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Abstract: Aptamers are short single-stranded DNA, RNA, or synthetic Xeno nucleic acids (XNA)
molecules that can interact with corresponding targets with high affinity. Owing to their unique
features, including low cost of production, easy chemical modification, high thermal stability, re-
producibility, as well as low levels of immunogenicity and toxicity, aptamers can be used as an
alternative to antibodies in diagnostics and therapeutics. Systematic evolution of ligands by exponen-
tial enrichment (SELEX), an experimental approach for aptamer screening, allows the selection and
identification of in vitro aptamers with high affinity and specificity. However, the SELEX process is
time consuming and characterization of the representative aptamer candidates from SELEX is rather
laborious. Artificial intelligence (AI) could help to rapidly identify the potential aptamer candidates
from a vast number of sequences. This review discusses the advancements of AI pipelines/methods,
including structure-based and machine/deep learning-based methods, for predicting the binding
ability of aptamers to targets. Structure-based methods are the most used in computer-aided drug
design. For this part, we review the secondary and tertiary structure prediction methods for aptamers,
molecular docking, as well as molecular dynamic simulation methods for aptamer–target binding.
We also performed analysis to compare the accuracy of different secondary and tertiary structure
prediction methods for aptamers. On the other hand, advanced machine-/deep-learning models
have witnessed successes in predicting the binding abilities between targets and ligands in drug
discovery and thus potentially offer a robust and accurate approach to predict the binding between
aptamers and targets. The research utilizing machine-/deep-learning techniques for prediction of
aptamer–target binding is limited currently. Therefore, perspectives for models, algorithms, and
implementation strategies of machine/deep learning-based methods are discussed. This review
could facilitate the development and application of high-throughput and less laborious in silico
methods in aptamer selection and characterization.

Keywords: artificial intelligence; aptamer; SELEX; binding; structure prediction; machine learning;
deep learning

1. Introduction

Aptamers are single-stranded nucleic acids (both DNAs and RNAs) with a high
affinity toward target molecules [1,2]. A number of aptamers were selected to against a
wide variety of target molecules, such as proteins and viruses [3]. Aptamers are usually
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referred to as “chemical antibodies” because of their high selectivity and binding affinity
toward target molecules [4]. Compared to antibodies, aptamers possess the following
merits. Firstly, the structures and sizes of aptamers are more flexible and smaller than those
of antibodies. Thus, aptamers can recognize and bind to the targets which are inaccessible
for antibodies, such as smaller targets or some hidden binding domains [3]. Secondly,
aptamers are much cheaper and require less time for production than antibodies since they
could be massively synthesized [5]. Last, aptamers are more stable under most conditions,
which increases their shelf life [6]. Due to these predominant merits, aptamers are taken as
promising competitors to antibodies in diagnostics, therapeutics, cell imaging, biosensor,
biochip, and drug delivery [7,8].

Aptamers are usually identified through an in vitro experimental approach firstly
implemented in the 1990s named systematic evolution of ligands by exponential enrichment
(SELEX) [1,2]. SELEX has the ability to select aptamers bounding to target molecules with
high selectivity and binding affinity [9]. Firstly, a random nucleic acid library that contains
1014–1015 random oligonucleotide strands is created. Secondly, the library is incubated with
the target molecules to form a complex of target–oligonucleotides. Thirdly, the complex
of target–oligonucleotides is separated from the rest of the unbound library pool. Then,
with unbound sequences washed away, the specifically bound oligonucleotides are then
eluted from targets. Finally, the amplification and new selection cycle of target-binding
oligonucleotides are conducted. This whole process of high-affinity aptamers selection
normally contains 6–15 rounds. However, there are some barriers for the SELEX technology,
including the following: (1) it requires weeks, even months to acquire aptamer candidates;
(2) the successful rates of aptamer candidates are still low; (3) only a limited number of
representative aptamer candidates from the next-generation sequencing data could be
synthesized for affinity characterization.

Recently, some researchers used computational methods to select aptamer candidates
because of their convenience and low cost [10,11]. These methods aim at predicting
the aptamer affinity toward targets through structural information [12]. Many online
servers such as RNAfold and RNAComposer have been proposed for predicting the
secondary structure and three-dimensional (3D) structures of RNAs/DNAs [13]. Like
other RNAs/DNAs, the structural information of aptamers could also be obtained by these
online servers [12]. Similarly, molecular docking and molecular dynamics usually used
in protein compounds selection by structural information have shown fitness for protein
aptamers selection [14].

