Humanized Mice as a Tool to Study Sepsis—More Than Meets the Eye
Abstract
:1. Introduction
1.1. General Description of Septic Response
1.2. Models of Sepsis in Small Animals
1.3. The Need for Humanized Mice Sepsis Research
1.4. Introduction to Models of Humanized Mice
2. Overview of Utility of Using Humanized Mice in Sepsis
2.1. Bacterial Sepsis
2.2. Viral Sepsis
2.3. Protozoan Infection
3. Discussion
3.1. The Overall Advantage of Humanized Models of Sepsis
3.2. The Limitations of Humanized Models of Sepsis
3.3. Do Humanized Animals Fulfill Their Potential in Advancing the Field of Sepsis?
3.4. Future of Humanized Animals in Investigation of Septic Shock and Sepsis
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensiv. Care Med. 2020, 46, 10–67. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Stevens, M.; Collin, I.; Wennike, N. Evolving sepsis definitions and their impact on Acute Medical Units. Acute Med. 2017, 16, 25–29. [Google Scholar] [PubMed]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Rubenfeld, G.D. Understanding Long-Term Outcomes Following Sepsis: Implications and Challenges. Curr. Infect. Dis. Rep. 2016, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yende, S.; Austin, S.; Rhodes, A.; Finfer, S.; Opal, S.; Thompson, T. Long-Term Quality of Life Among Survivors of Severe Sepsis: Analyses of Two International Trials. Crit. Care Med. 2016, 44, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Delano, M.J.; Ward, P.A. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? J. Clin. Investig. 2016, 126, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Coopersmith, C.M.; De Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. Intensiv. Care Med. 2018, 44, 1400–1426. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Nardocci, G.; Navarro, C.; Reyes, E.P.; Acuña-Castillo, C.; Cortes, P.P. Neural reflex regulation of systemic inflammation: Potential new targets for sepsis therapy. Front. Physiol. 2014, 5, 489. [Google Scholar] [CrossRef] [PubMed]
- Dolmatova, E.V.; Wang, K.; Mandavilli, R.; Griendling, K.K. The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 2021, 117, 60–73. [Google Scholar] [CrossRef]
- L’Heureux, M.; Sternberg, M.; Brath, L.; Turlington, J.; Kashiouris, M.G. Sepsis-Induced Cardiomyopathy: A Comprehensive Review. Curr. Cardiol. Rep. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Gomez, H.; Ince, C.; De Backer, D.; Pickkers, P.; Payen, D.; Hotchkiss, J. A unified theory of sepsis-induced acute kidney injury: Inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 2014, 41, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matkovich, S.J.; Al Khiami, B.; Efimov, I.R.; Evans, S.; Vader, J.; Jain, A.; Brownstein, B.H.; Hotchkiss, R.S.; Mann, D.L. Widespread Down-Regulation of Cardiac Mitochondrial and Sarcomeric Genes in Patients with Sepsis*. Crit. Care Med. 2017, 45, 407–414. [Google Scholar] [CrossRef] [Green Version]
- De Backer, D.; Ricottilli, F.; Ospina-Tascón, G.A. Septic shock: A microcirculation disease. Curr. Opin. Anaesthesiol. 2021. Volume Publish Ahead of Print-Issue. [Google Scholar] [CrossRef]
- Shimizu, M.; Konishi, A.; Nomura, S. Examination of biomarker expressions in sepsis-related DIC patients. Int. J. Gen. Med. 2018, 11, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Mira, J.C.; Gentile, L.F.; Mathias, B.J.; Efron, P.A.; Brakenridge, S.C.; Mohr, A.M.; Moore, F.A.; Moldawer, L.L. Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-Immunosuppression and Catabolism Syndrome. Crit. Care Med. 2017, 45, 253–262. [Google Scholar] [CrossRef]
