Supporting Information

Electron-Induced Repair of 2'-Deoxyribose Sugar Radicals in DNA: A Density Functional Theory (DFT) Study

Michael Bell, Anil Kumar and Michael D. Sevilla Department of Chemistry, Oakland University, Rochester, MI 48309, USA

Table of contents

1. Figure S1- ω B97XD-PCM/6-31++G** calculated Mulliken spin density distribution of sugar radicals (C₁, C₂, C₃, C₄ and C₅) of 2'-dT (left column) and HOMO of oneelectron reduced corresponding sugar radicals (anions) of 2'-dT (right column). Spin density calculated at 0.004 electron/bohr³ and HOMO is calculated at 0.02 electron/bohr³, respectively.

2. Figure S2- ω B97XD-PCM/6-31++G** calculated optimized structures of (i) 5'(R),8-Cyclo-2'-deoxyguanosine (left) and (ii) 5'(S),8-Cyclo-2'-deoxyguanosine (right) in their neutral state (diamagnetic).

3. Figure S3- ω B97XD-PCM/6-31++G** calculated HOMO plots of sugar anions (C₂⁻, C₃⁻, C₄⁻, and C₅⁻) of 2'-dT + 3H₂O after proton transfer. These sugar anions are protonated from solvent without any substantial barrier and repaired to normal 2'-dT leaving OH⁻ + 2H₂O.

4. Table S1- The ω B97XD-PCM/6-31++G** calculated relative free energies (Δ G), relative populations based on Boltzmann distribution of (i) 5'(R),8-Cyclo-2'-deoxyguanosine and (ii) 5'(S),8-Cyclo-2'-deoxyguanosine in their neutral state (diamagnetic).

5. ω B97XD-PCM/6-31++G** calculated SCF and free energies (G) in A.U. of species considered in this work.

6. Two Methods of Calculation of E^o for reactions involving protonation.

7. Table S2- The ω B97XD-PCM/6-31++G** calculated one-electron reduction potential (E°) of sugar radicals of 2'-dG using two methods:

Figure S1- ω B97XD-PCM/6-31++G** calculated Mulliken spin density distribution of sugar radicals (C₁, C₂, C₃, C₄, and C₅) of 2'-dT (left column) and HOMO of oneelectron reduced corresponding sugar radicals (anions) of 2'-dT (right column). Spin density calculated at 0.004 electron/bohr³ and HOMO is calculated at 0.02 electron/bohr³, respectively.

Figure S2- ω B97XD-PCM/6-31++G** calculated optimized structures of (i) 5'(R),8-Cyclo-2'-deoxyguanosine (left) and (ii) 5'(S),8-Cyclo-2'-deoxyguanosine (right) in their neutral state (diamagnetic).

Figure S3- ω B97XD-PCM/6-31++G** calculated HOMO plots of sugar anions (C₂-, C₃-, C₄-, and C₅-) of 2'-dT + 3H₂O after proton transfer. These sugar anions are protonated from solvent without any substantial barrier and repaired to normal 2'-dT leaving OH⁻ + 2H₂O.

Table S1- The ω B97XD-PCM/6-31++G** calculated relative free energies (Δ G), relative populations based on Boltzmann distribution of (i) 5'(R),8-Cyclo-2'-deoxyguanosine and (ii) 5'(S),8-Cyclo-2'-deoxyguanosine in their neutral state (diamagnetic).

5',8-cyclo-2'-dG ωB97XD-PCM/6-31++G**				
Species	ΔG (kJ/mol)	Population (%) at 298 K	Free energy (G) in A.U.	
5'(R) ^a 5'(S) ^b	2.29 0.00	28.4 71.6	-961.963008 -961.963880	

^a5'(R),8-Cyclo-2'-deoxyguanosine, see Figure S3.

^b5'(S),8-Cyclo-2'-deoxyguanosine, see Figure S3.

5. ω B97XD-PCM/6-31++G** calculated electronic (TE) and free energies (G) in A.U. of species considered in this work.