Artificial intelligence (AI) including machine/deep-learning algorithms has inspired
novel computational methods for selection of aptamer candidates with high affinity and
specificity to target molecules in drug discovery [15]. Some machine/deep-learning meth-
ods have been shown to outperform a wide range of classical binding affinity prediction
methods such as molecular docking and virtual screening tools [16]. In the previous
study, our group applied AI to develop small molecules specifically targeting miRNA–
mRNA interactions by using a random forest model [17]. Although not commonly used
in aptamer-based discovery currently, machine/deep-learning methods are promising in
aptamer–target affinity prediction. Machine/deep-learning methods do not require the
structural information of aptamers and thus are able to effectively explore much larger
amounts of experimental data. Furthermore, the performance of machine/deep-learning
methods could be improved with larger training datasets [16]. Therefore, with these advan-
tages, perspectives of employing machine/deep-learning algorithms in aptamer affinity
prediction are discussed in this review.

2. Aptamer Affinity Prediction through Structural Information

In the past decade, computational methods of bioinformatics have been proposed to
facilitate the selection of potential aptamers through the prediction of aptamer structure.
The computational methods provide convenient and accurate ways to select aptamers with
high affinity. A typical modeling workflow of aptamer selection by computational methods
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comprises four steps (Figure 1) [11]. Firstly, the secondary structures of aptamers are pre-
dicted by their sequences. Secondly, prediction and optimization of the tertiary structures
are adopted by the secondary structures. Subsequently, rigid or flexible molecular dock-
ing is performed to predict the structure of the aptamer–target complex. Last, molecular
dynamic simulations are performed for evaluations of the stability of the aptamer–target
binding modes.
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2.1. Secondary Structure Prediction for Aptamers

Aptamer secondary structure, an abstract form of tertiary structure, plays a pivotal role
in binding between aptamer and target molecules [18]. For example, the binding affinity
could be elevated by forming secondary structures such as G-quadruplex, hairpin loop,
and T-junction [19]. In addition, aptamer secondary structure contributes to the aptamer
3D structure prediction [20]. Different computational algorithms have been developed for
the prediction of aptamer secondary structures (Table 1).

Table 1. Methods for aptamer secondary structure prediction.

Software Website Address Developers Example

RNAfold
http://rna.tbi.univie.ac.at/cgi-

bin/RNAWebSuite/RNAfold.cgi
(accessed on 4 March 2021)

Energy minimization [13] RNAfold was selected to predict the
tetracycline aptamer [21]

Mfold http://www.unafold.org/
(accessed on 4 March 2021) Energy minimization [22] Four ssDNA aptamers were selected to

inhibit the activity of angiotensin II [23]

RNAstructure
https://rna.urmc.rochester.edu/

RNAstructure.html (accessed on 4
March 2021)

Energy minimization [24]
DNA aptamers against 17β-estradiol and
the secondary structures of the aptamers
were predicted using RNAstructure [25]

Vfold2D
http://rna.physics.missouri.edu/

vfold2D/ (accessed on 4
March 2021)

Energy minimization [26]

The secondary structures of aptamers
against human immunodeficiency virus-1

reverse transcriptase (HIV-1 RT) were
predicted from the sequence by using the

Vfold2D program [27]

CentroidFold
http:

//rtools.cbrc.jp/centroidfold/
(accessed on 4 March 2021)

Homologous sequence
information [28]

The CentroidFold web server was used to
predict the secondary structures of RNA
aptamers targeting angiopoietin-2 [29]

