Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3β Molecular Docking Investigations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Screening
2.2.1. In Vitro Anticancer Study
2.2.2. In Silico ADMET Analysis
2.2.3. Molecular Docking Simulations
3. Experimental Section
3.1. Synthesis of the Title Compounds
3.1.1. Synthesis and Characterization of 1,4,5-triphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole (2)
3.1.2. General Procedure for the Synthesis of 1,4-disubstituted 1,2,3-triazoles Bearing Imidazole Moiety 4a–k and 6a–e
4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-undecyl-1H-1,2,3-triazole (4a)
4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-hexadecyl-1H-1,2,3-triazole (4b)
4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-octadecyl-1H-1,2,3-triazole (4c)
4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1-benzyl-1H-1,2,3-triazole (4d)
Ethyl-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)acetate (4e)
2-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-1-(4-methoxyphenyl) ethanone (4f)
N-(3,4-Dichlorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)acetamide (4g)
N-(4-Nitrophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)acetamide(4h)
N-(2-Fluorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl) acetamide (4i)
N-(4-Fluorophenyl)-2-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl) acetamide (4j)
4-(2-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)acetamido)benzoic acid (4k)
1-(3,4-Dichlorophenyl)-4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazole (6a)
1-(4-Nitrophenyl)-4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazole (6b)
1-(4-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (6c)
Ethyl 4-(4-(((1,4,5-triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)benzoate (6d)
4-(4-(((1,4,5-Triphenyl-1H-imidazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)benzoic acid (6e)
3.2. MTT Assay
3.3. In Silico Analysis
3.4. Molecular Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jardim, D.L.; Gagliato, D.D.; Nikanjam, M.; Barkauskas, D.A.; Kurzrock, R. Efficacy and safety of anticancer drug combinations: A meta-analysis of randomized trials with a focus on immunotherapeutics and gene-targeted compounds. OncoImmunology 2020, 9, 1710052. [Google Scholar] [CrossRef] [Green Version]
- Meegan, M.J.; O’Boyle, N.M. Anticancer drugs. Pharmaceuticals 2019, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- Kharb, R. Updates on receptors targeted by heterocyclic scaffolds: New horizon in anticancer drug development. Anticancer Agents Med. Chem. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets 2015, 16, 711–734. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef]
- Irannejad, H. Nitrogen rich heterocycles as a privileged fragment in lead discovery. Med. Analy. Chem. Int. J. 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res. 2016, 25, 173–210. [Google Scholar] [CrossRef]
- Agarwal, S.; Sasane, S.; Kumar, J.; Darji, B.; Bhayani, H.; Soman, S.; Kulkarni, N.; Jain, M. Novel 2-mercapto imidazole and triazole derivatives as potent TGR5 receptor agonists. Med. Drug Discov. 2019, 1, 100002. [Google Scholar] [CrossRef]
