The Role of Circulating Biomarkers in Peripheral Arterial Disease
Abstract
:1. Introduction
2. Inflammation and Coagulation Biomarkers in PAD
3. MMPs/TIMPs in PAD
4. Cardiac Damage Biomarkers in PAD
5. Extracellular Vesicles as Biomarkers in PAD
6. Role of microRNAs in PAD
7. Machine Learning and PAD
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABI | Ankle brachial index |
CAD | Coronary artery disease |
CLI | Chronic limb ischemia |
CRP | C reactive protein |
CV | Cardiovascular |
EML | Elastin degradation products |
EPC | Endothelial progenitor cell |
EVs | Extracellular vesicles |
EndEVs | Endothelial Extracellular vesicles |
FGFR | Fibroblast growth factor receptor |
hsTnT | High sensitivity troponin T |
IC | Intermittent claudication |
ICAM | Intercellular Adhesion Molecule |
IL | Interleukin |
MACE | Major adverse cardiovascular event |
MALE | Major adverse limb event |
MCP | Monocyte chemoattractant protein |
mi(cro)RNA | Micro ribonucleic acid |
ML | Machine learning |
MMP | Matrix metalloproteinase |
NGAL | Neutrophil Gelatinase-Associated Lipocalin |
NLR | Neutrophil-to-lymphocyte ratio |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
PAD | Peripheral arterial disease |
PEVs | Platelet extracellular vesicles |
ROC | Receiver operating characteristics |
TNF(R) | Tumor necrosis factor (receptor) |
TIMP | Tissue inhibitor of matrix matalloproteinases |
VCAM | Vascular cell adhesion molecule |
VEGF(R) | Vascular endothelial growth factor (receptor) |
VSMC | Vascular smooth muscle cell |
References
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: A report of the American college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [PubMed]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa Eur. J. Vasc. Med. 2019, 48, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Hajibandeh, S.; Hajibandeh, S.; Shah, S.; Child, E.; Antoniou, G.A.; Torella, F. Prognostic significance of ankle brachial pressure index: A systematic review and meta-analysis. Vascular 2017, 25, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Jirak, P.; Mirna, M.; Wernly, B.; Paar, V.; Thieme, M.; Betge, S.; Franz, M.; Hoppe, U.; Lauten, A.; Kammler, J.; et al. Analysis of novel cardiovascular biomarkers in patients with peripheral artery disease. Minerva Med. 2018, 109, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Ohman, E.M.; Hirsch, A.T.; Ikeda, Y.; Mas, J.-L.; Goto, S.; Liau, C.-S.; Richard, A.J.; Röther, J.; et al. International Prevalence, Recognition, and Treatment of Cardiovascular Risk Factors in Outpatients with Atherothrombosis. JAMA 2006, 295, 180–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norgren, L.; Hiatt, W.; Dormandy, J.; Nehler, M.; Harris, K.; Fowkes, F. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45, S5–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.-J.; Sharrett, A.; Chambless, L.E.; Rosamond, W.D.; Nieto, F.; Sheps, D.S.; Dobs, A.; Evans, G.W.; Heiss, G. Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. Atherosclerosis 1997, 131, 115–125. [Google Scholar] [CrossRef]
- Krishna, S.M.; Moxon, J.V.; Golledge, J. A Review of the Pathophysiology and Potential Biomarkers for Peripheral Artery Disease. Int. J. Mol. Sci. 2015, 16, 11294–11322. [Google Scholar] [CrossRef] [Green Version]
- Kremers, B.; Wübbeke, L.; Mees, B.; Ten Cate, H.; Spronk, H.; Ten Cate-Hoek, A. Plasma Biomarkers to Predict Cardiovascular Outcome in Patients with Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2018–2032. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Morris, D.; Smith, S.; Moxon, J.; Golledge, J. Systematic Review and Meta-Analysis of the Association Between C-Reactive Protein and Major Cardiovascular Events in Patients with Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.; Annex, B.H. Biomarkers and Genetics in Peripheral Artery Disease. Clin. Chem. 2017, 63, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busti, C.; Falcinelli, E.; Momi, S.; Gresele, P. Matrix metalloproteinases and peripheral arterial disease. Intern. Emerg. Med. 2009, 5, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Saenz-Pipaon, G.; San Martín, P.; Planell, N.; Maillo, A.; Ravassa, S.; Vilas-Zornoza, A.; Martinez-Aguilar, E.; Rodriguez, J.A.; Alameda, D.; Lara-Astiaso, D.; et al. Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD). J. Extracell. Vesicles 2020, 9, 1729646. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-S.; Jin, J.-P.; Wang, J.-Q.; Zhang, Z.-G.; Freedman, J.H.; Zheng, Y.; Cai, L. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef]
- Amrock, S.M.; Weitzman, M. Multiple biomarkers for mortality prediction in peripheral arterial disease. Vasc. Med. 2016, 21, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzoulaki, I.; Murray, G.D.; Lee, A.J.; Rumley, A.; Lowe, G.D.; Fowkes, F.G.R. Inflammatory, haemostatic, and rheological markers for incident peripheral arterial disease: Edinburgh Artery Study. Eur. Hear. J. 2007, 28, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.; Stampfer, M.; Rifai, N. Novel risk factors for systemic atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. ACC Curr. J. Rev. 2001, 10, 25–26. [Google Scholar] [CrossRef]
- Ding, N.; Yang, C.; Ballew, S.H.; Kalbaugh, C.A.; McEvoy, J.W.; Salameh, M.; Aguilar, D.; Hoogeveen, R.C.; Nambi, V.; Selvin, E.; et al. Fibrosis and Inflammatory Markers and Long-Term Risk of Peripheral Artery Disease. Arter. Thromb. Vasc. Biol. 2020, 40, 2322–2331. [Google Scholar] [CrossRef]
- Valkova, M.; Lazurova, I.; Petrasova, D.; Frankovicova, M.; Dravecka, I. Humoral predictors of ankle-brachial index in patients with peripheral arterial disease and controls. Bratisl. Med J. 2018, 119, 646–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pande, R.L.; Brown, J.; Buck, S.; Redline, W.; Doyle, J.; Plutzky, J.; Creager, M.A. Association of monocyte tumor necrosis factor α expression and serum inflammatory biomarkers with walking impairment in peripheral artery disease. J. Vasc. Surg. 2015, 61, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, J.A.; Preis, O.; Ridker, P.M.; Gerhard-Herman, M. Comparison of Usefulness of Inflammatory Markers in Patients with Versus Without Peripheral Arterial Disease in Predicting Adverse Cardiovascular Outcomes (Myocardial Infarction, Stroke, and Death). Am. J. Cardiol. 2005, 96, 1374–1378. [Google Scholar] [CrossRef]