- Masopust, D.; Sivula, C.P.; Jameson, S.C. Of Mice, Dirty Mice, and Men: Using Mice to Understand Human Immunology. J. Immunol. 2017, 199, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaler, C.R.; Choi, J.; Rudak, P.T.; Memarnejadian, A.; Szabo, P.A.; Tun-Abraham, M.E. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLoS Biol. 2017, 15, e2001930. [Google Scholar]
- Rodewohl, A.; Scholbach, J.; Leichsenring, A.; Köberle, M.; Lange, F. Age-dependent cellular reactions of the human immune system of humanized NOD scid gamma mice on LPS stimulus. Innate Immun. 2017, 23, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Szabo, P.A.; Rudak, P.T.; Choi, J.; Xu, S.X.; Schaub, R.; Singh, B. Invariant Natural Killer T Cells Are Pathogenic in the HLA-DR4-Transgenic Humanized Mouse Model of Toxic Shock Syndrome and Can Be Targeted to Reduce Morbidity. J. Infect. Dis. 2017, 215, 824–829. [Google Scholar]
- Szabo, P.A.; Goswami, A.; Mazzuca, D.M.; Kim, K.; O’Gorman, D.B.; Hess, D.A. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J. Immunol. 2017, 198, 2805–2818. [Google Scholar] [CrossRef] [Green Version]
- Scheiermann, P.; Hoegl, S.; Hofstetter, C.; Pfeilschifter, J.; Zwissler, B.; Mühl, H.; Boost, K.A.; Scheller, B. Comparing hemodynamics, blood gas analyses and proinflammatory cytokines in endotoxemic and severely septic rats. Int. Immunopharmacol. 2011, 11, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Ernst, W.; Zimara, N.; Hanses, F.; Männel, D.N.; Seelbach-Göbel, B.; Wege, A.K. Humanized Mice, a New Model to Study the Influence of Drug Treatment on Neonatal Sepsis. Infect. Immun. 2013, 81, 1520–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlieckau, F.; Schulz, D.; Fill Malfertheiner, S.; Entleutner, K.; Seelbach-Goebel, B.; Ernst, W. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice. Am. J. Reprod. Immunol. 2018, 80, e12859. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, P.; Hoegl, S.; Revermann, M.; Ahluwalia, D.; Zander, J.; Boost, K.A.; Nguyen, T.; Zwissler, B.; Mühl, H.; Hofstetter, C. Cecal Ligation and Incision: An Acute Onset Model of Severe Sepsis in Rats. J. Surg. Res. 2009, 151, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Traeger, T.; Koerner, P.; Kessler, W.; Cziupka, K.; Diedrich, S.; Busemann, A.; Heidecke, C.-D.; Maier, S. Colon Ascendens Stent Peritonitis (CASP)-A Standardized Model for Polymicrobial Abdominal Sepsis. J. Vis. Exp. 2010, 2010, e2299. [Google Scholar] [CrossRef] [Green Version]
- Cuenca, A.G.; Delano, M.J.; Kelly-Scumpia, K.M.; Moldawer, L.L.; Efron, P.A. Cecal Ligation and Puncture. In Current Protocol in Immunology; John Willey & Sons: New York, NY, USA, 2009. [Google Scholar]
- Lapko, N.; Zawadka, M.; Polosak, J.; Worthen, G.S.; Danet-Desnoyers, G.; Puzianowska-Kuźnicka, M.; Laudanski, K. Long-term Monocyte Dysfunction after Sepsis in Humanized Mice Is Related to Persisted Activation of Macrophage-Colony Stimulation Factor (M-CSF) and Demethylation of PU.1, and It Can Be Reversed by Blocking M-CSF In Vitro or by Transplanting Naïve Autologous Stem Cells In Vivo. Front. Immunol. 2017, 8, 401. [Google Scholar] [CrossRef]