The computational principles are similar for DNA and RNA aptamers, though their
components are different. Current online servers for secondary structure prediction can be
classified into two major categories: free energy-based methods and sequence alignment-
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based methods [26]. RNAfold could predict the secondary structure with the minimum
free energy by inputting a single sequence [30]. RNAfold was selected to predict the
tetracycline aptamer [21]. Another free energy-based prediction method is Mfold [22].
The “M” in Mfold simply refers to “multiple.” In one study, four ssDNA aptamers were
selected to inhibit the activity of angiotensin II, and the Mfold program was used to predict
the secondary structure of the aptamers [23]. The RNAstructure online web server, a free
energy minimization method which was first reported in 1998, has been expanded to
contain many structure prediction methods, including maximum expected accuracy [31],
stochastic sampling [32], exhaustive traceback [33], and pseudoknot prediction [34]. The
secondary structures of DNA aptamers against 17β-estradiol were predicted using RNAs-
tructure [35]. Vfold2D is a free energy-based program that predicts RNA 2D structures
using the RNA motif-based loop entropies [36]. The secondary structures of aptamers
against human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT) were predicted
from the sequence by using the Vfold2D program [36]. The CentroidFold online web server,
a sequence alignment-based method, can predict common secondary structures for multi-
ple alignments of RNA sequences by using an averaged gamma-centroid estimator [28].
In the previous study, the CentroidFold web server was used to predict the secondary
structures of RNA aptamers targeting angiopoietin-2 [29].

There was no parallel comparison for the accuracy of these secondary structure
prediction methods. Therefore, we randomly chose five aptamers with known secondary
structures and performed a comparison analysis (Table 2). Firstly, the 3D structures of
five aptamers were downloaded from the Protein Data Bank (PDB) database. Secondly,
the RNApdbee server [37] aiming at extracting the RNA 2D structures from the PDB file
was selected to obtain the real 2D structures of aptamers. Then, we predicted the 2D
structures of the aptamers using RNAfold, RNAstructure, CentroidFold, Vfold2D, and
Mfold online servers. Finally, accuracies of these servers were calculated by comparing the
coincidence between the predicted and real 2D structures of the aptamers. As shown in
Figure 2, basically all prediction methods have high accuracy. RNAfold and RNAstructure
were the most accurate online servers to predict the 2D structures of the aptamers since
they predicted the same results, and their mean accuracies (0.94) were ranked first.

Table 2. The aptamers selected for accuracy validation of computational tools.

No. Aptamer Sequence PDB ID Structure

1
RNA aptamer for Bacillus
anthracis ribosomal protein
S8

GGGCAGUGAUGCUUCGGCAUAUCAGCCC 2LUN
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http://rnacomposer.cs.put.
poznan.pl/ (accessed on 4 

March 2021) 

Secondary structure elements 
[38]  

RNA aptamers targeting angiopoi-
etin-2 [29]  

3dRNA 

http://bio-
phy.hust.edu.cn/3dRNA 

(accessed on 4 March 
2021) 

Secondary structure elements 
[39]  

RNA aptamer targeting Streptococcus 
agalactiae surface protein [40]  
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2.2. 3D Structure Prediction for Aptamers
2.2.1. Structure Prediction for RNA Aptamers

Aptamers can form complexes with their target proteins to achieve diverse biological
functions. Since 3D structures determine the functions of biological molecules, the precise
3D modeling for aptamers is very important. Currently, four online web servers, RNA-
Composer, 3dRNA, Vfold3D, and SimRNA, primarily proposed for RNA 3D structure
prediction have been used to adopt structure construction for RNA aptamers. These four
online web servers could be divided into two categories, based on fragment methods
(RNAComposer, 3dRNA, and Vfold3D) and energy-based methods (SimRNA) (Table 3).
The input data for these online web servers include RNA sequence and RNA secondary
structures in the dot-bracket notation [38].

Table 3. Online web servers for the RNA aptamer 3D structure prediction.

Software Website Address Developers Example

RNAComposer
http:

//rnacomposer.cs.put.poznan.pl/
(accessed on 4 March 2021)

Secondary structure elements [38] RNA aptamers targeting
angiopoietin-2 [29]

3dRNA http://biophy.hust.edu.cn/3dRNA
(accessed on 4 March 2021) Secondary structure elements [39]

RNA aptamer targeting
Streptococcus agalactiae surface

protein [40]

Vfold3D http://rna.physics.missouri.edu/
vfold3D/ (accessed on 4 March 2021) Secondary structure elements [26]

RNA aptamer targeting
prostate-specific membrane

antigen [41]

simRNA https://genesilico.pl/SimRNAweb
(accessed on 4 March 2021) Lowest free energy [42] RNA aptamers targeting

angiopoietin-2 [43]