- Engelberger, R.P.; Limacher, A.; Kucher, N.; Baumann, F.; Silbernagel, G.; Benghozi, R.; Do, D.-D.; Willenberg, T.A.; Baumgartner, I. Biological variation of established and novel biomarkers for atherosclerosis: Results from a prospective, parallel-group cohort study. Clin. Chim. Acta 2015, 447, 16–22. [Google Scholar] [CrossRef]
- Urbonaviciene, G.; Frystyk, J.; Flyvbjerg, A.; Urbonavicius, S.; Henneberg, E.W.; Lindholt, J.S. Markers of inflammation in relation to long-term cardiovascular mortality in patients with lower-extremity peripheral arterial disease. Int. J. Cardiol. 2012, 160, 89–94. [Google Scholar] [CrossRef]
- Murabito, J.M.; Keyes, M.J.; Guo, C.-Y.; Keaney, J.F.; Vasan, R.S.; D’Agostino, R.B.; Benjamin, E.J. Cross-sectional relations of multiple inflammatory biomarkers to peripheral arterial disease: The Framingham Offspring Study. Atherosclerosis 2009, 203, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzoulaki, I.; Murray, G.D.; Lee, A.J.; Rumley, A.; Lowe, G.D.; Fowkes, F.G.R. C-Reactive Protein, Interleukin-6, and Soluble Adhesion Molecules as Predictors of Progressive Peripheral Atherosclerosis in the General Population. Circulation 2005, 112, 976–983. [Google Scholar] [CrossRef]
- Akkoca, M. The Role of Microcirculatory Function and plasma biomarkers in determining the development of cardiovascular adverse events in patients with peripheral arterial disease: A 5 year follow up. Anatol. J. Cardiol. 2018, 20, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criqui, M.H.; Ho, L.A.; Denenberg, J.O.; Ridker, P.M.; Wassel, C.L.; McDermott, M.M. Biomarkers in peripheral arterial disease patients and near- and longer-term mortality. J. Vasc. Surg. 2010, 52, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidula, H.; Tian, L.; Liu, K.; Criqui, M.H.; Ferrucci, L.; Pearce, W.H.; Greenland, P.; Green, D.; Tan, J.; Garside, D.B.; et al. Biomarkers of inflammation and thrombosis as predictors of near-term mortality in patients with peripheral arterial disease: A cohort study. Ann. Intern. Med. 2008, 148, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Unlu, Y.; Karapolat, S.; Karaca, Y.; Kiziltunc, A.; Kızıltunç, A. Comparison of levels of inflammatory markers and hemostatic factors in the patients with and without peripheral arterial disease. Thromb. Res. 2006, 117, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, Z.; Wang, L.; Yuan, L.; Bao, J.; Zhou, J.; Jing, Z. Six-month results of stenting of the femoropopliteal artery and predictive value of interleukin-6: Comparison with high-sensitivity C-reactive protein. Vascular 2020, 28, 715–721. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Mazzarino, M.C.; Di Pino, L.; Malaponte, G.; Porto, C.; Pennisi, G.; Marchese, G.; Costa, M.P.; DiGrandi, D.; Celotta, G.; et al. High circulating levels of cytokines (IL-6 and TNFa), adhesion molecules (VCAM-1 and ICAM-1) and selectins in patients with peripheral arterial disease at rest and after a treadmill test. Vasc. Med. 2003, 8, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.S.; Anzaldi, M.; Libra, M.; Navolanic, P.M.; Malaponte, G.; Mangano, K.; Quattrocchi, C.; Di Marco, R.; Fiore, V.; Neri, S. Plasma Levels of Inflammatory Biomarkers in Peripheral Arterial Disease. Angiology 2016, 67, 870–874. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Liu, K.; Ferrucci, L.; Tian, L.; Guralnik, J.M.; Green, D.; Tan, J.; Liao, Y.; Pearce, W.H.; Schneider, J.R.; et al. Circulating Blood Markers and Functional Impairment in Peripheral Arterial Disease. J. Am. Geriatr. Soc. 2008, 56, 1504–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, K.S.; Yates, D.P.; Kramer, C.M.; Feller, A.; Mahling, P.; Colin, L.; Clough, T.; Wang, T.; LaPerna, L.; Patel, A.; et al. A randomized, placebo-controlled trial of canakinumab in patients with peripheral artery disease. Vasc. Med. 2019, 24, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Edlinger, C.; Lichtenauer, M.; Wernly, B.; Pistulli, R.; Paar, V.; Prodinger, C.; Krizanic, F.; Thieme, M.; Kammler, J.; Jung, C.; et al. Disease-specific characteristics of vascular cell adhesion molecule-1 levels in patients with peripheral artery disease. Heart Vessel. 2019, 34, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Zamzam, A.; Syed, M.H.; Rand, M.L.; Singh, K.; A Hussain, M.; Jain, S.; Khan, H.; Verma, S.; Al-Omran, M.; Abdin, R.; et al. Altered coagulation profile in peripheral artery disease patients. Vascular 2020, 28, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Altes, P.; Perez, P.; Esteban, C.; Muñoz-Torrero, J.F.S.; Aguilar, E.; García-Díaz, A.M.; Álvarez, L.R.; Jiménez, P.E.; Sahuquillo, J.C.; Monreal, M.; et al. Raised Fibrinogen Levels and Outcome in Outpatients with Peripheral Artery Disease. Angiology 2018, 69, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.W.; De Stavola, B.L.; Meade, T.W. Assessing the contribution of fibrinogen in predicting risk of death in men with peripheral arterial disease. J. Thromb. Haemost. 2009, 7, 270–276. [Google Scholar] [CrossRef]
- Doweik, L.; Maca, T.; Schillinger, M.; Budinsky, A.; Sabeti, S.; Minar, E. Fibrinogen Predicts Mortality in High Risk Patients with Peripheral Artery Disease. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 381–386. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Liu, K.; Green, D.; Greenland, P.; Tian, L.; Kibbe, M.; Tracy, R.; Shah, S.; Wilkins, J.T.; Huffman, M.; et al. Changes in D-dimer and inflammatory biomarkers before ischemic events in patients with peripheral artery disease: The BRAVO Study. Vasc. Med. 2015, 21, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teperman, J.; Carruthers, D.; Guo, Y.; Barnett, M.P.; Harris, A.A.; Sedlis, S.P.; Pillinger, M.; Babaev, A.; Staniloae, C.; Attubato, M.; et al. Relationship between neutrophil-lymphocyte ratio and severity of lower extremity peripheral artery disease. Int. J. Cardiol. 2017, 228, 201–204. [Google Scholar] [CrossRef]
- Selvaggio, S.; Abate, A.; Brugaletta, G.; Musso, C.; Di Guardo, M.; Di Guardo, C.; Vicari, E.S.D.; Romano, M.; Luca, S.; Signorelli, S.S. Platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio and monocyte-to-HDL cholesterol ratio as markers of peripheral artery disease in elderly patients. Int. J. Mol. Med. 2020, 46, 1210–1216. [Google Scholar] [CrossRef]