- Fassihi, A.; Azadpour, Z.; Delbari, N.; Saghaie, L.; Memarian, H.R.; Sabet, R.; Alborzi, A.; Miri, R.; Pourabbas, B.; Mardaneh, J.; et al. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem. 2009, 44, 3253–3258. [Google Scholar] [CrossRef]
- Zhang, X.; Sui, Z.; Kauffman, J.; Hou, C.; Chen, C.; Du, F.; Kirchner, T.; Liang, Y.; Johnson, D.; Murray, W.V.; et al. Evaluation of anti-diabetic effect and gall bladder function with 2-thio5-thiomethyl substituted imidazoles as TGR5 receptor agonists. Bioorg. Med. Chem. Lett. 2017, 27, 1760–1764. [Google Scholar] [CrossRef]
- Al-Warhi, T.; Said, M.A.; El Hassab, M.A.; Aljaeed, N.; Ghabour, H.A.; Almahli, H.; Eldehna, W.M.; Abdel-Aziz, H.A. Unexpected synthesis, single-crystal x-ray structure, anticancer activity, and molecular docking studies of certain 2–((imidazole/benzimidazol–2–yl)thio)– 1–arylethanones. Crystals 2020, 10, 446. [Google Scholar] [CrossRef]
- Yurttaş, L.; Ertaş, M.; Çiftçi, G.A.; Temel, H.E.; Demirayak, Ş. Novel benzothiazole based imidazole derivatives as new cytotoxic agents against glioma (C6) and liver (HepG2) cancer cell lines. Acta Pharm. Sci. 2017, 55, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Lonea, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. Med. Chem. Comm. 2017, 8, 1742–1773. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Singh, R. Design, synthesis, antimicrobial evaluation and molecular modeling study of new 2-mercaptoimidazoles (series-iii). Lett. Drug Des. Disco. 2019, 16, 512–521. [Google Scholar] [CrossRef]
- Aouad, M.R.; Messali, M.; Rezki, N.; Ali, A.A.; Lesimple, A. Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff bases incorporating imidazole moiety as potential antimicrobial agents. Acta Pharm. 2015, 65, 117–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, A.S.; Abdel-Aziem, A.; Alkubbat, M.J. Design, synthesis of some new thio-substituted imidazole and their biological activity. Am. J. Org. Chem. 2015, 5, 57–72. [Google Scholar] [CrossRef]
- Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Adv. 2020, 10, 5610–5635. [Google Scholar] [CrossRef]
- Bozorova, K.; Zhaoa, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Smit, F.J.; Seldon, R.; Aucamp, J.; Jordaan, A.; Warner, D.F.; N’Da, D.D. Synthesis and antimycobacterial activity of disubstituted benzyltriazoles. Med. Chem. Res. 2019, 28, 2279–2293. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.A.; Gogoi, D.; Chaliha, A.K.; Buragohain, A.K.; Trivedi, P.; Saikia, P.J.; Gehlot, P.S.; Kumar, A.; Chaturvedi, V.; Sarma, D. Synthesis and biological evaluation of novel 1,2,3-triazole derivatives as anti-tubercular agents. Bioorg. Med. Chem. Lett. 2017, 27, 3698–3703. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.-C.; Chang, L.; Lv, Z.-S.; Feng, L.-S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017, 138, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Abbasia, M.A.; Ramzana, M.S.; ur-Rehmana, A.; Siddiquia, S.Z.; Hassanb, M.; Shahc, S.A.A.; Ashrafe, M.; Shahidf, M.; Seo, S.-Y. Novel bi-heterocycles as potent inhibitors of urease and less cytotoxic agents: 3-({5-((2-amino-1,3-thiazol-4-yl)methyl)-1,3,4-oxadiazol-2-yl}sulfanyl)-N-(un/substituted-phenyl) propanamides. Iran. J. Pharm. Res. 2020, 19, 487–506. [Google Scholar] [CrossRef]