- Laudański, K.; Lapko, N.; Zawadka, M.; Zhou, B.X.; Danet-Desnoyers, G.; Worthen, G.S. The clinical and immunological performance of 28 days survival model of cecal ligation and puncture in humanized mice. PLoS ONE 2017, 12, e0180377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skirecki, T.; Kawiak, J.; Machaj, E.; Pojda, Z.; Wasilewska, D.; Czubak, J.; Hoser, G. Early severe impairment of hematopoietic stem and progenitor cells from the bone marrow caused by CLP sepsis and endotoxemia in a humanized mice model. Stem Cell Res. Ther. 2015, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dyson, A.; Rudiger, A.; Singer, M. Temporal changes in tissue cardiorespiratory function during faecal peritonitis. Intensiv. Care Med. 2011, 37, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osuchowski, M.F.M.; Remick, D.G.D.; Lederer, J.J.; Lang, C.C.; Aasen, A.O.A.; Aibiki, M.M.; Azevedo, L.C.P.L.; Bahrami, S.S.; Boros, M.M.; Cooney, R.R.; et al. Abandon the Mouse Research Ship? Not Just Yet! Shock 2014, 41, 463–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegamyer, E.; Smith, N.; Thompson, A.D.; Depiero, A.D. Treatment of suspected sepsis and septic shock in children with chronic disease seen in the pediatric emergency department. Am. J. Emerg. Med. 2021, 44, 56–61. [Google Scholar] [CrossRef]
- Efron, P.A.; Mohr, A.M.; Moore, F.A.; Moldawer, L.L. The future of murine sepsis and trauma research models. J. Leukoc. Biol. 2015, 98, 945–952. [Google Scholar] [CrossRef]
- Cesta, M.F. Normal Structure, Function, and Histology of the Spleen. Toxicol. Pathol. 2006, 34, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Krampera, M.; Sartoris, S.; Liotta, F.; Pasini, A.; Angeli, R.; Cosmi, L.; Andreini, A.; Mosna, F.; Bonetti, B.; Rebellato, E.; et al. Immune Regulation by Mesenchymal Stem Cells Derived from Adult Spleen and Thymus. Stem Cells Dev. 2007, 16, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Stripecke, R.; Münz, C.; Schuringa, J.J.; Bissig, K.; Soper, B.; Meeham, T.; Yao, L.; Di Santo, J.P.; Brehm, M.; Rodriguez, E.; et al. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol. Med. 2020, 12, e8662. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, T.; Pflumio, F.; Doedens, M.; Murdoch, B.; E Williams, D.; E Dick, J. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992, 255, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.A.; Jouvet, N.; Greiner, D.L.; Shultz, L.D. Humanized mice for the study of infectious diseases. Curr. Opin. Immunol. 2013, 25, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shultz, L.D.; Ishikawa, F.; Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 2007, 7, 118–130. [Google Scholar] [CrossRef]
- Bosma, G.C.; Custer, R.P.; Bosma, M.J. A severe combined immunodeficiency mutation in the mouse. Nat. Cell Biol. 1983, 301, 527–530. [Google Scholar] [CrossRef]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017, 214, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Shultz, L.D.; Brehm, M.A.; Garcia-Martinez, J.V.; Greiner, D.L. Humanized mice for immune system investigation: Progress, promise and challenges. Nat. Rev. Immunol. 2012, 12, 786–798. [Google Scholar] [CrossRef]
- Theocharides, A.P.; Rongvaux, A.; Fritsch, K.; Flavell, R.A.; Manz, M.G. Humanized hemato-lymphoid system mice. Haematologica 2015, 101, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, R.; Ikeno, S.; Kobayashi-Ishihara, M.; Takeyama, H.; Ato, M.; Tsunetsugu-Yokota, Y. Introduction of Human Flt3-L and GM-CSF into Humanized Mice Enhances the Reconstitution and Maturation of Myeloid Dendritic Cells and the Development of Foxp3(+)CD4(+) T Cells. Front Immunol. 2018, 9, 1042. [Google Scholar] [CrossRef] [PubMed]