2'-deoxyguanosine (2'-dG)			
Species	TE (A.U.)	Free Energy (G) (A.U.)	
Neutral 2'-dG	-963.360873055	-963.150565	
C1 radical	-962.699944307	-962.505228	
C2 radical	-962.687884564	-962.494536	
C3 radical	-962.695404865	-962.499903	
C4 radical	-962.697856995	-962.505565	
C5 radical	-962.697603039	-962.502819	
Anion (radical + e-)			
C1 anion	-962.797559321	-962.602105	
C2 anion	-962.808828767	-962.614542	
C3 anion	-962.796414394	-962.601507	
C4 anion	-962.800744761	-962.605668	
C5 anion	-962.793320512	-962.598932	

2'-deoxythymidine (2'-dT)			
Species	TE (A.U.)	Free Energy (G) (A.U.)	
Neutral 2'-dT	-874.956492875	-874.747206	
C1 radical	-874.293580345	-874.100197	
C2 radical	-874.283361199	-874.091767	
C3 radical	-874.291363270	-874.097579	
C4 radical	-874.292279361	-874.100751	
C5 radical	-874.293503302	-874.098981	
Anion (radical + e-)			

C1 anion	-874.391317264	-874.197678	
C2 anion	-874.400691662	-874.209602	
C3 anion	-874.392130334	-874.198671	
C4 anion	-874.396867980	-874.203537	
C5 anion	-874.394181003	-874.200915	

5',8-cyclo-2'-Deoxyguanosine			
Species	TE (A.U.)	Free Energy (G) (A.U.)	
5'(R),8-cyclo-2'-	-962.712374251	-962.512884	
Deoxyguanosine-7-yl			
radical			
5'(S),8-cyclo-2'-	-962.713096661	-962.512336	
Deoxyguanosine-7-yl			
radical			
Anion (radical + e-)			
5'(R),8-cyclo-2'-	-962.816291824	-962.617565	
Deoxyguanosine-7-yl			
5'(S),8-cyclo-2'-	-962.826694097	-962.626692	
Deoxyguanosine-7-yl			

6. Two Methods of Calculation of E^o for reactions involving protonation.

In the main text we computed the E° for the process of reduction for the half reaction:

$$C_{nl} + e^{-} + H^{+} \to C_{nl} H$$
 (n = 1-5) (3)

vs the SHE which is given by the reaction:

$$H^+ + e^- \to \frac{1}{2}H_2 \tag{4}$$

Since reaction (3) minus that of reaction (4) gives reaction 5:

$$C_{n'} + \frac{1}{2}H_2 \to C_{n'}H \tag{5}$$

The free energy change found for reaction (5) gives the potential for reaction (3) vs the SHE, i.e., $E^{o} = -\Delta G^{o}(5)/RT$.

The usual method is to calculate the energy changes for reaction 3 and combine that with the IUPAC value of the SHE of 4.44 eV (reaction 4). This method requires the solvation energy of the proton which is reported to be ca. -266 kcal/mol or -11.53 eV

(Thapa, B., Schlegel, H. B., J. Phys. Chem. A 2015, 119, 5134–5144. doi.org/10.1021/jp5088866) |

We find that both methods give results within 0.08 eV but the method utilizing reaction 5 only eliminates the uncertainty in the solvation energy of the proton and the variation in reported values for the SHE.

Table S2- The ω B97XD-PCM/6-31++G** calculated one-electron reduction potential (E°) of sugar radicals of 2'-dG using two methods: Method 1 given in main text is based on eq. 5. Method 2. Employs the SHE and solvation energy of the proton.

	2'-Deoxyguanosine ^a			
ωB97XD-PCM/6-31++G**				
	E ^o vs SHE	(Volt)		
	Method 1 ^a	Method 2 ^b		
$C_{1'}$	-1.50	-1.58		
$C_{2'}$	-1.79	-1.88		
$C_{3'}$	-1.65	-1.73		
$C_{4'}$	-1.49	-1.58		
$C_{5'}$	-1.57	-1.65		
			Average dev. 0.08V	

^a Method 1: E° of protonated anion (see eq 5). Value of 1/2(H2) in eq. (5) was calculated using G4 level of theory.

^{b.} Method 2 Employs the SHE potential of 4.44 V (equation 4) and solvation energy of the proton as 11.53 eV (in equation 3)..