Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review
Abstract
:1. Introduction
2. Membrane-Asymmetry Targeting Agents
2.1. Phosphatidylethanolamine Targeting PET-Tracers
2.2. Phosphatidylserine Targeting PET-Tracers
2.2.1. Radiolabelled Annexins
2.2.2. Radiolabelled Synaptotagmin I Derivatives
2.2.3. Radiolabelled Phosphatidyl-Serine Binding Peptides, Antibody-Fragments, and Antibodies
2.2.4. Radiolabelled Phosphatidyl-Binding Zn(II) Complexes
3. Cell Membrane Acidification Targeting Radioligands
4. Radiolabelled Caspase Inhibitors and Substrates
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerr, J.; Wylie, A.; Currie, A. Apoptosis: The basic biological phenomenon with wide-range implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Ming, H.; Wong, S.; Yong, W.Y.; Fang, C.; Loh, H.; Chuah, L.; Abdullah, S.; Ngai, S. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit. Rev. Oncol. Hematol. 2019, 143, 81–94. [Google Scholar]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Debatin, K.-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798–4811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philchenkov, A. Radiation-Induced Cell Death: Signaling and Pharmacological Modulation. Crit. Rev. Oncog. 2018, 23, 13–37. [Google Scholar] [CrossRef]
- Subbiah, V.; Chuang, H.H.; Gambhire, D.; Kairemo, K. Defining Clinical Response Criteria and Early Response Criteria for Precision Oncology: Current State-of-the-Art and Future Perspectives. Diagnostics 2017, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallamini, A.; Zwarthoed, C. Interim FDG-PET Imaging in Lymphoma. Semin. Nucl. Med. 2018, 48, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Hayakawa, T.; Murate, M.; Makino, A.; Ito, K.; Fujisawa, T.; Kobayashi, T. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. BioPhys. J. 2007, 93, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Marki, F.; Hanni, E.; Fredenhagen, A.; Osstrum, J. Mode of action of the lanthione-containing peptide antibiotics duramycin, durmaycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem. Pharmacol. 1991, 42, 2027–2035. [Google Scholar] [CrossRef]
- Yao, S.; Hu, K.; Tang, G.; Liang, X.; Du, K.; Nie, D.; Jiang, S.; Zang, L. Positron emission tomography imaging of cell death with 18F-FP-Duramycyin. Apoptosis 2014, 19, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gray, B.D.; Pak, K.Y.; Ng, C.K. Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl. Med. Biol. 2019, 78-79, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Rix, A.; Drude, N.I.; Mrugalla, A.; Baskaya, F.; Pak, K.Y.; Gray, B.; Kaiser, H.-J.; Tolba, R.H.; Fiegle, E.; Lederle, W.; et al. Assessment of Chemotherapy-Induced Organ Damage with Ga-68 Labeled Duramycin. Mol. Imaging Biol. 2019, 22, 623–633. [Google Scholar] [CrossRef]
- Glaser, M.; Collingridge, D.R.; O’Aboagye, E.; Bouchier-Hayes, L.; Hutchinson, O.C.; Martin, S.J.; Price, P.; Brady, F.; Luthra, S.K. Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl. Radiat. Isot. 2003, 58, 55–62. [Google Scholar] [CrossRef]