- Unsinger, J.; McDonough, J.S.; Shultz, L.D.; Ferguson, T.A.; Hotchkiss, R.S. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J. Leukoc. Biol. 2009, 86, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skirecki, T.; Drechsler, S.; Hoser, G.; Jafarmadar, M.; Siennicka, K.; Pojda, Z.; Kawiak, J.; Osuchowski, M.F. The Fluctuations of Leukocytes and Circulating Cytokines in Septic Humanized Mice Vary with Outcome. Front. Immunol. 2019, 10, 1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.; Choi, J.-G.; Abraham, S.; Wu, H.; Diaz, D.; Terreros, D.; Shankar, P.; Manjunath, N. Human macrophage and dendritic cell-specific silencing of high-mobility group protein B1 ameliorates sepsis in a humanized mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, 21052–21057. [Google Scholar] [CrossRef] [Green Version]
- Stevens, N.E.; Chapman, M.J.; Fraser, C.K.; Kuchel, T.R.; Hayball, J.D.; Diener, K.R. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci. Rep. 2017, 7, 5850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snouwaert, J.N.; Nguyen, M.; Repenning, P.W.; Dye, R.; Livingston, E.W.; Kovarova, M. An NLRP3 Mutation Causes Arthropathy and Osteoporosis in Humanized Mice. Cell Rep. 2016, 17, 30773088. [Google Scholar] [CrossRef] [PubMed]
- Libby, S.J.; Brehm, M.A.; Greiner, D.L.; Shultz, L.D.; McClelland, M.; Smith, K.D. Humanized nonobese diabetic-scid IL2rγ mice are susceptible to lethal Salmonella Typhi infection. Proc. Natl. Acad. Sci. USA 2010, 107, 15589–15594. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.W.; Biancotti, J.C.; Berg, B.L.; Gate, D.; Kolar, S.L.; Müller, S. Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Staphylococcus aureus Skin Infection. PLoS Pathog. 2015, 11, e1005292. [Google Scholar] [CrossRef]
- Szabo, P.A.; Goswami, A.; Memarnejadian, A.; Mallett, C.L.; Foster, P.J.; McCormick, J.K.; Haeryfar, S.M.M. Swift Intrahepatic Accumulation of Granulocytic Myeloid-Derived Suppressor Cells in a Humanized Mouse Model of Toxic Shock Syndrome. J. Infect. Dis. 2016, 213, 1990–1995. [Google Scholar] [CrossRef] [Green Version]
- Knop, J.; Hanses, F.; Leist, T.; Archin, N.M.; Buchholz, S.; Gläsner, J.; Gessner, A.; Wege, A.K. Staphylococcus aureusInfection in Humanized Mice: A New Model to Study Pathogenicity Associated with Human Immune Response. J. Infect. Dis. 2015, 212, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Obata, Y.; Furusawa, Y.; Hase, K. Epigenetic modifications of the immune system in health and disease. Immunol. Cell Biol. 2015, 93, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudanski, K. Adoptive transfer of naïve dendritic cells in resolving post-sepsis long-term immunosuppression. Med. Hypotheses 2012, 79, 478–480. [Google Scholar] [CrossRef]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef]
- Gille, C.; Orlikowsky, T.W.; Spring, B.; Hartwig, U.F.; Wilhelm, A.; Wirth, A. Monocytes derived from humanized neonatal NOD/SCID/IL2R mice are phenotypically immature and exhibit functional impairments. Hum. Immunol. 2012, 73, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Andre, M.C.; Erbacher, A.; Gille, C.; Schmauke, V.; Goecke, B.; Hohberger, A. Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R gamma(null) mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells. J. Immunol. 2010, 185, 2710–2720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.Z.; Wang, X.L.; Xie, J.; Chen, L.P.; Li, Q.; Wang, X.X. Therapeutic Effect of an Anti-Human Programmed Death-Ligand 1 (PD-L1) Nanobody on Polymicrobial Sepsis in Humanized Mice. Med. Sci. Monit. 2021, 27, e926820. [Google Scholar] [CrossRef] [PubMed]