- Erşatır, M.; Yıldırım, M.; Giray, E.S.; Yalın, S. Synthesis and antiproliferative evaluation of novel biheterocycles based on coumarin and 2-aminoselenophene-3-carbonitrile unit. Mon. Chem. Chem. Mon. 2020, 151, 625–636. [Google Scholar] [CrossRef]
- Mantenuto, S.; Lucarini, S.; De Santi, M.; Piersanti, G.; Brandi, G.; Favi, G.; Mantellini, F. One-pot synthesis of biheterocycles based on indole and azole scaffolds using tryptamines and 1,2-diaza-1,3-dienes as building blocks. Eur. J. Org. Chem. 2016, 9, 3193–3199. [Google Scholar] [CrossRef]
- Reddy, K.H.V.; Brion, J.-D.; Messaoudi, S.; Alami, M. Synthesis of biheterocycles based on quinolinone, chromone and coumarin scaffolds by palladium-catalyzed decarboxylative couplings. Org. Chem. 2016, 81, 424–432. [Google Scholar] [CrossRef]
- Maiti, B.; Chanda, K. Diversity oriented synthesis of benzimidazole based biheterocyclic molecules by combinatorial approach: A critical review. RSC Adv. 2016, 6, 50384–50413. [Google Scholar] [CrossRef]
- Woodgett, J. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9, 2431–2438. [Google Scholar] [CrossRef]
- Welsh, G.; Proud, C. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993, 294, 625–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ougolkov, A.; Fernandez-Zapico, M.; Savoy, D.; Urrutia, R.; Billadeau, D. Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005, 65, 2076–2081. [Google Scholar] [CrossRef] [Green Version]
- Shakoori, A.; Ougolkov, A.; Zhang, B.; Modarressi, M.; Billadeau, D.; Mai, M.; Takahashi, Y.; Minamoto, T. Deregulated GSK3beta activity in colorectal cancer: Its association with tumor cell survival and proliferation. Biochem. Biophys. Res. Commun. 2005, 334, 1365–1373. [Google Scholar] [CrossRef] [Green Version]
- Gaisina, I.; Gallier, F.; Ougolkov, A.; Kim, K.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D.N.; Blond, S.Y.; Billadeau, D.D.; et al. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J. Med. Chem. 2009, 52, 1853–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ougolkov, A.; Fernandez-Zapico, M.; Bilim, V.; Smyrk, T.; Chari, S.; Billadeau, D. Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: Association with kinase activity and tumor dedifferentiation. Clin. Cancer Res. 2006, 12, 5074–5081. [Google Scholar] [CrossRef] [Green Version]
- Aouad, M.R. Efficient eco-friendly solvent-free click synthesis and antimicrobial evaluation of new fluorinated 1,2,3-triazoles and their conversion into Schiff Bases. J. Braz. Chem. Soc. 2015, 10, 2105–2115. [Google Scholar] [CrossRef]
- Rezki, N. A Green ultrasound synthesis, characterization and antibacterial evaluation of 1,4-disubstituted 1,2,3-triazoles tethering bioactive benzothiazole nucleus. Molecules 2016, 21, 505. [Google Scholar] [CrossRef] [Green Version]
- Rezki, N.; Mayaba, M.M.; Al-blewi, F.F.; El Ashry, E.H.; Aouad, M.R. Click 1,4-regioselective synthesis, characterization, and antimicrobial screening of novel 1,2,3-triazoles tethering fluorinated 1,2,4-triazole and lipophilic side chain. Res. Chem. Intermed. 2017, 43, 995–1011. [Google Scholar] [CrossRef]
