The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
3. Results
3.1. Animal Studies
3.2. Clinical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IA | Intra-articular |
OA | Osteoarthritis |
CL2MDP | dichloromethylene diphosphonate |
IL1 | interleukin 1 |
PMNs | polymorphonuclear cells |
CIA | collagen type II arthritis |
MRP | migration inhibitory factor-related proteins |
TNFα | tumor necrotic factor alfa |
BMP-2/-4 | bone morphogenetic protein |
COMP | cartilage oligomeric matrix protein |
AIA | antigen-induced arthritis |
MMP-2/-3/-9 | matrix metalloproteinase |
VAS | visual analogic scale |
HA | hyaluronic acid |
ESR | erythrocyte sedimentation rate |
CRP | C-reactive protein |
WOMAC | Western Ontario and McMaster University |
K-L | Kellgren–Lawrence |
ACR | American College of Rheumatology |
COL10 | collagen type 10 |
References
- March, L.; Cross, M.; Lo, C. Osteoarthritis: A Serious Disease: Submitted to the U.S. Food and Drug Administration. Available online: https://www.oarsi.org/sites/default/files/docs/2016/oarsi_white_paper_oa_serious_disease_121416_1.pdf (accessed on 2 January 2021).
- Iolascon, G.; Gimigliano, F.; Moretti, A.; De Sire, A.; Migliore, A.; Brandi, M.L.; Piscitelli, P. Early osteoarthritis: How to define, diagnose, and manage. A systematic review. Eur. Geriatr. Med. 2017, 8, 383–396. [Google Scholar] [CrossRef]
- Huffman, K.F.; Thornhill, T.H. Osteoarthritis and Its Management: What the Physician Assistant Needs to Know. Physician Assist. Clin. 2021, 6, 23–40. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. (Hoboken) 2020, 72, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Bannuru, R.R.; Osani, M.C.; Vaysbrot, E.E.; Arden, N.K.; Bennell, K.; Bierma-Zeinstra, S.M.A.; Kraus, V.B.; Lohmander, L.S.; Abbott, J.H.; Bhandari, M.; et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1578–1589. [Google Scholar] [CrossRef] [Green Version]
- Kompel, A.J.; Roemer, F.W.; Murakami, A.M.; Diaz, L.E.; Crema, M.D.; Guermazi, A. Intra-articular Corticosteroid Injections in the Hip and Knee: Perhaps Not as Safe as We Thought? Radiology 2019, 293, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Migliore, A.; Paoletta, M.; Moretti, A.; Liguori, S.; Iolascon, G. The perspectives of intra-articular therapy in the management of osteoarthritis. Expert Opin. Drug Deliv. 2020, 17, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Saviola, G.; Abdi-Ali, L.; Comini, L.; Dalle-Carbonare, L.G. Use of clodronate in the management of osteoarthritis: An update. J. Biol. Regul. Homeost. Agents 2019, 33, 1315–1320. [Google Scholar] [PubMed]
- Rossini, M.; Adami, S.; Fracassi, E.; Viapiana, O.; Orsolini, G.; Povino, M.R.; Idolazzi, L.; Gatti, D. Effects of intra-articular clodronate in the treatment of knee osteoarthritis: Results of a double-blind, randomized placebo-controlled trial. Rheumatol. Int. 2015, 35, 255–263. [Google Scholar] [CrossRef]
- Mönkkönen, J.; Liukkonen, J.; Taskinen, M.; Heath, T.D.; Urtti, A. Studies on liposome formulations for intra-articular delivery of clodronate. J. Control. Release 1995, 35, 145–154. [Google Scholar] [CrossRef]
- Tricco, A.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lent, P.L.E.M.; Bersselaar, L.V.D.; Hoek, A.E.M.V.D.; Van De Ende, M.; Dijkstra, C.D.; Van Rooijen, N.; Van De Putte, L.B.A.; Berg, W.B.V.D. Reversible depletion of synovial lining cells after intra-articular treatment with liposome-encapsulated dichloromethylene diphosphonate. Rheumatol. Int. 1993, 13, 21–30. [Google Scholar] [CrossRef]
- Van Lent, P.L.; Hoek, A.E.V.D.; Bersselaar, L.A.V.D.; Spanjaards, M.F.; Van Rooijen, N.; Dijkstra, C.D.; Van De Putte, L.B.; Berg, W.B.V.D. In vivo role of phagocytic synovial lining cells in onset of experimental arthritis. Am. J. Pathol. 1993, 143, 1226–1237. [Google Scholar]
- Lent, P.L.E.M.V.; Holthuysen, A.E.M.; Van Rooijen, N.A.; Van De Putte, L.B.; Berg, W.B.V.D. Local removal of phagocytic synovial lining cells by clodronate-liposomes decreases cartilage destruction during collagen type II arthritis. Ann. Rheum. Dis. 1998, 57, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Highton, J.; Guévremont, D.; Thomson, J.; Carlisle, B.; Tucker, I. A trial of clodronate-liposomes as anti-macrophage treatment in a sheep model of arthritis. Clin. Exp. Rheumatol. 1999, 17, 43–48. [Google Scholar]