- Terahara, K.; Ishige, M.; Ikeno, S.; Okada, S.; Kobayashi-Ishihara, M.; Ato, M.; Tsunetsugu-Yokota, Y. Humanized mice dually challenged with R5 and X4 HIV-1 show preferential R5 viremia and restricted X4 infection of CCR5+CD4+ T cells. Microbes Infect. 2015, 17, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Ringpis, G.E.; Marsden, M.D.; Cortado, R.V.; Wilhalme, H.M.; Elashoff, D. RNAi-Mediated CCR5 Knockdown Provides HIV-1 Resistance to Memory T Cells in Humanized BLT Mice. Mol. Ther. Nucleic Acids 2015, 4, e227. [Google Scholar] [CrossRef]
- Petit, N.Y.; Lambert-Niclot, S.; Marcelin, A.-G.; Garcia, S.; Marodon, G. HIV Replication Is Not Controlled by CD8+ T Cells during the Acute Phase of the Infection in Humanized Mice. PLoS ONE 2015, 10, e0138420. [Google Scholar] [CrossRef]
- Li, G.; Cheng, M.; Nunoya, J.-I.; Cheng, L.; Guo, H.; Yu, H.; Liu, Y.-J.; Su, L.; Zhang, L. Plasmacytoid Dendritic Cells Suppress HIV-1 Replication but Contribute to HIV-1 Induced Immunopathogenesis in Humanized Mice. PLoS Pathog. 2014, 10, e1004291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, N.T.; Wang, H.; Scharf, L.; Nogueira, L.; Horwitz, J.A.; Bar-On, Y.; Golijanin, J.; Sievers, S.A.; Sok, D.; Cai, H.; et al. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 2017, 9, eaal2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, K.; Charlins, P.; Veselinovic, M.; Kinner-Bibeau, L.; Hu, S.; Curlin, J. Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model. Virology 2018, 515, 235–242. [Google Scholar] [CrossRef]
- Mota, J.; Rico-Hesse, R. Humanized Mice Show Clinical Signs of Dengue Fever according to Infecting Virus Genotype. J. Virol. 2009, 83, 8638–8645. [Google Scholar] [CrossRef] [Green Version]
- Kuruvilla, J.G.; Troyer, R.M.; Devi, S.; Akkina, R. Dengue virus infection and immune response in humanized RAG2(−/−)gamma(c)(−/−) (RAG-hu) mice. Virology 2007, 369, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Costa, V.V.; Ye, W.; Chen, Q.; Teixeira, M.M.; Preiser, P.; Ooi, E.E. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules. mBio 2017, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.; Ip, W.H.; Kolbe, V.; Hartmann, K.; Pilnitz-Stolze, G.; Tekin, N.; Gómez-Medina, S.; Muñoz-Fontela, C.; Krasemann, S.; Dobner, T. Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. J. Infect. Dis. 2016, 215, 70–79. [Google Scholar] [CrossRef]
- Lim, W.H.; Kireta, S.; Russ, G.R.; Coates, P.T.H. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood 2006, 109, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Melkus, M.W.; Estes, J.D.; Padgett-Thomas, A.; Gatlin, J.; Denton, P.W.; A Othieno, F.; Wege, A.K.; Haase, A.T.; Garcia, J.V. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 2006, 12, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Raschke, R.A.; Garcia-Orr, R. Hemophagocytic lymphohistiocytosis: A potentially underrecognized association with systemic inflammatory response syndrome, severe sepsis, and septic shock in adults. Chest 2011, 140. [Google Scholar] [CrossRef] [PubMed]
- Körner, R.W.; Majjouti, M.; Alcazar, M.A.A.; Mahabir, E. Of Mice and Men: The Coronavirus MHV and Mouse Models as a Translational Approach to Understand SARS-CoV-2. Viruses 2020, 12, 8. [Google Scholar] [CrossRef]
