–1297. [Google Scholar] [CrossRef]
- Holmlund, J.T. Applying antisense technology. Ann. N. Y. Acad. Sci. 2003, 1002, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Sewell, K.L.; Geary, R.S.; Baker, B.F.; Glover, J.M.; Mant, T.G.K.; Yu, R.Z.; Tami, J.A.; Dorr, F.A. Phase I Trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-α. J. Pharmacol. Exp. Ther. 2002, 303, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Jason, T.L.; Koropatnick, J.; Berg, R.W. Toxicology of antisense therapeutics. Toxicol. Appl. Pharmacol. 2004, 201, 66–83. [Google Scholar] [CrossRef] [PubMed]
- Richard, S.G.; Rosie, Z.Y.; Watanabe, T.; Scott, P.H.; Greg, E.; Hardee, A.C.; Matson, J.; Sasmor, H.; Cummins, L.; Levin, A.A. Pharmacokinetics of a tumor necrosis factor-α prhosphorothioate 2’-O-(2-metoxyethyl) modified antisense oligonucleotide: Comparison across species. Drug Metab. Dispos. 2003, 31, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.F.; Murthy, S.; Flanigan, A.M.; Siwkowski, A.M.; Butler, M.; Dean, N.M. Dose-dependent reduction of chronic dextran sulfate sodium (DSS)-induced colitis in mice treated with TNF-A antisense oligonucleotide (ISIS 25302). Gastroenterology 2000, 118, 571. [Google Scholar] [CrossRef]
- Gareb, B.; Otten, A.T.; Frijlink, H.W.; Dijkstra, G.; Kosterink, J.G.W. Review: Local tumor necrosis factor-α inhibition in inflammatory bowel disease. Pharmaceutics 2020, 12, 539. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Gal’chinsky, N.V.; Useinov, R.Z.; Novikov, I.A.; Temirova, Z.Z.; Shumskykh, M.N.; Krasnodubets, A.M.; Repetskaya, A.I.; Dyadichev, V.V.; et al. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci. Rep. 2019, 9, 6197. [Google Scholar] [CrossRef] [Green Version]
- Gal’chinsky, N.; Useinov, R.; Yatskova, E.; Laikova, K.; Novikov, I.; Gorlov, M.; Trikoz, N.; Sharmagiy, A.; Plugatar, Y.; Oberemok, V. A breakthrough in the efficiency of contact DNA insecticides: Rapid high mortality rates in the sap-sucking insects dynaspidiotusbritannicus comstock and unaspiseuonymi newstead. J. Plant Prot. Res. 2020, 60, 220–223. [Google Scholar] [CrossRef]
- Useinov, R.Z.; Gal’chinsky, N.; Yatskova, E.; Novikov, I.; Puzanova, Y.; Trikoz, N.; Sharmagiy, A.; Plugatar, Y.; Laikova, K.; Oberemok, V. To bee or not to bee: Creating DNA insecticides to replace non-selective organophosphate insecticides for use against the soft scale insect Ceroplastes japonicus Green. J. Plant Prot. Res. 2020. [Google Scholar] [CrossRef]
- Festing, M.F.; Altman, D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2005, 46, 320. [Google Scholar] [CrossRef]
Days | Infiltration (0–5) | Bone Changes (0–3) | Synovial Hyperplasia (0–3) | Severity of Pannus (0–5) | Destruction of Cartilage Tissue (0–3) | Total Points | |