- Ceponis, A.; Waris, E.; Mönkkönen, J.; Laasonen, L.; Hyttinen, M.A.; Solovieva, S.; Hanemaaijer, R.; Bitsch, A.; Konttinen, Y.T. Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits. Arthritis Rheum. 2001, 44, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Bakker, A.; Van De Loo, F.; Van Beuningen, H.; Sime, P.; Van Lent, P.; Van Der Kraan, P.; Richards, C.; Berg, W.V.D. Overexpression of active TGF-beta-1 in the murine knee joint: Evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthr. Cartil. 2001, 9, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Blom, A.B.; van Lent, P.L.; Holthuysen, A.E.; van der Kraan, P.M.; Roth, J.; van Rooijen, N.; Berg, W.B.V.D. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr. Cartil. 2004, 12, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Barrena, E.; Lindroos, L.; Ceponis, A.; López-Franco, M.; Sanchez-Pernaute, O.; Mönkkönen, J.; Salo, J.; Herrero-Beaumont, G.; Konttinen, Y. Cartilage oligomeric matrix protein (COMP) is modified by intra-articular liposomal clodronate in an experimental model of arthritis. Clin. Exp. Rheumatol. 2007, 24, 622–628. [Google Scholar]
- Blom, A.B.; Van Lent, P.L.; Libregts, S.; Holthuysen, A.E.; Van Der Kraan, P.M.; Van Rooijen, N.; Berg, W.B.V.D. Crucial role of macrophages in matrix metalloproteinase–mediated cartilage destruction during experimental osteoarthritis: Involvement of matrix metalloproteinase 3. Arthritis Rheum. 2006, 56, 147–157. [Google Scholar] [CrossRef]
- Sun, A.R.; Wu, X.; Liu, B.; Chen, Y.; Armitage, C.W.; Kollipara, A.; Crawford, R.; Beagley, K.W.; Mao, X.; Xiao, Y.; et al. Pro-resolving lipid mediator ameliorates obesity induced osteoarthritis by regulating synovial macrophage polarisation. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Rossini, M.; Viapiana, O.; Ramonda, R.; Bianchi, G.; Olivieri, I.; Lapadula, G.; Adami, S. Intra-articular clodronate for the treatment of knee osteoarthritis: Dose ranging study vs hyaluronic acid. Rheumatology 2009, 48, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, B.; Rottigni, V.; Iannitti, T. Preliminary study of highly cross-linked hyaluronic acid-based combination therapy for management of knee osteoarthritis-related pain. Drug Des. Develop. Ther. 2013, 7, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Frith, J.C.; Mönkkönen, J. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: Evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum. 2001, 44, 2201–2210. [Google Scholar] [CrossRef]
- Frediani, B.; Giusti, A.; Bianchi, G.; Carbonare, L.D.; Malavolta, N.; Cantarini, L.; Saviola, G.; Molfetta, L. Clodronate in the management of different musculoskeletal conditions. Minerva Med. 2018, 109, 300–325. [Google Scholar] [PubMed]
- Henderson, B.; Pettipher, E. The synovial lining cell: Biology and pathobiology. Semin. Arthritis Rheum. 1985, 15, 1–32. [Google Scholar] [CrossRef]
- Makkonen, N.; Salminen, A.; Rogers, M.J.; Frith, J.C.; Urtti, A.; Azhayeva, E.; Mönkkönen, J. Contrasting effects of alendronate and clodronate on RAW 264 macrophages: The role of a bisphosphonate metabolite. Eur. J. Pharm. Sci. 1999, 8, 109–118. [Google Scholar] [CrossRef]
- Nakase, T.; Miyaji, T.; Tomita, T.; Kaneko, M.; Kuriyama, K.; Myoui, A.; Sugamoto, K.; Ochi, T.; Yoshikawa, H. Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthr. Cartil. 2003, 11, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Zoricic, S.; Marić, I.; Bobinac, D.; Vukicevic, S. Expression of bone morphogenetic proteins and cartilage-derived morphogenetic proteins during osteophyte formation in humans. J. Anat. 2003, 202, 269–277. [Google Scholar] [CrossRef]
- Mehraban, F.; Lark, M.W.; Ahmed, F.N.; Xu, F.; Moskowitz, R.W. Increased secretion and activity of matrix metalloproteinase-3 in synovial tissues and chondrocytes from experimental osteoarthritis. Osteoarthr. Cartil. 1998, 6, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzschentke, T.M. Pharmacology of bisphosphonates in pain. Br. J. Pharmacol. 2019. [Google Scholar] [CrossRef]