- Aouad, M.R. Synthesis and antimicrobial screening of novel thioglycosides analogs carrying 1,2,3-triazole and 1,3,4-oxadiazole moieties. Nucleotides Nucleosides Nucleic Acids 2016, 35, 1–15. [Google Scholar] [CrossRef]
- Aouad, M.R. Click synthesis and antimicrobial screening of novel isatin-1,2,3-triazoles with piperidine, morpholine or piperazine moieties. Org. Prep. Proced. Int. 2017, 49, 216–227. [Google Scholar] [CrossRef]
- Al-blewi, F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; El Ashry, E.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018, 12, 110–123. [Google Scholar] [CrossRef]
- Aouad, M.R.; Mayaba, M.M.; Naqvi, A.; Bardaweel, S.K.; Al-blewi, F.F.; Messali, M.; Rezki, N. Design, synthesis, in-silico and In-Vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem. Cent. J. 2017, 11, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Aouad, M.R.; Almehmadi, M.A.; Rezki, N.; Al-blewi, F.F.; Messali, M.; Ali, I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019, 1188, 153–164. [Google Scholar] [CrossRef]
- Rezki, N. Green microwave synthesis and antimicrobial evaluation of novel triazoles. Org. Prep. Proced. Int. 2017, 49, 525–541. [Google Scholar] [CrossRef]
- Aouad, M.R.; Soliman, M.A.; Alharbi, M.O.; Bardaweel, S.K.; Sahu, P.K.; Ali, A.A.; Messali, M.; Rezki, N.; Al-Soud, Y.A. Design, Synthesis and Anticancer Screening of Novel Benzothiazole-Piperazine-1,2,3-Triazole Hybrids. Molecules 2018, 23, 2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezki, N.; Almehmadi, M.A.; Ihmaid, S.; Shehata, A.M.; Omar, A.M.; Ahmed, H.E.A.; Aouad, M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimics quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg. Chem. 2020, 103, 104133. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem. A. 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Del. Rev. 2002, 54, 273–289. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Ugolkov, A.; Gaisina, I.; Zhang, J.-S.; Billadeau, D.D.; White, K.; Kozikowski, A.; Jain, S.; Cristofanilli, M.; Giles, F.; O’Halloran, T.; et al. GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Lett. 2016, 380, 384–392. [Google Scholar] [CrossRef]
- Minvielle, M.J.; Bunders, C.A.; Melander, C. Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms. Med. Chem. Comm. 2013, 4, 916–919. [Google Scholar] [CrossRef]
- Devender, N.; Gunjan, S.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur. J. Med. Chem. 2017, 131, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, In Vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem. 2017, 12, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Demirci, F.; Başer, K.H.C. Bioassay techniques for drug development by Atta-ur-Rahman, M. Iqbal Choudhary (HEJRIC, University of Karachi, Pakistan), William J. Thomsen (Areana Pharmaceuticals, San Diego, CA). Harwood Academic Publishers, Amsterdam, The Netherlands. 2001. xii + 223 pp. 15.5 × 23.5 cm. $79.00. ISBN 90-5823-051-1. J. Nat. Prod. 2002, 65, 1086–1087. [Google Scholar]