---|---|---|---|---|---|---|---|
Sham | 0.0 [0.0;0.0] | 0.0 [0.0;0.0] | 0.0 [0.0;0.0] | 0.0 [0.0;0.0] | 0.0 [0.0;0.0] | 0.0 [0.0;0.0] | |
Start of treatment | 1.0 [1.0;2.0] | 1.0 [0.0;1.0] | 1.0 [1.0;1.0] | 2.0 [1.0;2.0] | 1.0 [1.0;1.0] | 6.0 [4.0;7.0] | |
Control | 7 | 2.0 [1.0;2.0] | 1.0 [0.0;1.0] | 1.0 [1.0;1.0] | 2.0 [1.0;2.0] | 1.0 [1.0;1.0] | 7.0 [5.0;7.0] |
14 | 2.5 [2.0;3.0] | 1.0 [1.0;1.0] | 2.0 [2.0;2.0] | 3.0 [3.0;3.0] | 2.0 [2.0;2.0] | 11.0 [10.0;11.0] | |
21 | 3.0 [3.0;3.0] | 1.0 [1.0;1.5] | 2.5 [2.0;3.0] | 3.0 [2.5;3.0] | 2.0 [2.0;2.5] | 11.5 [11.0;12.5] | |
Humira | 7 | 2.0 [1.0;3.0] | 1.0 [1.0;1.0] | 1.0 [1.0;2.0] | 3.0 [2.0;3.0] | 1.0 [0.0;1.0] | 8.0 [7.0;9.0] |
14 | 2.0 [1.0;3.0] | 1.0 [1.0;2.0] | 2.5 [2.0;3.0] | 3.0 [3.0;3.0] | 1.0 [1.0;1.0] | 9.5 [8.0;11;0] | |
21 | 2.0 [1.0;2.0] | 1.0 [0.0;1.0] | 1.0 [1.0;1.0] | 2.0 [1.0;2.0] | 1.0 [0.;1.0] | 7.0 [5.0;7.0] | |
Cytos-11 | 7 | 2.0 [2.0;2.0] | 1.0 [1.0;2.0] | 2.0 [2.0;2.0] | 2.0 [2.0;2.0] | 1.0 [1.0;1.0] | 8.0 [8.0;10.0] |
14 | 1.5 [1.0;2.0] | 1.0 [1.0;2.0] | 2.0 [2.0;3.0] | 4.5 [3.0;5.0] | 1.0 [0.5;1.5] | 10.0 [8.0;11.0] | |
21 | 1.0 [1.0;2.0] | 1.0 [0.0;1.0] | 0.0 [0.0;1.0] * | 1.5 [0.0;2.0] | 1.0 [1.0;1.0] | 5.5 [3.0;7.0] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makalish, T.P.; Golovkin, I.O.; Oberemok, V.V.; Laikova, K.V.; Temirova, Z.Z.; Serdyukova, O.A.; Novikov, I.A.; Rosovskyi, R.A.; Gordienko, A.I.; Zyablitskaya, E.Y.; et al. Anti-Rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression. Int. J. Mol. Sci. 2021, 22, 1022. https://doi.org/10.3390/ijms22031022
Makalish TP, Golovkin IO, Oberemok VV, Laikova KV, Temirova ZZ, Serdyukova OA, Novikov IA, Rosovskyi RA, Gordienko AI, Zyablitskaya EY, et al. Anti-Rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression. International Journal of Molecular Sciences. 2021; 22(3):1022. https://doi.org/10.3390/ijms22031022
Chicago/Turabian StyleMakalish, Tatyana P., Ilya O. Golovkin, Volodymyr V. Oberemok, Kateryna V. Laikova, Zenure Z. Temirova, Olesya A. Serdyukova, Ilya A. Novikov, Roman A. Rosovskyi, Andrey I. Gordienko, Evgeniya Yu. Zyablitskaya, and et al. 2021. "Anti-Rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression" International Journal of Molecular Sciences 22, no. 3: 1022. https://doi.org/10.3390/ijms22031022
APA StyleMakalish, T. P., Golovkin, I. O., Oberemok, V. V., Laikova, K. V., Temirova, Z. Z., Serdyukova, O. A., Novikov, I. A., Rosovskyi, R. A., Gordienko, A. I., Zyablitskaya, E. Y., Gafarova, E. A., Yurchenko, K. A., Fomochkina, I. I., & Kubyshkin, A. V. (2021). Anti-Rheumatic Effect of Antisense Oligonucleotide Cytos-11 Targeting TNF-α Expression. International Journal of Molecular Sciences, 22(3), 1022. https://doi.org/10.3390/ijms22031022