- Kato, Y.; Hiasa, M.; Ichikawa, R.; Hasuzawa, N.; Kadowaki, A.; Iwatsuki, K.; Shima, K.; Endo, Y.; Kitahara, Y.; Inoue, T.; et al. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc. Natl. Acad. Sci. USA 2017, 114, E6297–E6305. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, Y.; Nomura, M. Clodronate: A Vesicular ATP Release Blocker. Trends Pharmacol. Sci. 2018, 39, 13–23. [Google Scholar] [CrossRef]
- Wood, J.; Bonjean, K.; Ruetz, S.; Bellahcène, A.; Devy, L.; Foidart, J.M.; Castronovo, V.; Green, J.R. Novel Antiangiogenic Effects of the Bisphosphonate Compound Zoledronic Acid. J. Pharmacol. Exp. Ther. 2002, 302, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.A.; McWilliams, D.F.; Turley, M.J.; Dixon, M.R.; Fransès, R.E.; Mapp, P.I.; Wilson, D. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology 2010, 49, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, R.L.; Miller, P.R.A.; Nelson, D.; Granda, J.L.; Fernández-Madrid, F. Periarticular osteoporosis in osteoarthritis of the knee. J. Rheumatol. 1998, 25, 2187–2194. [Google Scholar] [PubMed]
- Bergman, A.G.; Lindstrand, A.; Pettersson, H. Osteoarthritis of the knee: Correlation of subchondral MR signal abnormalities with histopathologic and radiographic features. Skelet. Radiol. 1994, 23, 445–448. [Google Scholar] [CrossRef]
- Nagae, M.; Hiraga, T.; Wakabayashi, H.; Wang, L.; Iwata, K.; Yoneda, T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone 2006, 39, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hiasa, M.; Nagata, Y.; Okui, T.; White, F.A. Acidic microenvironment and bone pain in cancer-colonized bone. BoneKEy Rep. 2015, 4, 690. [Google Scholar] [CrossRef] [Green Version]
- Shabestari, M.; Vik, J.; Reseland, J.; Eriksen, E. Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr. Cartil. 2016, 24, 1745–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paoletta, M.; Moretti, A.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Transient osteoporosis of the hip and subclinical hypothyroidism: An unusual dangerous duet? Case report and pathogenetic hypothesis. BMC Musculoskelet. Disord. 2020, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Kortekaas, M.C. Do knee abnormalities visualised on RI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 2011, 70, 60–67. [Google Scholar] [CrossRef]
- Kon, E.; Ronga, M.; Filardo, G.; Farr, J.; Madry, H.; Milano, G.; Andriolo, L.; Shabshin, N. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1797–1814. [Google Scholar] [CrossRef]
- Laslett, L.L.A.; Doré, D.; Quinn, S.J.; Boon, P.; Ryan, E.; Winzenberg, T.M.; Jones, G. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: A randomised controlled trial. Ann. Rheum. Dis. 2012, 71, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Varenna, M.; Zucchi, F.; Failoni, S.; Becciolini, A.; Berruto, M. Intravenous neridronate in the treatment of acute painful knee osteoarthritis: A randomized controlled study. Rheumatology 2015, 54, 1826–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(“Clodronic Acid”[Mesh]) AND “Osteoarthritis”[Mesh] |
(“Clodronic Acid”[Mesh]) AND “Injections, Intra-Articular”[Mesh] |
((“Clodronic Acid”[Mesh]) AND “Osteoarthritis”[Mesh]) AND “Injections, Intra-Articular”[Mesh] |
Osteoarthritis AND Clodronic acid |
Intra-articular injection AND Clodronic acid |
Eligibility Criteria |
---|
Inclusion criteria:
|
Exclusion criteria:
|
Authors | Study Design | Site | Administration Route | Sample Size | Main Findings |
---|---|---|---|---|---|
Van Lent et al., 1993 [13] | Experimental animal study: immune complex induced inflammatory arthritis in mice | Knee | Single knee IA injection of liposomes encapsulating clodronate (6 µL containing 75 µg CL2MDP) vs. single knee IA injection with empty liposomes in control group. | 2 groups of six mice | - Depletion (max at 7 days) and repopulation (60% at 30 days) of synovial lining cells (macrophages) but no effects on fibroblasts. - Reduction (max at 2 days) of proteoglycans synthesis and degradation. - Induced arthritis was prevented with CL2MDP-liposome |