- Omar, A.M.; Bajorath, J.; Ihmaid, S.; Mohamed, H.M.; El-Agrody, A.M.; Mora, A.; El-Araby, M.E.; Ahmed, H.E.A. Novel molecular discovery of promising amidine-based thiazole analogues as potent dual Matrix Metalloproteinase-2 and 9 inhibitors: Anticancer activity data with prominent cell cycle arrest and DNA fragmentation analysis effects. Bioorg. Chem. 2020, 101, 103992. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Chemical Computing Group. Molecular Operating Environment (MOE); Chemical Computing Group: Montreal, QC, Canada, 2012; Available online: http://www.chemcomp.com (accessed on 28 February 2013).
Compound No. | Caco-2 | HCT-116 | HeLa | MCF-7 | Selectivity Analysis |
---|---|---|---|---|---|
2 | 146.76 ± 3.04 | >200 | 120.90 ± 4.08 | 88.19 ± 3.12 | |
4a | 18.67 ± 1.19 | 50.74 ± 2.62 | 20.19 ± 1.61 | 15.90 ± 1.35 | |
4b | 16.80 ± 1.31 | 46.80 ± 2.21 | 8.56 ± 0.49 | 0.98 ± 0.05 | MCF-7 selective |
4c | 12.56 ± 1.32 | 40.78 ± 2.34 | 4.80 ± 0.19 | 3.21 ± 0.02 | |
4d | 77.80 ± 1.60 | 88.34 ± 4.45 | 37.65 ± 2.34 | 30.67 ± 1.80 | |
4e | 84.34 ± 2.31 | 91.14 ± 3.80 | 47.23 ± 2.70 | 44.45 ± 2.23 | |
4f | 20.69 ± 1.24 | 34.42 ± 2.02 | 30.41 ± 1.85 | 27.31 ± 1.11 | |
4g | 12.31 ± 0.22 | 21.56 ± 0.38 | 12.67 ± 0.31 | 6.41 ± 0.18 | |
4h | 15.78 ± 0.31 | 24.90 ± 0.42 | 15.83 ± 0.34 | 9.46 ± 0.27 | |
4i | 6.31 ± 0.17 | 12.04 ± 0.32 | 7.91 ± 0.29 | 3.80 ± 0.12 | |
4j | 8.45 ± 0.18 | 18.32 ± 0.42 | 9.45 ± 0.39 | 4.45 ± 0.08 | |
4k | 4.67 ± 0.11 | 16.78 ± 0.59 | 6.87 ± 0.32 | 0.38 ± 0.04 | MCF-7 selective |
6a | 10.87 ± 1.24 | 30.98 ± 1.67 | 20.34 ± 1.11 | 15.56 ± 1.21 | |
6b | 13.34 ± 1.67 | 36.46 ± 2.30 | 29.87 ± 1.86 | 27.29 ± 1.82 | |
6c | 25.67 ± 1.80 | 40.67 ± 2.71 | 33.68 ± 2.14 | 30.56 ± 2.24 | |
6d | 35.65 ± 2.67 | 49.34 ± 3.32 | 45.14 ± 2.90 | 40.34 ± 2.45 | |
6e | 5.22 ± 0.20 | 18.70 ± 0.42 | 8.42 ± 0.41 | 3.87 ± 0.07 | |
Doxorubicin | 5.17 ± 0.25 | 5.64 ± 0.17 | 1.25 ± 0.02 | 0.65 ± 0.01 |
Comp. No. | Fraction Csp3 a | No. of Rotatable Bonds | HBA b | HBD c | iLogP d | Molar Refractivity | Log S e | TPSA f |
---|---|---|---|---|---|---|---|---|
2 | 0.22 | 23 | 4 | 0 | 7.98 | 285.53 | I | 116.95 |
4a | 0.34 | 16 | 3 | 0 | 6.19 | 173.56 | I | 73.83 |
4b | 0.42 | 21 | 3 | 0 | 7.26 | 197.59 | I | 73.83 |
4c | 0.45 | 23 | 3 | 0 | 7.92 | 207.20 | I | 73.83 |
4d | 0.06 | 8 | 3 | 0 | 4.52 | 149.97 | I | 73.83 |
4e | 0.14 | 10 | 5 | 0 | 4.29 | 141.19 | PS | 100.13 |
4f | 0.09 | 10 | 5 | 0 | 4.43 | 161.69 | I | 100.13 |
4g | 0.06 | 10 | 4 | 1 | 4.81 | 168.02 | I | 102.93 |
4h | 0.06 | 11 | 6 | 1 | 4.15 | 166.83 | I | 148.75 |
4i | 0.06 | 10 | 5 | 1 | 4.51 | 157.96 | I | 102.93 |
4j | 0.06 | 10 | 5 | 1 | 4.19 | 157.96 | I | 102.93 |
4k | 0.06 | 11 | 6 | 2 | 4.19 | 164.96 | I | 140.23 |
6a | 0.03 | 7 | 3 | 0 | 5.05 | 155.58 | I | 73.83 |
6b | 0.03 | 8 | 5 | 0 | 4.27 | 154.38 | I | 119.65 |
6c | 0.06 | 8 | 4 | 0 | 4.67 | 155.76 | I | 90.90 |
6d | 0.06 | 9 | 5 | 0 | 5.05 | 156.84 | I | 100.13 |
6e | 0.03 | 8 | 5 | 1 | 4.21 | 152.52 | I | 111.13 |
Comp. No. | Pharmacokinetic/ADME Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|