- Collingridge, D.R.; Glaser, M.; Osman, S.; Barthel, H.; Hutchinson, O.C.; Luthra, S.K.; Brady, F.; Bouchier-Hayes, L.; Martin, S.J.; Workman, P.; et al. In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. Br. J. Cancer 2003, 89, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, B.; Keen, H.; Shaw, D.; Disley, L.; Hastings, D.; Hadfield, J.; Reader, A.; Allan, D.; Julyan, P.; Watson, A.; et al. Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl. Med. Biol. 2005, 32, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Keen, H.G.; Dekker, B.A.; Disley, L.; Hastings, D.; Lyons, S.; Reader, A.J.; Ottewell, P.; Watson, A.; Zweit, J. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl. Med. Biol. 2005, 32, 395–402. [Google Scholar] [CrossRef]
- Dekker, B.; Keen, H.; Lyons, S.; Disley, L.; Hastings, D.; Reader, A.; Ottewell, P.; Watson, A.; Zweit, J. MBP–annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl. Med. Biol. 2005, 32, 241–252. [Google Scholar] [CrossRef]
- Wuest, M.; Perreault, A.; Richter, S.; Knight, J.C.; Wuest, F. Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis 2019, 24, 221–244. [Google Scholar] [CrossRef]
- Grierson, J.R.; Yagle, K.J.; Eary, J.F.; Tait, J.F.; Gibson, D.F.; Lewellen, B.; Link, J.M.; Krohn, K.A. Production of [F-18]Fluoroannexin for Imaging Apoptosis with PET. Bioconjugate Chem. 2004, 15, 373–379. [Google Scholar] [CrossRef]
- Zijlstra, S.; Gunawan, J.; Burchert, W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Radiat. Isot. 2003, 58, 201–207. [Google Scholar] [CrossRef]
- Toretsky, J.; Levenson, A.; Weinberg, I.; Tait, J.; Uren, A.; Mease, R. Preparation of F-18 labeled annexin V: A potential PET radiopharmaceutical for imaging cell death. Nucl. Med. Biol. 2004, 31, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.-W.; Wang, F.; Zheng, Y.-J.; Zhang, Y.-J.; Zhang, Y.-P.; Zhao, Q.; Shen, C.K.-F.; Wang, Y.; Sun, S.-H. An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT: Preparation and preliminary evaluation. Apoptosis 2012, 18, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Cauchon, N.; Lanlois, R.; Rousseau, J.; Resier, G.; Cadorette, J.; Lecomte, R.; Hunting, D.; Pavan, R.; Zeisler, S.; van Lier, J. PET imaging of apoptosis with (64)Cu-labelled streptavidin following pretargeting of phosphatidylserine with biotynilated annexin-V. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 247–258. [Google Scholar] [CrossRef]
- Bauwens, M.; De Saint-Hubert, M.; Devos, E.; Deckers, N.; Reutelingsperger, C.; Mortelmans, L.; Himmelreich, U.; Mottaghy, F.M.; Verbruggen, A. Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl. Med. Biol. 2011, 38, 381–392. [Google Scholar] [CrossRef]
- Davletov, B.A.; Südhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 1993, 268, 26386–26390. [Google Scholar] [CrossRef]
- Hueting, R.; Tavaré, R.; Dilworth, J.R.; Mullen, G.E. Copper-64 radiolabelling of the C2A domain of synaptotagmin I using a functionalised bis(thiosemicarbazone): A pre- and post-labelling comparison. J. Inorg. Biochem. 2013, 128, 108–111. [Google Scholar] [CrossRef]
- Wang, F.; Fang, W.; Zhang, M.-R.; Zhao, M.; Liu, B.; Wang, Z.; Hua, Z.; Yang, M.; Kumata, K.; Hatori, A.; et al. Evaluation of Chemotherapy Response in VX2 Rabbit Lung Cancer with 18F-Labeled C2A Domain of Synaptotagmin I. J. Nucl. Med. 2011, 52, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Bulat, F.; Hesse, F.; Hu, D.-E.; Ros, S.; Willminton-Holmes, C.; Xie, B.; Attili, B.; Soloviev, D.; Aigbirhio, F.; Leeper, F.J.; et al. 18F-C2Am: A targeted imaging agent for detecting tumor cell death in vivo using positron emission tomography. EJNMMI Res. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Burtea, C.; Laurent, S.; Lancelot, E.; Ballet, S.; Murariu, O.; Rousseaux, O.; Port, M.; Elst, L.V.; Corot, C.; Muller, R.N. Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques. Mol. Pharm. 2009, 6, 1903–1919. [Google Scholar] [CrossRef] [PubMed]