Van Lent et al., 1993 [14] | Experimental animal study: immune complex mediated inflammatory arthritis in mice | Knee | Single knee IA injection of liposomes encapsulating clodronate (6 µL containing 75 µg CL2MDP) vs. single knee IA injection with empty liposomes in control group. | 2 groups of six mice | Depletion of phagocytic lining cells by clodronate in acute experimental arthritis resulted in lower inflammation and chemokine production (IL-1), cartilage damage, and joint swelling. |
Van Lent et al., 1998 [15] | Experimental animal study: collagen-induced arthritis in mice | Knee | Single right knee IA injection of liposomes encapsulating clodronate (6 μL containing 30 μg CL2MDP) vs. single left knee IA injection with empty liposomes. The injections were done seven days before induced arthritis onset. | Groups of 10 mice | Clodronate reduces phagocytic lining cells number, decreasing cartilage destruction |
Highton et al., 1999 [16] | Experimental animal study: antigen-induced arthritis model in sheep | Hock joint | Single right hock joint IA injection of liposomes encapsulating clodronate (0.5 mL containing 100 mg of clodronate), vs. single right hock joint IA injection of 0.5 mL of saline liposomes in control group vs. untreated group. | 26 sheep (3 groups 10 + 10 + 6) | No significant differences among groups between intervention and control groups were found in histological and pathological analysis (lining layer thickness, degree of infiltration with mononuclear cells, fibrin deposition, neutrophils present or not). |
Ceponiset al., 2001 [17] | Experimental animal study: antigen-induced arthritis in rabbits | Knee | Seven knee IA injections, once weekly, containing liposomes encapsulating clodronate (0.5 mL containing 0.145 mg of clodronate) vs. seven knee IA injections, once weekly, with empty liposomes in the control group | 17 rabbits (clodronate group n = 10, control group n = 7) | Liposomal clodronate treated rabbits showed: - a reduction and delay in joint swelling; - a reduction in expression of matrix-bound TNFα, lining cell hyperplasia, and levels of RAM-11+ macrophages in the synovium; - prevention in cartilage proteoglycan loss. - lower radiological score at the end of weeks 2 and 4, but no longer present at 8 weeks. |
Bakker et al., 2001 [18] | Experimental animal study: TGF-β induced arthritis in mice | Knee | Single knee IA injection of 6 µL liposome suspension containing 30 µg of clodronate. | Mice, n= N/A | Depletion of the lining cells, due to clodronate, resulted in a significant decrease in TGF-β- induced pathology. This finding was associated with a markedly reduced chondro-osteophyte formation and accumulation of extracellular matrix in synovium. |
Blom et al., 2004 [19] | Experimental animal study: collagenase induced arthritis in mice | Knee | Single knee IA injection of 6 µL of clodronate liposome suspension (dosage not specified). | 28 mice (22 treated, 6 untreated) | Intervention depletes synovial macrophages reducing osteophyte formation, fibrosis, and synovial activation, suggested by MRP8/14 expression. Moreover, intervention largely prevents the production of growth factors (TGFβ, BMP-2, and BMP-4) in superior layer lining cells of synovium. |
Gomez-Barrena et al., 2006 [20] | Experimental animal study: antigen-induced arthritis in rabbits | Knee | Seven knee IA injections, once weekly, containing liposomes encapsulating clodronate (0.5 mL containing 0.145 mg of clodronate) vs. seven knee IA injections, once weekly, with empty liposomes in the control group | 17 rabbits (10 treated, 7 control) | Clodronate enhances COMP levels into articular cartilage and reduces it in synovial tissue. |
Blom et al., 2007 [21] | Experimental animal study: collagenase induced arthritis in mice | Knee | Single knee IA injection of liposomal encapsulated clodronate. (Dose not specified). | Mice (number not specified) | Intervention depletes macrophage resulting in complete inhibition of MMP-2, MMP-3, and MMP-9. This result was observed in synovium but not in cartilage tissue. |