- Celebi, S.; Berkalp, B.; Amasyali, B. The association between thrombotic and inflammatory biomarkers and lower-extremity peripheral artery disease. Int. Wound J. 2020, 17, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yuan, D.; Yang, H.; Yukui, M.; Huang, B.; Yang, Y.; Xiong, F.; Zeng, G.; Wu, Z.; Chen, X.; et al. Post-treatment neutrophil-lymphocyte ratio independently predicts amputation in critical limb ischemia without operation. Clinics 2015, 70, 273–277. [Google Scholar] [CrossRef]
- Erturk, M.; Cakmak, H.A.; Surgit, O.; Celik, O.; Aksu, H.U.; Akgul, O.; Gurdogan, M.; Bulut, U.; Ozalp, B.; Akbay, E.; et al. The predictive value of elevated neutrophil to lymphocyte ratio for long-term cardiovascular mortality in peripheral arterial occlusive disease. J. Cardiol. 2014, 64, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Hoberstorfer, T.; Wadowski, P.P.; Kopp, C.W.; Panzer, S.; Gremmel, T. Platelet-to-lymphocyte and Neutrophil-to-lymphocyte Ratios Predict Target Vessel Restenosis after Infrainguinal Angioplasty with Stent Implantation. J. Clin. Med. 2020, 9, 1729. [Google Scholar] [CrossRef]
- González-Fajardo, J.A.; Brizuela-Sanz, J.A.; Aguirre-Gervás, B.; Merino-Díaz, B.; Del Río-Solá, L.; Martín-Pedrosa, M.; Vaquero-Puerta, C. Prognostic Significance of an Elevated Neutrophil–Lymphocyte Ratio in the Amputation-free Survival of Patients with Chronic Critical Limb Ischemia. Ann. Vasc. Surg. 2014, 28, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Pourafkari, L.; Choi, C.; Garajehdaghi, R.; Tajlil, A.; Dosluoglu, H.H.; Nader, N.D. Neutrophil–lymphocyte ratio is a marker of survival and cardiac complications rather than patency following revascularization of lower extremities. Vasc. Med. 2018, 23, 437–444. [Google Scholar] [CrossRef]
- Chan, C.; Puckridge, P.; Ullah, S.; Delaney, C.; Spark, J.I. Neutrophil-lymphocyte ratio as a prognostic marker of outcome in infrapopliteal percutaneous interventions for critical limb ischemia. J. Vasc. Surg. 2014, 60, 661–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igari, K.; Kudo, T.; Toyofuku, T.; Inoue, Y. Relationship of Inflammatory Biomarkers with Severity of Peripheral Arterial Disease. Int. J. Vasc. Med. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ueki, Y.; Miura, T.; Miyashita, Y.; Ebisawa, S.; Motoki, H.; Izawa, A.; Koyama, J.; Ikeda, U. Inflammatory Cytokine Levels After Endovascular Therapy in Patients with Peripheral Artery Disease. Angiology 2017, 68, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Bath, J.; Smith, J.B.; Kruse, R.L.; Vogel, T.R. Neutrophil-lymphocyte ratio predicts disease severity and outcome after lower extremity procedures. J. Vasc. Surg. 2020, 72, 622–631. [Google Scholar] [CrossRef]
- Paquissi, F.C. The role of inflammation in cardiovascular diseases: The predictive value of neutrophil–lymphocyte ratio as a marker in peripheral arterial disease. Ther. Clin. Risk Manag. 2016, 12, 851–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowkes, F.G.R.; Aboyans, V.; McDermott, M.M.; Sampson, U.K.A.; Criqui, M.H. Peripheral artery disease: Epidemiology and global perspectives. Nat. Rev. Cardiol. 2017, 14, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Egnot, N.S.; Barinas-Mitchell, E.; Criqui, M.H.; Allison, M.A.; Ix, J.H.; Jenny, N.S.; Wassel, C.L. An exploratory factor analysis of inflammatory and coagulation markers associated with femoral artery atherosclerosis in the San Diego Population Study. Thromb. Res. 2018, 164, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.S.; Anzaldi, M.; Fiore, V.; Simili, M.; Puccia, G.; Libra, M.; Malaponte, G.; Neri, S. Patients with unrecognized peripheral arterial disease (PAD) assessed by ankle-brachial index (ABI) present a defined profile of proinflammatory markers compared to healthy subjects. Cytokine 2012, 59, 294–298. [Google Scholar] [CrossRef]
- Bayoglu, B.; Arslan, C.; Tel, C.; Ulutin, T.; Dirican, A.; Deser, S.B.; Cengiz, M. Genetic variants rs1994016 and rs3825807 in ADAMTS7 affect its mRNA expression in atherosclerotic occlusive peripheral arterial disease. J. Clin. Lab. Anal. 2018, 32, e22174. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Aguilar, E.; Gomez-Rodriguez, V.; Orbe, J.; Rodríguez, J.A.; Fernández-Alonso, L.; Roncal, C.; Paramo, J.A. Matrix metalloproteinase 10 is associated with disease severity and mortality in patients with peripheral arterial disease. J. Vasc. Surg. 2015, 61, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Tayebjee, M.H.; Tan, K.T.; MacFadyen, R.J.; Lip, G.Y.H. Abnormal circulating levels of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven peripheral arterial disease: Relationship to disease severity. J. Intern. Med. 2004, 257, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Baum, O.; Ganster, M.; Baumgartner, I.; Nieselt, K.; Djonov, V. Basement Membrane Remodeling in Skeletal Muscles of Patients with Limb Ischemia Involves Regulation of Matrix Metalloproteinases and Tissue Inhibitor of Matrix Metalloproteinases. J. Vasc. Res. 2007, 44, 202–213. [Google Scholar] [CrossRef]
- E Muhs, B.; Plitas, G.; Delgado, Y.; Ianus, I.; Shaw, J.P.; Adelman, M.A.; Lamparello, P.; Shamamian, P.; Gagne, P. Temporal expression and activation of matrix metalloproteinases-2, -9, and membrane type 1-matrix metalloproteinase following acute hindlimb ischemia. J. Surg. Res. 2003, 111, 8–15. [Google Scholar] [CrossRef]
- Muhs, B.E.; Gagne, P.; Plitas, G.; Shaw, J.P.; Shamamian, P. Experimental hindlimb ischemia leads to neutrophil-mediated increases in gastrocnemius MMP-2 and -9 activity: A potential mechanism for ischemia induced MMP activation. J. Surg. Res. 2004, 117, 249–254. [Google Scholar] [CrossRef]
- Gomez-Rodriguez, V.; Orbe, J.; Martinez-Aguilar, E.; Rodriguez, J.A.; Fernandez-Alonso, L.; Serneels, J.; Bobadilla, M.; Perez-Ruiz, A.; Collantes, M.; Mazzone, M.; et al. Functional MMP-10 is required for efficient tissue repair after experimental hind limb ischemia. FASEB J. 2014, 29, 960–972. [Google Scholar] [CrossRef]