- Kapty, J.; Kniess, T.; Wuest, F.; Mercer, J. Radiolabelling of phopshatidylserine-binding peptides with prosthetic groups N-(6-(4-(18F)fluorobenzylidene)-aminooxyhexyl)maleimide (18F)FBAM and N-succinimidyl-4-(18F)fluorobenzoate (18F)SFB. Appl. Radiat. Isot. 2011, 69, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Khoshbakt, S.; Beiki, D.; Gerafamir, P.; Kobarfard, F.; Sabvezari, O.; Amini, O.; Bolourchian, N.; Shamshirian, D.; Shahhosseini, S. Design, synthesis, radiolabeling, and biologic evaluation of three 18F-FDG-radiolabeled targeting peptides for the imaging of apoptosis. Cancer Biother. Radiopharm. 2019, 34, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Azzouna, R.; Guez, A.; Benali, K.; Al-Shoukr, F.; Gonzalez, W.; Karoyan, P.; Rouzet, F.; Le Guludec, D. Synthesis, gallium labelling and characterization of P04087, a functionalized phosphatidylserine-binding peptide. EJNNMI Radipharm. Chem. 2017, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, K.; Kaneda, M.; Yamaji, A.; Saido, T.; Kikkawa, U.; Ono, Y.; Inoue, K.; Umeda, M. A novel phosphatidylserine-binding peptide motif defined by an anti-idiotypic monoclonal antibody, localization of phosphatidylserine-specific binding sites on protein kinase C and phosphatidylserine decarboxylase. J. Biol. Chem. 1995, 270, 29075–29078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreault, A.; Richter, S.; Bergman, C.; Wuest, M.; Wuest, F. Targeting Phosphatidylserine with a64Cu-Labeled Peptide for Molecular Imaging of Apoptosis. Mol. Pharm. 2016, 13, 3564–3577. [Google Scholar] [CrossRef]
- Stafford, J.H.; Hao, G.; Best, A.M.; Sun, X.; Thorpe, P.E. Highly Specific PET Imaging of Prostate Tumors in Mice with an Iodine-124-Labeled Antibody Fragment That Targets Phosphatidylserine. PLoS ONE 2013, 8, e84864. [Google Scholar] [CrossRef]
- Chopra, A. (74As)-labeled monoclonal antibody against anionic phospholipods. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information: Bethesda, MD, USA, 2008. [Google Scholar]
- Kumar, A.; Hao, G.; Liu, L.; Ramezani, S.; Hsieh, J.-T.; Öz, O.K.; Sun, X. Click-Chemistry Strategy for Labeling Antibodies with Copper-64 via a Cross-Bridged Tetraazamacrocyclic Chelator Scaffold. Bioconjugate Chem. 2015, 26, 782–789. [Google Scholar] [CrossRef]
- Ngo, H.T.; Liu, X.; Jolliffe, K.A. Anion recognition and sensing with Zn(ii)–dipicolylamine complexes. Chem. Soc. Rev. 2012, 41, 4928–4965. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Li, S.; Hu, K.; Tang, G. Synthesis and evaluation of aradiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death. Apoptosis 2017, 22, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, X.; Tang, G.; Huang, T.; Liang, X.; Hu, K.; Deng, H.; Yi, C.; Shi, X.; Wu, K. Noninvasive positron emission tomographye imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine)complex. Apoptosis 2013, 18, 1017–1027. [Google Scholar] [CrossRef]