GI Abs a | BBB Permeant b | P-gp Substrate c | CYP1A2 Inhibitor d | CYP2C19 Inhibitor e | CYP2C9 Inhibitor f | CYP2D6 Inhibitor g | CYP3A4 Inhibitor h | Log Kp i | |
2 | Low | No | Yes | No | No | No | No | No | −0.91 |
4a | Low | No | Yes | Yes | Yes | No | Yes | Yes | −2.56 |
4b | Low | No | Yes | Yes | No | No | No | Yes | −1.06 |
4c | Low | No | Yes | No | No | No | No | Yes | −0.47 |
4d | Low | No | No | No | Yes | No | No | Yes | −4.57 |
4e | High | No | Yes | No | Yes | Yes | No | Yes | −5.40 |
4f | Low | No | No | No | No | Yes | No | Yes | −5.00 |
4g | Low | No | No | No | Yes | No | No | Yes | −4.78 |
4h | Low | No | No | No | Yes | No | No | Yes | −5.65 |
4i | Low | No | No | No | Yes | Yes | No | Yes | −5.29 |
4j | Low | No | No | No | Yes | Yes | No | Yes | −5.29 |
4k | Low | No | No | No | Yes | Yes | No | No | −5.85 |
6a | Low | No | No | No | Yes | No | No | Yes | −3.97 |
6b | Low | No | No | No | Yes | No | No | Yes | −4.84 |
6c | Low | No | No | No | No | Yes | No | Yes | −4.92 |
6d | Low | No | No | No | No | Yes | No | Yes | −4.89 |
6e | Low | No | No | No | No | Yes | No | No | −5.04 |
Comp. No. | Lipinski Violations | Ghose Violations | Veber Violations | Egan Violation | Muegge Violations | Bioavailability Score | AMES Toxicity | Carcinogenicity |
---|---|---|---|---|---|---|---|---|
2 | 2 | 4 | 1 | 1 | 4 | 0.17 | Yes | No |
4a | 2 | 4 | 1 | 1 | 2 | 0.17 | Yes | No |
4b | 2 | 4 | 1 | 1 | 3 | 0.17 | Yes | No |
4c | 2 | 4 | 1 | 1 | 3 | 0.17 | Yes | No |
4d | 1 | 3 | 0 | 1 | 1 | 0.55 | Yes | No |
4e | 0 | 2 | 0 | 0 | 1 | 0.55 | No | No |
4f | 1 | 3 | 0 | 1 | 1 | 0.55 | Yes | No |
4g | 2 | 3 | 0 | 1 | 2 | 0.17 | Yes | No |
4h | 2 | 3 | 2 | 2 | 1 | 0.17 | Yes | No |
4i | 2 | 3 | 0 | 1 | 1 | 0.17 | Yes | No |
4j | 2 | 3 | 0 | 1 | 1 | 0.17 | Yes | No |
4k | 2 | 3 | 2 | 1 | 1 | 0.56 | Yes | No |
6a | 2 | 3 | 0 | 1 | 1 | 0.17 | No | No |
6b | 2 | 3 | 0 | 1 | 1 | 0.17 | Yes | No |
6c | 2 | 3 | 0 | 1 | 1 | 0.17 | Yes | No |
6d | 2 | 3 | 0 | 1 | 1 | 0.17 | No | No |
6e | 2 | 3 | 0 | 1 | 1 | 0.56 | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-blewi, F.; Shaikh, S.A.; Naqvi, A.; Aljohani, F.; Aouad, M.R.; Ihmaid, S.; Rezki, N. Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3β Molecular Docking Investigations. Int. J. Mol. Sci. 2021, 22, 1162. https://doi.org/10.3390/ijms22031162
Al-blewi F, Shaikh SA, Naqvi A, Aljohani F, Aouad MR, Ihmaid S, Rezki N. Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3β Molecular Docking Investigations. International Journal of Molecular Sciences. 2021; 22(3):1162. https://doi.org/10.3390/ijms22031162
Chicago/Turabian StyleAl-blewi, Fawzia, Salma Akram Shaikh, Arshi Naqvi, Faizah Aljohani, Mohamed Reda Aouad, Saleh Ihmaid, and Nadjet Rezki. 2021. "Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3β Molecular Docking Investigations" International Journal of Molecular Sciences 22, no. 3: 1162. https://doi.org/10.3390/ijms22031162
APA StyleAl-blewi, F., Shaikh, S. A., Naqvi, A., Aljohani, F., Aouad, M. R., Ihmaid, S., & Rezki, N. (2021). Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3β Molecular Docking Investigations. International Journal of Molecular Sciences, 22(3), 1162. https://doi.org/10.3390/ijms22031162