- Meisner, J.K.; Annex, B.H.; Price, R.J. Despite normal arteriogenic and angiogenic responses, hind limb perfusion recovery and necrotic and fibroadipose tissue clearance are impaired in matrix metalloproteinase 9-deficient mice. J. Vasc. Surg. 2015, 61, 1583–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.; Sung, H.J.; Lessner, S.M.; Fini, M.E.; Galis, Z.S. Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: Potential role in capillary branching. Circ. Res. 2004, 94, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.-H.; Chen, Y.-H.; Wang, C.-H.; Chen, J.-S.; Tsai, H.-Y.; Lin, F.-Y.; Lo, W.-Y.; Wu, T.-C.; Sata, M.; Chen, J.-W.; et al. Matrix Metalloproteinase-9 Is Essential for Ischemia-Induced Neovascularization by Modulating Bone Marrow–Derived Endothelial Progenitor Cells. Arter. Thromb. Vasc. Biol. 2009, 29, 1179–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishita, T.; Uzui, H.; Nakano, A.; Mitsuke, Y.; Geshi, T.; Ueda, T.; Lee, J.-D. Number of Endothelial Progenitor Cells in Peripheral Artery Disease as a Marker of Severity and Association with Pentraxin-3, Malondialdehyde-Modified Low-Density Lipoprotein and Membrane Type-1 Matrix Metalloproteinase. J. Atheroscler. Thromb. 2012, 19, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Vagima, Y.; Avigdor, A.; Goichberg, P.; Shivtiel, S.; Tesio, M.; Kalinkovich, A.; Golan, K.; Dar, A.; Kollet, O.; Petit, I.; et al. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J. Clin. Investig. 2009, 119, 492–503. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Malaponte, G.; Libra, M.; Di Pino, L.; Celotta, G.; Bevelacqua, V.; Petrina, M.; Nicotra, G.S.; Indelicato, M.; Navolanic, P.M.; et al. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc. Med. 2005, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.W.Y.; Hsiang, Y.N.; Matzke, L.A.; McManus, B.M.; Van Breemen, C.; Okon, E.B. Reduced Expression of Vascular Endothelial Growth Factor Paralleled with the Increased Angiostatin Expression Resulting from the Upregulated Activities of Matrix Metalloproteinase-2 and -9 in Human Type 2 Diabetic Arterial Vasculature. Circ. Res. 2006, 99, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preil, S.A.R.; Thorsen, A.-S.F.; Christiansen, A.L.; Poulsen, M.K.; Karsdal, M.A.; Leeming, D.J.; Rasmussen, L.M. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2? Scand. J. Clin. Lab. Investig. 2017, 77, 493–497. [Google Scholar] [CrossRef]
- Ward, M.R.; Pasterkamp, G.; Yeung, A.C.; Borst, C. Arterial remodeling: Mechanisms and clinical implications. Circulation 2000, 102, 1186–1191. [Google Scholar] [CrossRef]
- Yahagi, K.; Otsuka, F.; Sakakura, K.; Sanchez, O.D.; Kutys, R.; Ladich, E.; Kolodgie, F.D.; Virmani, R.; Joner, M. Pathophysiology of superficial femoral artery in-stent restenosis. J. Cardiovasc. Surg. 2014, 55, 307–323. [Google Scholar]
- Giagtzidis, I.T.; Kadoglou, N.P.; Mantas, G.; Spathis, A.; Papazoglou, K.O.; Karakitsos, P.; Liapis, C.D.; Karkos, C.D. The Profile of Circulating Matrix Metalloproteinases in Patients Undergoing Lower Limb Endovascular Interventions for Peripheral Arterial Disease. Ann. Vasc. Surg. 2017, 43, 188–196. [Google Scholar] [CrossRef]
- Caruana, L.; Formosa, C.; Cassar, K. Prediction of wound healing after minor amputations of the diabetic foot. J. Diabetes Complicat. 2015, 29, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Becker, F.; Robert-Ebadi, H.; Ricco, J.-B.; Setacci, C.; Cao, P.; de Donato, G.; Eckstein, H.; De Rango, P.; Diehm, N.; Schmidli, J.; et al. Chapter I: Definitions, Epidemiology, Clinical Presentation and Prognosis. Eur. J. Vasc. Endovasc. Surg. 2011, 42, S4–S12. [Google Scholar] [CrossRef] [Green Version]
- Criqui, M.H.; Aboyans, V. Epidemiology of Peripheral Artery Disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapienza, P.; Di Marzo, L.; Borrelli, V.; Sterpetti, A.; Mingoli, A.; Piagnerelli, R.; Cavallaro, A. Basic Fibroblast Growth Factor Mediates Carotid Plaque Instability Through Metalloproteinase-2 and -9 Expression. Eur. J. Vasc. Endovasc. Surg. 2004, 28, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Sapienza, P.; Mingoli, A.; Borrelli, V.; Brachini, G.; Biacchi, D.; Sterpetti, A.V.; Grande, R.; Serra, R.; Tartaglia, E. Inflammatory biomarkers, vascular procedures of lower limbs, and wound healing. Int. Wound J. 2019, 16, 716–723. [Google Scholar] [CrossRef]
- Matsushita, K.; Kwak, L.; Yang, C.; Pang, Y.; Ballew, S.H.; Sang, Y.; Hoogeveen, R.C.; Jaar, B.G.; Selvin, E.; Ballantyne, C.M.; et al. High-sensitivity cardiac troponin and natriuretic peptide with risk of lower-extremity peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) Study. Eur. Hear. J. 2018, 39, 2412–2419. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Acosta, S.; Gottsäter, A.; Melander, O.; Engström, G.; Dakhel, A.; Zarrouk, M. Copeptin, B-type natriuretic peptide and cystatin C are associated with incident symptomatic PAD. Biomarkers 2019, 24, 615–621. [Google Scholar] [CrossRef]
- Ye, Z.; Ali, Z.; Klee, G.G.; Mosley, T.H.; Kullo, I.J. Associations of Candidate Biomarkers of Vascular Disease with the Ankle-Brachial Index and Peripheral Arterial Disease. Am. J. Hypertens. 2013, 26, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohlhammer, J.; Kronenberg, F.; Rantner, B.; Stadler, M.; Peric, S.; Hammerer-Lercher, A.; Klein-Weigel, P.; Fraedrich, G.; Kollerits, B. High-sensitivity cardiac troponin T in patients with intermittent claudication and its relation with cardiovascular events and all-cause mortality—The CAVASIC Study. Atherosclerosis 2014, 237, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Janus, S.E.; Hajjari, J.; Al-Kindi, S.G. High Sensitivity Troponin and Risk of Incident Peripheral Arterial Disease in Chronic Kidney Disease (from the Chronic Renal Insufficiency Cohort [CRIC] Study). Am. J. Cardiol. 2020, 125, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, T.; Kimura, S.; Takahashi, A.; Isobe, M.; Hikita, H. Coronary Artery Disease Severity and Cardiovascular Biomarkers in Patients with Peripheral Artery Disease. Int. J. Angiol. 2015, 24, 278–282. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Dieplinger, B.; Poelz, W.; Endler, G.; Wagner, O.F.; Haltmayer, M. Amino-Terminal Pro–B-Type Natriuretic Peptide as Predictor of Mortality in Patients with Symptomatic Peripheral Arterial Disease: 5-Year Follow-Up Data from the Linz Peripheral Arterial Disease Study. Clin. Chem. 2009, 55, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Hinterreiter, F.; Luft, C.; Poelz, W.; Haltmayer, M.; Dieplinger, B. Mortality rates and mortality predictors in patients with symptomatic peripheral artery disease stratified according to age and diabetes. J. Vasc. Surg. 2014, 59, 1291–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoglund, P.H.; Arpegård, J.; Östergren, J.; Svensson, P. Amino-Terminal Pro-B-Type Natriuretic Peptide and High-Sensitivity C-Reactive Protein but Not Cystatin C Predict Cardiovascular Events in Male Patients with Peripheral Artery Disease Independently of Ambulatory Pulse Pressure. Am. J. Hypertens. 2014, 27, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Falkensammer, J.; Frech, A.; Duschek, N.; Gasteiger, S.; Stojakovic, T.; Scharnagl, H.; Huber, K.; Fraedrich, G.; Greiner, A. Prognostic relevance of ischemia-modified albumin and NT-proBNP in patients with peripheral arterial occlusive disease. Clin. Chim. Acta 2015, 438, 255–260. [Google Scholar] [CrossRef]
