Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Methods
2.2.1. Alginate NPs
2.2.2. Nanoparticles-Encapsulated Microcapsules
2.3. Confocal Laser Scanning Microscopy (CLSM)
2.4. Size and Zeta Potential Analysis
2.5. Encapsulation Efficiency and Drug Loading Efficiency
2.6. In Vitro Release Study
2.7. Change of Molecular Weight
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Confocal Laser Scanning Microscopy (CLSM)
3.3. In Vitro Release Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poulter, N.R.; Prabhakaran, D.; Caulfield, M. Hypertension. Lancet 2015, 801, S0140–S6736. [Google Scholar] [CrossRef]
- Lackland, D.T.; Weber, M.A. Global burden of cardiovascular disease and stroke: Hypertension at the core. Can. J. Cardiol. 2015, 31, 569–571. [Google Scholar] [CrossRef]
- Tifft, C.P.; Chobanian, A.V. Are some antihypertensive therapies more efficacious than others in preventing complications and prolonging life? Hypertension 1991, 18, I146–I152. [Google Scholar] [CrossRef]
- Koenig, W. Efficacy and Tolerability of Metoprolol Tartrate in Patients with Mild-to-Moderate Essential Hypertension: A Randomised, Double-Blind, Multicentre Trial. Clin. Drug Investig. 2001, 21, 613–619. [Google Scholar] [CrossRef]
- Guerrero-García, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs Context 2018, 7, 212531. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Elliott, W.J. Systemic hypertension. Curr. Probl. Cardiol. 2007, 32, 201–259. [Google Scholar] [CrossRef]
- Keum, C.G.; Noh, Y.W.; Baek, J.S.; Cho, C.W. Practical preparation procedures for docetaxel-loaded nanoparticles. Int. J. Nanomed. 2011, 6, 2225. [Google Scholar]
- Emami, F.; Yazdi, S.J.M.; Na, D.H. Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J. Pharm. Investig. 2009, 49, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Cesari, A.; Loureiro, M.V.; Vale, M.; Yslas, E.I.; Dardanelli, M.; Marques, A.C. Polycaprolactone microcapsules containing citric acid and naringin for plant growth and sustainable agriculture: Physico-chemical properties and release behavior. Sci. Total Environ. 2020, 703, 135548. [Google Scholar] [CrossRef]
- Azouz, L.; Dahmoune, F.; Rezgui, F.; G’sell, C. Full factorial design optimization of anti-inflammatory drug release by PCL-PEG-PCL microspheres. Mater. Sci. Eng. C 2016, 58, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, S.M.; Patil, H.I.; San Martin Martinez, E.; Casanas Pimentel, R.; Ige, P.P. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int. J. Polym. Mater. Polym. Biomater. 2019, 69, 85–126. [Google Scholar] [CrossRef]
- Blasi, P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig. 2019, 49, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Rajinikanth, P.; Sankar, C.; Mishra, B. Sodium Alginate Microspheres of Metoprolol Tartrate for Intranasal Systemic Delivery: Development and Evaluation. Drug Deliv. 2019, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Jia, Y.-G.; Shi, C.; Luo, J.; Zhu, X.X. Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loadng. Biomacromoleculse 2014, 15, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhang, T.; An, J.; Wu, Z.; Zhao, Y.; Dai, X.; Zhang, X.; Li, C. Block versus Random Amphiphilic Glycopolymer Nanoparticles as Glucose-Responsive Vehicles. Biomacromolecules 2015, 16, 3345–3356. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, H.; He, H.; Ribbe, A.E.; Thayumanavan, S. Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. Macromolecules 2020, 53, 2713–2723. [Google Scholar] [CrossRef]
- Baek, J.S.; Yeo, E.W.; Lee, Y.H.; Tan, N.S.; Loo, S.C.J. Controlled-release nanoencapsulating microcapsules to combat inflammatory diseases. Drug Des. Dev. Ther. 2018, 11, 1107. [Google Scholar] [CrossRef] [Green Version]