- Damianovich, M.; Ziv, I.; Heyman, S.N.; Rosen, S.; Shina, A.; Kidron, D.; Aloya, T.; Grimberg, H.; Levin, G.; Reshef, A.; et al. ApoSense: A novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur. J. Nucl. Med. Mol. Imaging 2005, 33, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Aloya, R.; Shirvan, A.; Grimberg, H.; Reshef, A.; Levin, G.; Kidron, D.; Cohen, A.; Ziv, I. Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 2006, 11, 2089–2101. [Google Scholar] [CrossRef] [Green Version]
- Jouberton, E.; Schmitt, S.; Chautard, E.; Maisonial-Besset, A.; Roy, M.; Radosevic-Robin, N.; Chezal, J.-M.; Miot-Noirault, E.; Bouvet, Y.; Cachin, F. [18F]ML-10 PET imaging fails to assess early response to neoadjuvant chemotherapy in a preclinical model of triple negative breast cancer. EJNMMI Res. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Yang, Z.; Wang, S.; Zheng, Y.; Wang, M.-W.; Gu, B.; Zhang, J.; Zhang, Y.; Zhang, Y. The preclinical study of predicting radiosensitivity in human nasopharyngeal carcinoma xenografts by 18F-ML-10 animal- PET/CT imaging. Oncotarget 2016, 7, 20743–20752. [Google Scholar] [CrossRef] [Green Version]
- Demirci, E.; Ahmed, R.; Ocak, M.; Bs, J.L.; Radelet, A.; Bs, N.D.; Mason, N.S.; Anderson, C.J.; Mountz, J.M. Preclinical Evaluation of18F-ML-10 to Determine Timing of Apoptotic Response to Chemotherapy in Solid Tumors. Mol. Imaging 2017, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höglund, J.; Shirvan, A.; Antoni, G.; Gustvasson, S.; Langström, B.; Ringheim, A.; Sörensen, J.; Ben-Ami, M.; Ziv, I. 18F-ML-10, a PET tracer for apoptosis: First human study. J. Nucl. Med. 2011, 52, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.M.; Ben-Ami, M.; Reshef, A.; Steinmetz, A.; Kundel, Y.; Inbar, E.; Djaldetti, R.; Davidson, T.; Fenig, E.; Ziv, I. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1400–1408. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, K.; Wang, W.; Zhang, X.; Ju, Z.; Qu, B.; Zhnag, Z.; Wang, J.; Ling, Z.; Yu, X.; et al. (18F)ML-10 imaging for assessment of apoptosis response of intra-cranial tumor early after radiosurgery by PET/CT. Contrast Media Mol. Imaging 2018, 10, 9365174. [Google Scholar]
- Oborski, M.; Laymon, C.; Lieberman, F.; Qian, Y.; Drappatz, J.; Mountz, J. (18)ML-10 PET: Initial expertience in glioblastoma multiforme therapy response assessment. Tomography 2016, 2, 317324. [Google Scholar] [CrossRef]
- Su h Chen, G.; Ganganharmath, U.; Gomez, L.; Liang, Q.; Mu, F.; Macharla, V.; Szarenings, A.; Walsh, J.; Xia, C.; Yu, C.; et al. Evaluation of ((18F))-CP18 as a PET imaging tracer for apoptosis. Mol. Imaging Biol. 2013, 15, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.-F.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Liang, Q.; Mu, F.; Mocharla, V.P.; Su, H.; Szardenings, A.K.; Walsh, J.C.; et al. In Vitro and In Vivo Evaluation of the Caspase-3 Substrate-Based Radiotracer [18F]-CP18 for PET Imaging of Apoptosis in Tumors. Mol. Imaging Biol. 2013, 15, 748–757. [Google Scholar] [CrossRef]
- Rapic, S.; Vangestel, C.; Elvas, F.; Verhaeghe, J.; Wyngaert, T.V.D.; Wyffels, L.; Pauwels, P.; Staelens, S.; Stroobants, S. Evaluation of [18F]CP18 as a Substrate-Based Apoptosis Imaging Agent for the Assessment of Early Treatment Response in Oncology. Mol. Imaging Biol. 2017, 19, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Doss, M.; Kolb, H.; Walsh, J.; Mocharia, V.; Fan, H.; Chaudhary, A.; Zhu, Z.; Alpaugh, R.; Lango, M.; Yu, J. Biodistributyion and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J. Nucl. Med. 2013, 54, 2087–2092. [Google Scholar] [CrossRef] [Green Version]