- Clemens, R.K.; Annema, W.; Baumann, F.; Roth-Zetzsche, S.; Seifert, B.; Von Eckardstein, A.; Amann-Vesti, B.R.; Roth-Zetsche, S. Cardiac biomarkers but not measures of vascular atherosclerosis predict mortality in patients with peripheral artery disease. Clin. Chim. Acta 2019, 495, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Linnemann, B.; Sutter, T.; Herrmann, E.; Sixt, S.; Rastan, A.; Schwarzwaelder, U.; Noory, E.; Buergelin, K.; Beschorner, U.; Zeller, T. Elevated Cardiac Troponin T Is Associated with Higher Mortality and Amputation Rates in Patients with Peripheral Arterial Disease. J. Am. Coll. Cardiol. 2014, 63, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Linnemann, B.; Sutter, T.; Sixt, S.; Rastan, A.; Schwarzwaelder, U.; Noory, E.; Buergelin, K.; Beschorner, U.; Zeller, T. Elevated cardiac troponin T contributes to prediction of worse in-hospital outcomes after endovascular therapy for acute limb ischemia. J. Vasc. Surg. 2012, 55, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Szczeklik, W.; Krzanowski, M.; Maga, P.; Partyka, Ł.; Kościelniak, J.; Kaczmarczyk, P.; Maga, M.; Pieczka, P.; Suska, A.; Wachsmann, A.; et al. Myocardial injury after endovascular revascularization in critical limb ischemia predicts 1-year mortality: A prospective observational cohort study. Clin. Res. Cardiol. 2017, 107, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Stone, P.A.; Schlarb, H.; Campbell, J.E.; Williams, D.; Thompson, S.N.; John, M.; Campbell, J.R.; AbuRahma, A.F. C-reactive protein and brain natriuretic peptide as predictors of adverse events after lower extremity endovascular revascularization. J. Vasc. Surg. 2014, 60, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickhout, A.; Koenen, R.R. Extracellular Vesicles as Biomarkers in Cardiovascular Disease; Chances and Risks. Front. Cardiovasc. Med. 2018, 5, 113. [Google Scholar] [CrossRef]
- Riancho, J.; Sánchez-Juan, P. Circulating Extracellular Vesicles in Human Disease. N. Engl. J. Med. 2018, 379, 2179–2181. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, F.; Nickenig, G.; Werner, N. Extracellular Vesicles in Cardiovascular Disease. Circ. Res. 2017, 120, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Zarà, M.; Guidetti, G.F.; Camera, M.; Canobbio, I.; Amadio, P.; Torti, M.; Tremoli, E.; Barbieri, S.S. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int. J. Mol. Sci. 2019, 20, 2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiger, F.; Stephan, S.; Hoheisel, G.; Pfeiffer, D.; Ruehlmann, C.; Koksch, M. P-Selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease. Blood Coagul. Fibrinolysis 2000, 11, 723–728. [Google Scholar] [CrossRef]
- Tan, K.T.; Tayebjee, M.H.; Lynd, C.; Blann, A.D.; Lip, G.Y.H. Platelet microparticles and soluble P selectin in peripheral artery disease: Relationship to extent of disease and platelet activation markers. Ann. Med. 2005, 37, 61–66. [Google Scholar] [CrossRef]
- Van Der Zee, P.M.; Biró, É.; Ko, Y.; De Winter, R.J.; Hack, C.E.; Sturk, A.; Nieuwland, R. P-Selectin- and CD63-Exposing Platelet Microparticles Reflect Platelet Activation in Peripheral Arterial Disease and Myocardial Infarction. Clin. Chem. 2006, 52, 657–664. [Google Scholar] [CrossRef]
- Hiatt, W.R.; Armstrong, E.J.; Larson, C.J.; Brass, E.P. Pathogenesis of the Limb Manifestations and Exercise Limitations in Peripheral Artery Disease. Circ. Res. 2015, 116, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Qin, C. Elevated Circulating VE-Cadherin+CD144+Endothelial Microparticles in Ischemic Cerebrovascular Disease. Thromb. Res. 2015, 135, 375–381. [Google Scholar] [CrossRef]
- Koga, H.; Sugiyama, S.; Kugiyama, K.; Watanabe, K.; Fukushima, H.; Tanaka, T.; Sakamoto, T.; Yoshimura, M.; Jinnouchi, H.; Ogawa, H. Elevated Levels of VE-Cadherin-Positive Endothelial Microparticles in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. J. Am. Coll. Cardiol. 2005, 45, 1622–1630. [Google Scholar] [CrossRef] [Green Version]
- Amabile, N.; Guérin, A.P.; Leroyer, A.; Mallat, Z.; Nguyen, C.; Boddaert, J.; London, G.M.; Tedgui, A.; Boulanger, C.M. Circulating Endothelial Microparticles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. J. Am. Soc. Nephrol. 2005, 16, 3381–3388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, N.; Wassmann, S.; Ahlers, P.; Kosiol, S.; Nickenig, G. Circulating CD31+/Annexin V+Apoptotic Microparticles Correlate with Coronary Endothelial Function in Patients with Coronary Artery Disease. Arter. Thromb. Vasc. Biol. 2006, 26, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiro, A.; Wilkinson, F.L.; Weston, R.; Smyth, J.V.; Serracino-Inglott, F.; Alexander, M.Y. Elevated levels of endothelial-derived microparticles and serum CXCL9 and SCGF-β are associated with unstable asymptomatic carotid plaques. Sci. Rep. 2015, 5, 16658. [Google Scholar] [CrossRef]
- Wekesa, A.; Cross, K.; O’Donovan, O.; Dowdall, J.; O’Brien, O.; Doyle, M.; Byrne, L.; Phelan, J.; Ross, M.; Landers, R.; et al. Predicting Carotid Artery Disease and Plaque Instability from Cell-derived Microparticles. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.R.; Trial, J.; Nambi, V.; Hoogeveen, R.C.; Taffet, G.E.; Entman, M.L. Plasma Levels of Endothelial Microparticles Bearing Monomeric C-reactive Protein are Increased in Peripheral Artery Disease. J. Cardiovasc. Transl. Res. 2016, 9, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Giarretta, I.; Gatto, I.; Marcantoni, M.; Lupi, G.; Tonello, D.; Gaetani, E.; Pitocco, D.; Iezzi, R.; Truma, A.; Porfidia, A.; et al. Microparticles Carrying Sonic Hedgehog Are Increased in Humans with Peripheral Artery Disease. Int. J. Mol. Sci. 2018, 19, 3954. [Google Scholar] [CrossRef] [Green Version]