Sun et al., 2019 [22] | Experimental animal study: obesity model of OA | Knee | Three knee IA injections, one at week 1, one at week 2, and the last one at week 8, containing liposomes encapsulating clodronate (0.05 mg clodronate) | 26 mice | Clodronate treated mouse showed: - a significant decreases in membrane thickness and influx of synoviocytes; - an increased content of proteoglycans; - a significant reduction in OA severity according to Mankin score; - a reduction in expression of COL10, DIPEN, and NITEGE. |
Rossini et al., 2009 [23] | Multicentre randomized partially double-blind phase 2 study | Knee | First group: four knee IA injections, once weekly, containing 0.5 mg of clodronate; second group: four knee IA injections, once weekly, containing 1 mg of clodronate; third group: four knee IA injections, once weekly, containing 2 mg of clodronate; fourth group: four knee IA injections, twice weekly, containing 1 mg of clodronate; fifth group: four knee IA injections, once weekly, containing 20 mg of HA. | 150 patients in 5 groups. Men and non-pregnant women aged 50–75 years with knee OA, radiographically confirmed with K-L grades of 2 or 3, symptomatic for at least 3 months. | Intervention groups show a significant (p < 0.001) reduction in the four VAS scores and Lequesne index. No significant difference among 5 groups was detected except for a dose–response relationship for active movement VAS pain outcome. Knee extension and mobility scores improved significantly at all time points in all treatment groups without statistical differences among groups. |
Palmieri et al., 2013 [24] | Randomized double-blind study | Knee | Group one: single knee IA injection of HA alone (66 mg/2 mL) into each knee; second group: single knee IA injection of HA (49.5 mg/1.5 mL) plus diclofenac sodium (5 mg) into each knee; third group: single knee IA injection of HA (49.5 mg/1.5 mL) plus sodium clodronate (5 mg/0.5 mL) into each knee. Moreover, 0.5 mL of 1% lidocaine was added to every injection. | 62 patients in three groups (20/21/21). Patients with symptomatic bilateral medial tibiofemoral knee OA (K-L grade II and III) and pain in both knees (VAS > 30) in the month before | In the three groups of patients, there was a significant reduction in mean VAS pain score, ESR, and CRP levels. The combination with sodium clodronate was the most beneficial in terms of improvement in VAS pain score (10.1% improvement vs. group 1; 8.8% improvement vs. group 2). |
Rossini et al., 2015 [10] | Double-blind phase 3 randomized clinical trial. | Knee | Four knee IA injections, once weekly, containing 2 mg of clodronate vs. four knee IA injections, once weekly, containing placebo. | 80 patients in 2 groups (40/40). Patients between 50 and 75 years, affected by KOA defined according to ACR criteria, radiographically confirmed with a K-L scale ≥ 2, symptomatic for at least 3 months (VAS > 40). | Intervention shows a significant reduction in VAS pain after 5 weeks from last injection (−114.6 vs. −87.2; p < 0.05). Better results were found for Lequesne index, global KOA evaluation, and the WOMAC pain subscale. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, A.; Paoletta, M.; Liguori, S.; Ilardi, W.; Snichelotto, F.; Toro, G.; Gimigliano, F.; Iolascon, G. The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 2693. https://doi.org/10.3390/ijms22052693
Moretti A, Paoletta M, Liguori S, Ilardi W, Snichelotto F, Toro G, Gimigliano F, Iolascon G. The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis. International Journal of Molecular Sciences. 2021; 22(5):2693. https://doi.org/10.3390/ijms22052693
Chicago/Turabian StyleMoretti, Antimo, Marco Paoletta, Sara Liguori, Walter Ilardi, Francesco Snichelotto, Giuseppe Toro, Francesca Gimigliano, and Giovanni Iolascon. 2021. "The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis" International Journal of Molecular Sciences 22, no. 5: 2693. https://doi.org/10.3390/ijms22052693
APA StyleMoretti, A., Paoletta, M., Liguori, S., Ilardi, W., Snichelotto, F., Toro, G., Gimigliano, F., & Iolascon, G. (2021). The Rationale for the Intra-Articular Administration of Clodronate in Osteoarthritis. International Journal of Molecular Sciences, 22(5), 2693. https://doi.org/10.3390/ijms22052693