- Duffier, Y.; Lorthiois, A.; Cistero, P.; Dupuy, F.; Jouvion, G.; Fiette, L. A humanized mouse model for sequestration of Plasmodium falciparum sexual stages and in vivo evaluation of gametocytidal drugs. Sci. Rep. 2016, 6, 35025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, A.M.; Pinapati, R.S.; Cheeseman, I.H.; Camargo, N.; Fishbaugher, M.; Checkley, L.A.; Nair, S.; Hutyra, C.A.; Nosten, F.H.; Anderson, T.J.C.; et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat. Methods 2015, 12, 631–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulard, V.; Bosson-Vanga, H.; Lorthiois, A.; Roucher, C.; Franetich, J.-F.; Zanghi, G.; Bordessoulles, M.; Tefit, M.; Thellier, M.; Morosan, S.; et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat. Commun. 2015, 6, 7690. [Google Scholar] [CrossRef] [Green Version]
- Wijayalath, W.; Majji, S.; Villasante, E.F.; Brumeanu, T.D.; Richie, T.L.; Casares, S. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria. Malar. J. 2014, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bijker, E.M.; Bastiaens, G.J.H.; Teirlinck, A.C.; Van Gemert, G.-J.; Graumans, W.; Van De Vegte-Bolmer, M.; Siebelink-Stoter, R.; Arens, T.; Teelen, K.; Nahrendorf, W.; et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc. Natl. Acad. Sci. USA 2013, 110, 7862–7867. [Google Scholar] [CrossRef] [Green Version]
- Gualdron-Lopez, M.; Flannery, E.L.; Kangwanrangsan, N.; Chuenchob, V.; Fernandez-Orth, D.; Segui-Barber, J. Characterization of Plasmodium vivax Proteins in Plasma-Derived Exosomes from Malaria-Infected Liver-Chimeric Humanized Mice. Front. Microbiol. 2018, 9, 1271. [Google Scholar] [CrossRef]
- Majji, S.; Wijayalath, W.; Shashikumar, S.; Brumeanu, T.D.; Casares, S. Humanized DRAGA mice immunized with Plasmodium falciparum sporozoites and chloroquine elicit protective pre-erythrocytic immunity. Malar. J. 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquet, T.; Le Manach, C.; Cabrera, D.G.; Younis, Y.; Henrich, P.P.; Abraham, T.S.; Lee, M.C.S.; Basak, R.; Ghidelli-Disse, S.; Lafuente-Monasterio, M.J.; et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 2017, 9, eaad9735. [Google Scholar] [CrossRef] [Green Version]
- Bharaj, P.; Ye, C.; Petersen, S.; Wang, Q.; Hu, B.; Manjunath, N.; Shankar, P.; Yi, G. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile. Heliyon 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, W.; Kusi, E.; Malfertheiner, S.F.; Reuschel, E.; Deml, L.; Seelbach-Göbel, B. The effect of Indomethacin and Betamethasone on the cytokine response of human neonatal mononuclear cells to gram-positive bacteria. Cytokine 2015, 73, 91–100. [Google Scholar] [CrossRef]
- Ye, C.; Choi, J.-G.; Abraham, S.; Shankar, P.; Manjunath, N. Targeted delivery of HMGB1 siRNA to macrophages and dendritic cells for sepsis treatment in humanized mouse model (P6223). J. Immunol. 2013, 190, 115. [Google Scholar]
- Pegoraro, S.; Duffey, M.; Otto, T.D.; Wang, Y.; Rösemann, R.; Baumgartner, R.; Fehler, S.K.; Lucantoni, L.; Avery, V.M.; Moreno-Sabater, A.; et al. SC83288 is a clinical development candidate for the treatment of severe malaria. Nat. Commun. 2017, 8, 14193. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Pati, S.; Lee, J.W. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells 2017, 35, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Jarman, E.R.; Perschke, K.; Montermann, E.; Herz, U.; Renz, H.; Knop, J.; Reske-Kunz, A.B. Deficient cytokine response of human allergen-specific T lymphocytes from humanized SCID mice and reconstitution by professional antigen-presenting cells. J. Allergy Clin. Immunol. 2000, 105, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Cathal, H.; Sarah, W; Paul, C. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain. Stem Cells Dev. 2016, 25, 530–541. [Google Scholar]