- Leroyer, A.S.; Ebrahimian, T.G.; Cochain, C.; Récalde, A.; Blanc-Brude, O.; Mees, B.; Vilar, J.; Tedgui, A.; Levy, B.I.; Chimini, G.; et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation 2009, 119, 2808–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrentino, T.A.; Duong, P.; Bouchareychas, L.; Chen, M.; Chung, A.; Schaller, M.S.; Oskowitz, A.; Raffai, R.L.; Conte, M.S. Circulating exosomes from patients with peripheral artery disease influence vascular cell migration and contain distinct microRNA cargo. JVS Vasc. Sci. 2020, 1, 28–41. [Google Scholar] [CrossRef]
- Chitoiu, L.; Dobranici, A.; Gherghiceanu, M.; Dinescu, S.; Costache, M. Multi-Omics Data Integration in Extracellular Vesicle Biology—Utopia or Future Reality? Int. J. Mol. Sci. 2020, 21, 8550. [Google Scholar] [CrossRef] [PubMed]
- Rosińska, J.; Łukasik, M.; Kozubski, W. The Impact of Vascular Disease Treatment on Platelet-Derived Microvesicles. Cardiovasc. Drugs Ther. 2017, 31, 627–644. [Google Scholar] [CrossRef] [Green Version]
- Nomura, S.; Inami, N.; Iwasaka, T.; Liu, Y. Platelet activation markers, microparticles and soluble adhesion molecules are elevated in patients with arteriosclerosis obliterans: Therapeutic effects by cilostazol and potentiation by dipyridamole. Platelets 2004, 15, 167–172. [Google Scholar] [CrossRef]
- Mobarrez, F.; He, S.; Bröijersen, A.; Wiklund, B.; Antovic, A.; Antovic, J.; Egberg, N.; Jörneskog, G.; Wallén, H. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb. Haemost. 2011, 106, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Mobarrez, F.; Egberg, N.; Antovic, J.; Bröijersen, A.; Jörneskog, G.; Wallén, H. Release of endothelial microparticles in vivo during atorvastatin treatment; a randomized double-blind placebo-controlled study. Thromb. Res. 2012, 129, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Stather, P.W.; Sylvius, N.; Wild, J.B.; Choke, E.; Sayers, R.D.; Bown, M.J. Differential MicroRNA Expression Profiles in Peripheral Arterial Disease. Circ. Cardiovasc. Genet. 2013, 6, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Bogucka-Kocka, A.; Zalewski, D.P.; Ruszel, K.P.; Stępniewski, A.; Gałkowski, D.; Bogucki, J.; Komsta, Ł.; Kołodziej, P.; Zubilewicz, T.; Feldo, M.; et al. Dysregulation of MicroRNA Regulatory Network in Lower Extremities Arterial Disease. Front. Genet. 2019, 10, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signorelli, S.S.; Volsi, G.L.; Pitruzzella, A.; Fiore, V.; Mangiafico, M.; Vanella, L.; Parenti, R.; Rizzo, M.; Volti, G.L. Circulating miR-130a, miR-27b, and miR-210 in Patients with Peripheral Artery Disease and Their Potential Relationship with Oxidative Stress. Angiology 2016, 67, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta 2011, 412, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, X.; Luan, P.; Kou, W.; Li, M.; Yu, Q.; Zhuang, J.; Xu, Y.; Peng, W.; Jian, W. miR-124-3p regulates angiogenesis in peripheral arterial disease by targeting STAT3. Mol. Med. Rep. 2020, 22, 4890–4898. [Google Scholar] [CrossRef]
- Barbalata, T.; Moraru, O.E.; Stancu, C.S.; Devaux, Y.; Simionescu, M.; Sima, A.V.; Niculescu, L.S. Increased miR-142 Levels in Plasma and Atherosclerotic Plaques from Peripheral Artery Disease Patients with Post-Surgery Cardiovascular Events. Int. J. Mol. Sci. 2020, 21, 9600. [Google Scholar] [CrossRef]
- Stojkovic, S.; Jurisic, M.; Kopp, C.W.; Koppensteiner, R.; Huber, K.; Wojta, J.; Gremmel, T. Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation. Atherosclerosis 2018, 269, 197–203. [Google Scholar] [CrossRef]
- Yuan, L.; Dong, J.; Zhu, G.; Bao, J.; Lu, Q.; Zhou, J.; Jing, Z. Diagnostic Value of Circulating microRNAs for In-Stent Restenosis in Patients with Lower Extremity Arterial Occlusive Disease. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.-H.; Wang, H.-T.; Tu, C. Diagnostic value of microRNA-143 in predicting in-stent restenosis for patients with lower extremity arterial occlusive disease. Eur. J. Med Res. 2017, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cremades, D.; Cheng, H.S.; Feinberg, M.W. Noncoding RNAs in Critical Limb Ischemia. Arter. Thromb. Vasc. Biol. 2020, 40, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Martello, A.; Mellis, D.; Meloni, M.; Howarth, A.; Ebner, D.; Caporali, A.; Zen, A.A.H. Phenotypic miRNA Screen Identifies miR-26b to Promote the Growth and Survival of Endothelial Cells. Mol. Ther. Nucleic Acids 2018, 13, 29–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.-F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Dev. Cell 2008, 15, 272–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranghino, A.; Cantaluppi, V.; Grange, C.; Vitillo, L.; Fop, F.; Biancone, L.; Deregibus, M.; Tetta, C.; Segoloni, G.; Camussi, G. Endothelial Progenitor Cell-Derived Microvesicles Improve Neovascularization in a Murine Model of Hindlimb Ischemia. Int. J. Immunopathol. Pharmacol. 2012, 25, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Van Solingen, C.; Seghers, L.; Bijkerk, R.; Duijs, J.M.; Roeten, M.K.; Van Oeveren-Rietdijk, A.M.; Baelde, H.J.; Monge, M.; Vos, J.B.; De Boer, H.C.; et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. 2008, 13, 1577–1585. [Google Scholar] [CrossRef]
- Chamorro-Jorganes, A.; Araldi, E.; Penalva, L.O.F.; Sandhu, D.; Fernández-Hernando, C.; Suárez, Y. MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1. Arter. Thromb. Vasc. Biol. 2011, 31, 2595–2606. [Google Scholar] [CrossRef] [Green Version]
- Zaccagnini, G.; Maimone, B.; Di Stefano, V.; Fasanaro, P.; Greco, S.; Perfetti, A.; Capogrossi, M.C.; Gaetano, C.; Martelli, F. Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia. Antioxid. Redox Signal. 2014, 21, 1177–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welten, S.M.; Bastiaansen, A.J.; De Jong, R.C.; De Vries, M.R.; Peters, E.A.; Boonstra, M.C.; Sheikh, S.P.; La Monica, N.; Kandimalla, E.R.; Quax, P.H.; et al. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia. Circ. Res. 2014, 115, 696–708. [Google Scholar] [CrossRef] [Green Version]