- Zdrali, E.; Etienne, G.; Smolentsev, N.; Amstad, E.; Roke, S. The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80. J. Chem. Phys. 2019, 150, 204704. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Zhou, Z.; Wang, W.; Zhao, Q.; Hou, W. Effect of nonionic compound emulsifiers Tween80 and Span80 on the properties of microencapsulated phase change materials. J. Microencapsul. 2014, 31, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Baimark, Y.; Srisuwan, Y. Original Research Paper: Preparation of alginate microspheres by water-in-oil emulsion method for drug delivery: Effect of Ca2+ post-cross-linking. Adv. Powder Technol. 2014, 25, 1541–1546. [Google Scholar] [CrossRef]
- Lemoine, D.; Wauters, F.; Bouchend’homme, S.; Préat, V. Preparation and characterization of alginate microspheres containing a model antigen. Int. J. Pharm. 1998, 176, 9–19. [Google Scholar] [CrossRef]
- Azevedo, M.A.; Bourbon, A.I.; Vicente, A.A.; Cerqueira, M.A. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol. 2014, 711, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Li, J.; Jiang, W.; Ren, C.; Li, J.; Xin, J.; Li, K. Effective protection and controlled release of insulin by cationic beta-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm. 2010, 393, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Weng, Y.; Xu, L.; Chen, H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int. J. Biol. Macromol. 2013, 602, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Asadujjaman, J.P. Long acting injectable formulations: The state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J. Pharm. Investig. 2019, 49, 459–476. [Google Scholar] [CrossRef]
- Juhasz, A.; Ungor, D.; Berta, K.; Seres, L.; Csapo, E. Spreadsheet-based nonlinear analysis of in vitro release properties of a model drug from colloidal carriers. J. Mol. Liq. 2021, 328, 115405. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Review: Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control Release 2004, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Efentakis, M.; Buckton, G. The Effect of Erosion and Swelling on the Dissolution of Theophylline from Low and High Viscosity Sodium Alginate Matrices. Pharm. Dev. Technol. 2002, 7, 69–77. [Google Scholar] [CrossRef]
- Baek, J.S.; Choo, C.C.; Tan, N.S.; Loo, S.C.J. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids. Oncotarget 2017, 8, 80841. [Google Scholar] [CrossRef] [Green Version]
Feeding Amount of MET (mg) | PLGA MPs | Alginate NPs before Adding to PLGA MCs | Alginate NPs Coated with Chitosan before Adding to PLGA MCs | Alginate NPs Coated with Chitosan after Adding to PLGA MCs |
---|---|---|---|---|
1 | 35.1 ± 2.7% | 79.1 ± 2.7% | 75.2 ± 3.2% | - |
(DL: 0.35) | (DL: 0.79) | (DL: 0.75) | ||
2 | 33.6 ± 5.1% | 74.4 ± 5.1% | 73.1 ± 2.8% | - |
(DL: 0.67) | (DL: 1.48) | (DL: 1.46) | ||
4 | 28.2 ± 4.2% | 71.3 ± 4.2% | 70.3 ± 4.5% | 65.2 ± 3.7% |
(DL: 1.1) | (DL: 2.85) | (DL: 2.81) | (DL: 1.83) | |
6 | 25.7 ± 3.4% | 53.6 ± 3.4% | 50.1 ± 6.1% | - |
(DL: 1.54) | (DL: 3.21) | (DL: 3.01) | ||
8 | 15.4 ± 4.5% | 32.5 ± 4.5% | 30.2 ± 4.7% | - |
(DL: 1.23) | (DL: 2.60) | (DL: 2.41) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Park, S.; Lee, H.Y.; Lee, H.; Cho, C.-W.; Baek, J.-S. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. Int. J. Mol. Sci. 2021, 22, 2792. https://doi.org/10.3390/ijms22062792
Ryu S, Park S, Lee HY, Lee H, Cho C-W, Baek J-S. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. International Journal of Molecular Sciences. 2021; 22(6):2792. https://doi.org/10.3390/ijms22062792
Chicago/Turabian StyleRyu, Suji, Seungyeop Park, Ha Yeon Lee, Hyungjun Lee, Cheong-Weon Cho, and Jong-Suep Baek. 2021. "Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug" International Journal of Molecular Sciences 22, no. 6: 2792. https://doi.org/10.3390/ijms22062792
APA StyleRyu, S., Park, S., Lee, H. Y., Lee, H., Cho, C. -W., & Baek, J. -S. (2021). Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. International Journal of Molecular Sciences, 22(6), 2792. https://doi.org/10.3390/ijms22062792