- Zompi, S.; Montoya, M.; Pohl, M.O.; Balmaseda, A.; Harris, E. Dominant Cross-Reactive B Cell Response during Secondary Acute Dengue Virus Infection in Humans. PLoS Neglected Trop. Dis. 2012, 6, e1568. [Google Scholar] [CrossRef]
- Zompi, S.; Harris, E. Animal Models of Dengue Virus Infection. Viruses 2012, 4, 62–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melican, K.; Veloso, P.M.; Martin, T.; Bruneval, P.; Duménil, G. Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model. PLoS Pathog. 2013, 9, e1003139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billerbeck, E.; Barry, W.T.; Mu, K.; Dorner, M.; Rice, C.M.; Ploss, A. Development of human CD4 FoxP3 regulatory T cells in human stem cell factor–, granulocyte-macrophage colony-stimulating factor–, and interleukin-3–expressing NOD-SCID IL2Rγ humanized mice. Blood 2011, 117, 3076–3086. [Google Scholar] [CrossRef] [Green Version]
- Rongvaux, A.; Willinger, T.; Martinek, J.; Strowig, T.; Gearty, S.V.; Teichmann, L.L.; Saito, Y.; Marches, F.; Halene, S.; Palucka, A.K.; et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 2014, 32, 364–372. [Google Scholar] [CrossRef]
Type | Grafting | Advantages | Disadvantages |
---|---|---|---|
PBMC | Peripheral mononuclear cells | Simple model; graft vs host disease common | Only for short-term experiments, lack of myeloid cells and granulocytes |
SRC | CD34 stem cells | Multilineage development of the human immune system | Slow development of the system; relatively immaturity of the human immune system |
BLT | Hematopoietic CD34+ cells, thymus, liver | Very robust reconstitution of the human immune system | Prolonged development of the immune system, emergence of graft vs host disease, laborious |
Author | Humanized Animals | Model | Major Finding | Remarks |
---|---|---|---|---|
Unsinger | NOD-scid IL2rγ(null) with an adoptive transfer of hCD34(+) hematopoietic cord blood stem cells. | CLP | Sepsis induced marked elevations in human pro- and anti-inflammatory cytokines as well as a dramatic increase in human T and B cell apoptosis | Acute model |
Rodewohl | NOD-scid gamma mice transplanted with human hCD34(+) stem cells | LPS stimulus with euthanize after 6 h | LPS stimulation induced a decrease in CD14+ monocytes in peripheral blood, an up-regulation of activation markers on different cell subsets such as myeloid dendritic cells, and a release of the human cytokines TNF-α, IL-6 and IL-10. | Significant age difference |
Ye | NOD/scid/IL2Rγ−/− mice BLT model | CLP | Humanized mice had high serum levels of HMGB1 as well as multiple human, but not murine, proinflammatory cytokines, and uniformly succumbed | |
Libby | hu-SRC-SCID | Typhoid inoculation | S. Typhoi can replicate, causing a lethal infection with pathological and inflammatory cytokine responses resembling human typhoid | |
Tseng | (SCID)/IL2 γ−/− (NSG) mice engrafted with human CD34+ umbilical cord blood cells | Staph skin inoculation | Humanized mice exhibit larger cutaneous lesions upon infection with PVL+ versus isogenic PVL− S. aureus | Granulocytes proved to be a rescue |
Shaler | NOD-scid IL-2Rgammanu | SEB/Staph exposure | Critical role of MAIT during Staph(+) infection | |
Knop | NOD.Cg-Prkdcscid Il2rg1Wjl/SzJ (NSG) CD34 graft | Intraperitoneal Gram-positive sepsis | S. aureus infection induced T cell activation, apoptosis, and Fas receptor expression i | |