- Heuslein, J.L.; McDonnell, S.P.; Song, J.; Annex, B.H.; Price, R.J. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis. Front. Bioeng. Biotechnol. 2018, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentzinger, C.F.; Wang, Y.X.; Dumont, N.A.; Rudnicki, M.A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 2013, 14, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Veliceasa, D.; Biyashev, D.; Qin, G.; Misener, S.; Mackie, A.R.; Kishore, R.; Volpert, O.V. Therapeutic manipulation of angiogenesis with miR-27b. Vasc. Cell 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Ganta, V.C.; Choi, M.H.; Kutateladze, A.; Fox, T.E.; Farber, C.R.; Annex, B.H. A MicroRNA93–Interferon Regulatory Factor-9–Immunoresponsive Gene-1–Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle. Circulation 2017, 135, 2403–2425. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.Q.; Raza, S.A.; Pathak, R.; Marone, L.; Ali, A. Machine Learning Confirms Nonlinear Relationship between Severity of Peripheral Arterial Disease, Functional Limitation and Symptom Severity. Diagnostics 2020, 10, 515. [Google Scholar] [CrossRef]
- McCarthy, C.P.; Ibrahim, N.E.; Van Kimmenade, R.R.; Gaggin, H.K.; Simon, M.L.; Gandhi, P.; Kelly, N.; Motiwala, S.R.; Mukai, R.; Ms, C.A.M.; et al. A clinical and proteomics approach to predict the presence of obstructive peripheral arterial disease: From the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) Study. Clin. Cardiol. 2018, 41, 903–909. [Google Scholar] [CrossRef]
- Ross, E.G.; Shah, N.H.; Dalman, R.L.; Nead, K.T.; Cooke, J.P.; Leeper, N.J. The use of machine learning for the identification of peripheral artery disease and future mortality risk. J. Vasc. Surg. 2016, 64, 1515–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, E.G.; Jung, K.; Dudley, J.T.; Li, L.; Leeper, N.J.; Shah, N.H. Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e004741. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.S.; Haskell, L.; Ting, W.; Lurie, F.; Chang, S.-C.; Mueller, L.A.; Elder, K.; Rich, K.; Crivera, C.; Schein, J.R.; et al. Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia—Is preventive and personalized approach on the horizon? EPMA J. 2020, 11, 53–64. [Google Scholar] [CrossRef] [PubMed]
Assessed Biomarkers | Type of Biomarker | Studied Groups (n) | Outcome | Refs. |
---|---|---|---|---|
CRP, D-dimer, fibrinogen, NT-proBNP and cTnT | Prognosis | Systematic review and meta-analysis with 47 studies, 1990–2015. PAD patients (21,473). Minimum follow up 1 year. | Increased CRP (RR: 3.49, 95% CI: 2.35–5.19), D-dimer (RR: 2.22, 1.24–3.98), fibrinogen (RR: 2.08, 95% CI: 1.46–2.97), NT-proBNP (RR: 4.50, 95% CI: 2.98–6.81) and cTnT (RR: 3.33, 95% CI: 2.70–4.10) predicted risk of mortality in PAD patients. Association of CRP with MACE (RR: 1.86, 95% CI: 1.48–2.33). | [10] |
CRP | Prognosis | Systematic review and meta-analysis with 16 studies, 2002–2017. Participants (5041). Minimum follow up 1 year. | Higher CRP levels predict MACE in PAD patients (HR: 1.38, 95% CI: 1.16–1.63, per unit increase in logeCRP). | [11] |
CRP | Diagnosis Prognosis | PAD patients (317) and healthy controls (100). Mean follow up 3.6 years. | Increased CRP levels in PAD patients. Predictor of amputation (SHR: 1.76, 95% CI: 1.48–2.09) and MACE (amputation and CV mortality) (SHR: 1.53, 95% CI: 1.35–1.75). | [14] |
CRP | Diagnosis | Prospective cohort (14916); symptomatic PAD (140) and healthy controls (140). Mean follow up 9 years. | Associated to incident PAD (RR: 2.8, 95% CI: 1.3–5.9). | [19] |
CRP | Diagnosis | ARIC Study 1996–1998. Participants (9851), cases of PAD (316). Median follow up 17.4 years. | Associated to incident PAD and CLI (HR per 1 SD increase: 1.34, 95% CI: 1.18–1.52 and 1.34, 95% CI: 1.09–1.65, respectively). | [20] |
CRP, IL-6 & TNF-α | Diagnosis | PAD patients (55) and healthy controls (34). | Increased CRP, IL-6 and TNF-α levels in PAD patients. IL-6 associated to PAD severity (ABI ≤ 0.90). | [21] |
CRP, IL-6, TNF-α & ICAM-1 | Diagnosis | PAD patients with intermittent claudication (75) and healthy subject (43). | Increased CRP, IL-6, TNF-α and ICAM-1 levels in PAD patients and inversely associated with maximal walking distance. | [22] |
CRP, IL-6, TNF-α & VCAM-1 | Diagnosis Prognosis | PAD patients (60) and healthy controls (50). Mean follow up of 2.24 years. | Increased CRP, IL-6 and TNF-α levels in PAD patients. CRP, IL-6, TNF-α and ICAM-1 associated with ABI. PAD patients with CRP > 1 mg/L had 4-fold higher risk of ischemic event or death. | [23] |
CRP, IL-6, ICAM-1 & D-dimer | Diagnosis | PAD patients (62) and healthy controls (18). | Increased CRP, IL-6, ICAM-1 and D-dimer levels in PAD patients. | [24] |
CRP, IL-6, TNF-α, ICAM-1 & fibrinogen | Diagnosis Prognosis | Framingham Offspring Study 1998–2001. Participants (2800), ABI < 0.9 (111). | CRP, IL-6, TNF-α and fibrinogen inversely associated to ABI. IL-6 related to ABI (OR: 1.21, 95% CI: 1.06–1.38) and intermittent claudication or lower extremity revascularization (OR: 1.36, 95% CI: 1.06–1.74). | [26] |
CRP, IL-6, ICAM-1 & VCAM-1 | Diagnosis | Edinburgh Artery Study 1988. Participants (2800). Follow up 5 and 12 years. | CRP, IL-6, ICAM-1 and VCAM-1 associated to PAD severity. IL-6 predicted ABI at 5 and 12 years. | [27] |
CRP | Prognosis | PAD patients with (29) or without (38) adverse CV events. Follow up 5 years. | CRP levels were higher in PAD subjects with adverse CV events. | [28] |
CRP | Prognosis | PAD patients (397). Average follow up 6.6 years. | CRP predicts total mortality at 2-years follow-up (HR = 1.56 per SD). | [29] |
CRP & D-dimer | Prognosis | PAD patients (377). Follow up 4 years. | CRP and D-dimer predicts all-cause mortality within 1 and 2 years of follow-up (HR: 1.15, 95% CI: 1.06–1.24 and 1.14, 95% CI: 1.02–1.27, respectively). | [30] |
CRP, D-dimer & fibrinogen | Diagnosis | PAD patients (45) and healthy controls (44). | CRP, D-dimer and fibrinogen were higher in PAD and associated to ABI. | [31] |
CRP | Diagnosis | PAD patients (463). Mean follow up 6.1 years. | Higher CRP levels in patients with CLI compared to IC. | [25] |
CRP | Prognosis | PAD patients (68). Follow up 6 months. | Pre- and post-operative (24 h) IL-6 levels and post-operative (24 h) CRP levels associated with six-month in-stent restenosis (OR: 1.11, 95% CI: 1.00–1.23, 1.04, 95% CI: 1.02–1.06 and 1.15, 95% CI: 1.04–1.26, respectively). | [32] |