- Engel, B.; Gammon, S.; Chaudhari, R.; Lu, Z.; Pisaneschi, F.; Yang, H.; Ornelas, A.; Yan, V.; Kelderhouse, L.; Najjar, A.; et al. Caspase-3 substrates for noninvasive pharmacodynamic imaging of apoptosis by PET/CT. Bioconjug. Chem. 2018, 29, 3180–3195. [Google Scholar] [CrossRef]
- Hight, M.R.; Cheung, Y.-Y.; Nickels, M.L.; Dawson, E.S.; Zhao, P.; Saleh, S.; Buck, J.R.; Tang, D.; Washington, M.K.; Coffey, R.J.; et al. A Peptide-Based Positron Emission Tomography Probe for In Vivo Detection of Caspase Activity in Apoptotic Cells. Clin. Cancer Res. 2014, 20, 2126–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Rao, J. Posiron emission tomography imaging of tumour apoptosis with a caspase-sensitive nano-aggregation tracer (18F)C-SNAT. Methods Mol. Biol. 2018, 1790, 181–195. [Google Scholar] [PubMed]
- Qiu, L.; Wang, W.; Li, K.; Peng, Y.; Lv, G.; Liu, Q.; Gao, F.; Seimbille, Y.; Xie, M.; Lin, J. Rational design of caspase-responsive smart molecular probe for positron emission tomography imaging of drug-induced apoptosis. Theranostics 2019, 9, 6962–6975. [Google Scholar] [CrossRef]
- Nugyen, Q.; Smith, G.; Glaser, M.; Perumal, M.; Arstad, E.; Aboagye, E. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific (18F)-labeled isatin sulfonylamide. Proc. Natl. Acad. Sci. USA 2009, 106, 16375–16380. [Google Scholar]
- Glaser, M.; Goggi, J.; Smith, G.; Morrison, M.; Luthra, S.K.; Robins, E.; Aboagye, E.O. Improved radiosynthesis of the apoptosis marker 18F-ICMT11 including biological evaluation. Bioorganic Med. Chem. Lett. 2011, 21, 6945–6949. [Google Scholar] [CrossRef] [PubMed]
- Witney, T.; Fortt, R.; ABoagye, E. Preclinical assessment of carboplatin treatment efficacy in lung cancer by 18F-ICMT-11-positron emission tomography. PLoS ONE 2014, 9, e91694. [Google Scholar] [CrossRef]
- Nguyen, Q.-D.; Lavdas, I.; Gubbins, J.; Smith, G.; Fortt, R.; Carroll, L.S.; Graham, M.A.; Aboagye, E.O. Temporal and Spatial Evolution of Therapy-Induced Tumor Apoptosis Detected by Caspase-3–Selective Molecular Imaging. Clin. Cancer Res. 2013, 19, 3914–3924. [Google Scholar] [CrossRef] [Green Version]
- Challapalli, A.; Kenny, L.M.; Hallett, W.A.; Kozlowski, K.; Tomasi, G.; Gudi, M.; Al-Nahhas, A.; Coombes, R.C.; Aboagye, E.O. 18F-ICMT-11, a Caspase-3-Specific PET Tracer for Apoptosis: Biodistribution and Radiation Dosimetry. J. Nucl. Med. 2013, 54, 1551–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, A.; Wagner, S.; Law, M.; Hermann, S.; Schnöckel, U.; Keul, P.; SChober, O.; Schäfers, M.; Levkau, B.; Kopka, K. The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-518F)fluoroeythoxy)-beznyl)-5-(1-(2-methoxymethylpyrrolidinyl)sulfonyl)isatin ((18F)CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q. J. Nucl. Med. Mol. Imaging 2007, 51, 67–73. [Google Scholar]
- Zhou, D.; Chu, W.; Chen, D.L.; Wang, Q.; Reichert, D.E.; Rothfuss, J.; D’Avignon, A.; Welch, M.J.; Mach, R.H. [18F]- and [11C]-Labeled N-benzyl-isatin sulfonamide analogues as PET tracers for Apoptosis: Synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org. Biomol. Chem. 2009, 7, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.L.; Zhou, D.; Chu, W.; Herrbrich, P.E.; Jones, L.A.; Rothfuss, J.M.; Engle, J.T.; Geraci, M.; Welch, M.J.; Mach, R.H. Comparison of radiolabeled isatin analogs for imaging apoptosis