Laudanski | NOD-scid γ−/−mice BLT model | CLP model with 28 days follow up | Weight loss and mortality similar to human sepsis. Robust IL-6, M-CSF, and TNF production. Depletion of dendritic cell | |
Lapko | NOD-scid γ−/−mice BLT model | CLP model with 28 days follow up | Robust M-CSF production and | |
Skierecki | NOD.Cg-Prkdc/scidIL2rgamma (NSG) mice with the human cord blood CD34(+) | LPS and CLP model | Early changes in bone marrow progenitors in CLP sepsis regulated by Notch | |
Skierecki (2019) | NOD.Cg-Prkdc/scidIL2rgamma (NSG) mice with the human cord blood CD34(+) | CLP | Sepsis induced a generalized up-regulation of both human and murine plasma cytokines (TNFalpha, IL-6, IL-10, IL-8/KC, MCP-1); it was additionally aggravated in P-DIE vs P-SUR. Human cytokines were strongly overridden by the murine ones (approx. ratio 1:9) but human TNFα was 7-fold higher than mouse TNFα | The effect of host environment on human leukocytes was attributed to increased mortality |
Ernst | Humanized mice | E. coli infection | Leukocyte trafficking to the site of infection | Positive effect of indomethacin and steroid on cytokine profile |
Szabo | Humanized mice | Systemic exposure to SEB/ toxic shock syndrome | Rapid accumulation of granulocytic myeloid derived suppressor cells | |
Zhao | Humanized mice | CLP model of sepsis | antoPD-L1 treatment improved survival | |
Mota | NOD-scid IL2rgamma(null) mice received an adoptive transfer of hCD34(+) cord blood stem cells. | Dengue inoculation | Emergence of the rash, fever, and thrombocytopenia | |
Kuruvilla | RAG2(−/−)gamma(c)(−/−) mice were xenografted with human CD34+ stem cells | Dengue inoculation | Emergence of anti-Dengue IgG neutralizing antibodies for 6 weeks | |
Costa | NOD-scid-IL-2Rγnull (NSG) mice grafted with CD34+ stem cells | Dengue inoculation | Critical role of NK cells and IFNg in controlling the infection | |
Rodriguez | NOD.Cg-PrkdcscidIl2rgtm1WjlTg(HLA-A2.1)1Enge/SzJ (NSG-A2) grafted with CD34 | Intravenous adenovirus injections | Development of acute and persistent adenovirus infection | |
Melkus | NOD/scid BLT model | Administration of TSST-1 | Expansion of human Vbeta2+ T cells, release of human proinflammatory cytokines and localized, specific activation and maturation of human CD11c+ dendritic cells | |
Jarman | hu-PBL-scid mice | Immunization with IgE | Critical role of antigen-presenting cells; role of spleen in generating immune system response | |
Vaughan | neonatal NOD/scid/IL2R null transferred with PB | Emergence of immature MO with reduction in immunostimulatory T cell capacity | ||
Lim | NOD-scid mice reconstituted with PDC-depleted peripheral blood mononuclear cells | Implantation of EBV-positive graft | Production of IFNg by EBV-positive cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudanski, K. Humanized Mice as a Tool to Study Sepsis—More Than Meets the Eye. Int. J. Mol. Sci. 2021, 22, 2403. https://doi.org/10.3390/ijms22052403
Laudanski K. Humanized Mice as a Tool to Study Sepsis—More Than Meets the Eye. International Journal of Molecular Sciences. 2021; 22(5):2403. https://doi.org/10.3390/ijms22052403
Chicago/Turabian StyleLaudanski, Krzysztof. 2021. "Humanized Mice as a Tool to Study Sepsis—More Than Meets the Eye" International Journal of Molecular Sciences 22, no. 5: 2403. https://doi.org/10.3390/ijms22052403
APA StyleLaudanski, K. (2021). Humanized Mice as a Tool to Study Sepsis—More Than Meets the Eye. International Journal of Molecular Sciences, 22(5), 2403. https://doi.org/10.3390/ijms22052403