IL-6, TNF-α, ICAM-1 & VCAM-1 | Diagnosis | PAD patients (20) and healthy controls (20). | Circulating IL-6, TNF-α, ICAM-1 and VCAM-1 levels were higher in PAD patients. | [33] |
IL-6, TNF-α, ICAM-1 & VCAM-1 | Diagnosis | PAD patients (80) and healthy controls (72). | All inflammatory and adhesion markers were higher in PAD patients. | [34] |
CRP, IL-6, ICAM-1, VCAM-1 and D-dimer | Diagnosis | PAD patients (423). | CRP, IL-6, ICAM-1, VCAM-1 and D-dimer related to impaired lower limb functionality. | [35] |
IL-6 | Diagnosis | PAD patients (38). 1 year follow up. | Higher IL-6 levels were related to impaired walking distance. | [36] |
VCAM-1 | Diagnosis | PAD patients (51) and healthy controls (75). | VCAM-1 is increased in PAD patients. | [37] |
ICAM-1, VCAM-1 & D-dimer | Diagnosis | PAD patients (60) and healthy controls (20). | ICAM-1, VCAM-1 and D-dimer increased in CLI patients. | [38] |
Fibrinogen | Prognosis | FRENA registry. PAD patients (1363). Mean follow up 18 months. | High fibrinogen associated with ischemic events (HR: 1.61, 95% CI: 1.11–2.32) or major bleeding (HR: 3.42, 95% CI: 1.22–9.61). | [39] |
Fibrinogen | Prognosis | LEADER trial 1992-2001. PAD patients (785). Follow up 3 years. | Fibrinogen predictor of death at 6 months (OR: 1.65, 95% CI: 0.96–2.73) and 3 years (OR: 1.44, 95% CI: 1.02–1.94). | [40] |
Fibrinogen | Prognosis | PAD patients (486). Median follow up 7 years. | Fibrinogen levels predict risk of all-cause mortality (HR: 1.90, 95% CI: 1.11–3.41 for fibrinogen >12.2μmol/L) and CV death (HR: 2.68, 95% CI: 1.39–5.16 for fibrinogen >12.2 μmol/L). | [41] |
D-dimer | Prognosis | BRAVO study 2009. PAD patients (595). Follow up 3 years. | D-dimer levels were increased in PAD patients 2 months before an ischemic heart event. | [42] |
NLR | Diagnosis | PAD patients (733). Median follow-up 10.4 months. | Elevated NLR associated with severe PAD (OR: 1.07, 95% CI: 1.00–1.15). | [43] |
NLR | Diagnosis | PAD patients (300). | NLR inversely associated with ABI. | [44] |
NLR | Diagnosis | PAD patients (153) and controls (128). | NLR correlated to PAD severity. | [45] |
NLR | Prognosis | CLI patients (172). Mean follow up 34.7 months. | NLR predicted amputation risk (HR: 1.14, 95% CI: 1.08–1.19). | [46] |
NLR | Prognosis | PAD patients (593). Median follow-up 20 months. | High NLR (>3.0) was an independent predictor of long-term cardiovascular mortality (HR: 2.04, 95% CI: 1.26–3.30). | [47] |
NLR | Prognosis | PAD patients (95). Follow up 2 years. | Postoperative high NLR (≥2.75) predicts target vessel revascularization (HR: 3.1, 95% CI: 1.3–7.7) in PAD subjects after angioplasty with stent implantation. | [48] |
NLR | Prognosis | CLI patients (561). Median follow up 31 months. | Preoperative high NLR (>5) correlated with 5-year amputation-free survival (HR: 2.32, 95% CI 1.73–3.12) in PAD patients subjected to infrainguinal revascularization. | [49] |
NLR | Prognosis | PAD patients (1228). Minimum follow up 1 year. | Preoperative NLR associated with MALE (HR: 1.09, 95% CI: 1.07–1.11) and 10-year mortality (HR: 1.09, 95% CI: 1.07–1.12) after revascularization (stenting/bypass graft). | [50] |
NLR | Prognosis | PAD patients (83). Follow-up period 12 months. | PAD patients with high NLR (≥5.25) had increased risk of death (HR: 1.97, 95% CI: 1.08–3.62) compared with low NLR subjects (<5.25). | [51] |
Studied Groups (n) | Type of Biomarker | Sample Type | Candidate miRNAs | Refs. |
---|---|---|---|---|
PAD (20) and healthy controls (20) | Diagnostic | Whole blood | Among 12 miRNAs; miR-15b (AUC = 0.92), -16 (AUC = 0.93) and -363 (AUC = 0.93) had highest diagnostic value. | [121] |
PAD (40) and healthy controls (19) | Diagnostic | PBMCs | 29 miRNAs showed independent associations with PAD (AUC > 0.8 for all). | [122] |
PAD (27) and healthy controls (27) | Diagnostic | Serum | miR-130a, -27b and -210 were upregulated in PAD miR-210 was inversely correlated with claudication distance. | [123] |
ASO (104) and healthy controls (105) | Diagnostic | Serum | mir-130a and -27b were increased in ASO and positively correlated with disease severity. | [124] |
PAD (49) and healthy controls (47) | Diagnostic | Whole blood | miR-124 negatively correlated with ABI. | [125] |
PAD patients with (12) and without (35) CVEs; 1 year follow up after surgery. | Prognostic | Plasma | miR-142 predicted post-femoral bypass surgery associated CVEs; (AUC = 0.861). | [126] |
PAD patients with intermittent claudication (62); 2 years after surgery. | Prognostic | Serum | miR-195 independently predicted adverse ischemic events (HR per 1-SD of 0.40, 95% CI: 0.23-0.68) and target vessel revascularization (HR per 1-SD of 0.40, 95% CI: 0.22-0.75) after angioplasty with stent implantation. | [127] |
PAD (146) and healthy controls (62); follow up period not specified. | Prognostic | Plasma | miR-320a (AUC = 0.766) and -572 (AUC = 0.690) predicted in-stent restenosis. | [128] |
PAD patients with (74) and without (91) in-stent restenosis; follow up period not specified. | Prognostic | Serum | Serum miR-143 was lower in restenosis group and predicted in-stent restenosis; AUC = 0.866. | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saenz-Pipaon, G.; Martinez-Aguilar, E.; Orbe, J.; González Miqueo, A.; Fernandez-Alonso, L.; Paramo, J.A.; Roncal, C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int. J. Mol. Sci. 2021, 22, 3601. https://doi.org/10.3390/ijms22073601
Saenz-Pipaon G, Martinez-Aguilar E, Orbe J, González Miqueo A, Fernandez-Alonso L, Paramo JA, Roncal C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. International Journal of Molecular Sciences. 2021; 22(7):3601. https://doi.org/10.3390/ijms22073601
Chicago/Turabian StyleSaenz-Pipaon, Goren, Esther Martinez-Aguilar, Josune Orbe, Arantxa González Miqueo, Leopoldo Fernandez-Alonso, Jose Antonio Paramo, and Carmen Roncal. 2021. "The Role of Circulating Biomarkers in Peripheral Arterial Disease" International Journal of Molecular Sciences 22, no. 7: 3601. https://doi.org/10.3390/ijms22073601
APA StyleSaenz-Pipaon, G., Martinez-Aguilar, E., Orbe, J., González Miqueo, A., Fernandez-Alonso, L., Paramo, J. A., & Roncal, C. (2021). The Role of Circulating Biomarkers in Peripheral Arterial Disease. International Journal of Molecular Sciences, 22(7), 3601. https://doi.org/10.3390/ijms22073601