with positron emission tomography. Nucl. Med. Biol. 2009, 36, 651–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Zhou, D.; Chu, W.; Herrbrich, P.; Engle, T.; Griffin, E.; Rothfuss, J.; Geraci, M.; Hocthkias, R.; Mach, R. Radiolabeled isatin binding to caspase-3 activation induced by anti-Fas antibody. Nucl. Med. Biol. 2012, 39, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Vangestel, C.; Van de Wiele, C.; Mees, G.; Mertens, K.; Staelens, S.; Reutelingsperger, C.; Pauwels, P.; van Damme, N.; Peeters, M. Single-photon emission computed tomographic imaging of the early time course of therapy-induced cell death using tecnetium 99m tricarbonyl His-annexin A5 in a colorectal cancer xenograft model. Mol. Imaging 2012, 11, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Ran, S.; Thorpe, P. Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imagig and therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1479–1484. [Google Scholar] [CrossRef]
- Vermeersch, H.; Loose, D.; Lahorte, V.; Mervillie, K.; Dierckx, R.; Steinmetz, N.; Vanderheyden, J.L.; Cuvelier, C.; Slegers, G.; Van de Wiele, C. 99mTc-HYNIC Annexin V imaging of primary head and neck carcinoma. Nucl. Med. Commun. 2003, 25, 259–263. [Google Scholar] [CrossRef]
- Belhocine, T.Z.; Blankenberg, F.G.; Kartachova, M.S.; Stitt, L.W.; Vanderheyden, J.-L.; Hoebers, F.J.P.; Van De Wiele, C. 99mTc-Annexin A5 quantification of apoptotic tumor response: A systematic review and meta-analysis of clinical imaging trials. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2083–2097. [Google Scholar] [CrossRef]
- Nagat, S.; Golstein, P. The fas death factor. Science 1995, 267, 1449–1456. [Google Scholar] [CrossRef]
- Lies, W.C.; Kiener, P.A.; Ledbetter, J.A.; Aruffo, A.; Klebanoff, S.J. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J. Exp. Med. 1996, 184, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Adachi, M.; Suematsu, S.; Kondo, T.; Ogasawara, J.; Tanaka, T.; Yoshida, N.; Nagata, S. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat. Genet. 1995, 11, 294–300. [Google Scholar] [CrossRef] [PubMed]
- De Maria, R.; Test, U.; Luchetti, L.; Zeuner, A.; Stassi, G.; Pelosi, R.; Riccioni, R.; Felli, N.; Samaggia, P.; Peschle, C. Apoptotic role of the FasR/Fas ligand system in the regulation of erythropoesis. Blood 1999, 93, 796–803. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van de Wiele, C.; Ustmert, S.; De Spiegeleer, B.; De Jonghe, P.-J.; Sathekge, M.; Alex, M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int. J. Mol. Sci. 2021, 22, 2753. https://doi.org/10.3390/ijms22052753
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe P-J, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. International Journal of Molecular Sciences. 2021; 22(5):2753. https://doi.org/10.3390/ijms22052753
Chicago/Turabian StyleVan de Wiele, Christophe, Sezgin Ustmert, Bart De Spiegeleer, Pieter-Jan De Jonghe, Mike Sathekge, and Maes Alex. 2021. "Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review" International Journal of Molecular Sciences 22, no. 5: 2753. https://doi.org/10.3390/ijms22052753
APA StyleVan de Wiele, C., Ustmert, S., De Spiegeleer, B., De Jonghe, P. -J., Sathekge, M., & Alex, M. (2021). Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. International Journal of Molecular Sciences, 22(5), 2753. https://doi.org/10.3390/ijms22052753