In the modeling process of RNAComposer, the input secondary structure is first
divided into fragments and then matched with 3D elements. Secondly, RNAComposer

http://rnacomposer.cs.put.poznan.pl/
http://rnacomposer.cs.put.poznan.pl/
http://biophy.hust.edu.cn/3dRNA
http://rna.physics.missouri.edu/vfold3D/
http://rna.physics.missouri.edu/vfold3D/
https://genesilico.pl/SimRNAweb
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assembles these matched 3D elements to form a complete 3D structure. The final 3D
structure of the RNA aptamer comes from the energy minimization of the complete 3D
structure. Hu et al. predicted the RNA aptamers’ 3D structures using RNAComposer and
then selected RNA aptamers targeting angiopoietin-2 with high binding affinity [29].

Another fragment-based 3D RNA structure method is 3dRNA; it employs the sec-
ondary elements, including the helix and loops [39]. It finds the 3D template for each
secondary element and then assembles the template together as per the final predictions.
An RNA aptamer targeting Streptococcus agalactiae surface protein was studied, and its 3D
structure was predicted by 3dRNA [40].

Similarly, Vfold3D identifies the motif, such as helices and loops in the RNA 2D
structure, and then finds the best templates for each motif [26]. Then, the 3D structure of
these templates is assembled, and energy of the structures is minimized to construct the 3D
structure of the whole RNA aptamer. In a study about selecting an aptamer targeting the
prostate-specific membrane antigen, the 3D structure of the RNA aptamer was predicted
by the Vfold3D online web server [41].

SimRNA, a computational method for RNA folding simulations, uses a coarse-grained
representation of the nucleotide chain and a knowledge-based energy function to produce
the most energetically favorable 3D conformations [42]. In a study about selecting the
aptamers targeting angiopoietin-2, the 3D structure of the RNA aptamer was designed
using the SimRNA web server [43].

We compared the accuracy of these 3D structure prediction methods. The process of
obtaining 3D structures and secondary structures of five aptamers was described in Part 2.1.
We predicted the 3D structure of the aptamers using the RNAComposer, 3dRNA, Vfold3D,
and SimRNA online servers. The root-mean-square deviation (RMSD), the measure of
the average distance between the atoms, was used to compare the accuracies of these
servers by aligning the predicted structures and the real 3D structures of aptamers from
the PDB database. As shown in Figure 3, basically all prediction methods have high
accuracies for the 3D structure prediction for short aptamers (less than 40 nt) and the
accuracies of RNAComposer, 3dRNA, and SimRNA were obviously reduced for long
aptamers (Aptamer 5, which is 83 nt). These results suggested that the optimal length for
aptamer structure prediction is less than 40 nt. Interestingly, Vfold3D was consistently
accurate for all aptamer structure predictions. The number of aptamer structures used in
this study was limited, and more original data are needed to further validate the accuracy
of these aptamer 3D structure prediction methods.

We also compared the variation of binding energies between the predicted structures
and the determined structures of aptamers in docking with the target proteins. Aptamer
2LUN and its target protein (B. anthracis ribosomal protein S8) was selected as the reference
group. The 3D structures predicted by Vfold3D, SimRNA, RNAcomposer, and 3dRNA
were used to check the variation of binding energies to the determined structure of the
aptamer. The 3D structure of the target protein was downloaded from the PDB database
(ID 4PDB), and the binding sites of the protein to the aptamer were set as LYS54, GLN80,
ALA114, SER130, and GLY147. The molecular docking was completed using ZDock
(Discovery Studio), which could calculate the binding energy values with the following
equation: binding_energy = complex_energy–(protein_energy + ligand_energy). As shown
in Table 4, the aptamer predicted by the Vfold3D website had the lowest binding energy
variation. Since the Vfold3D was consistently accurate in all aptamer structure predictions
and had the smallest variation to the determined structure of the aptamer in molecular
docking, Vfold3D is recommended to be used for the aptamer 3D structure prediction.



Int. J. Mol. Sci. 2021, 22, 3605 7 of 17Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. The accuracies of 3D structure prediction methods. 

We also compared the variation of binding energies between the predicted structures 
and the determined structures of aptamers in docking with the target proteins. Aptamer 
2LUN and its target protein (B. anthracis ribosomal protein S8) was selected as the refer-
ence group. The 3D structures predicted by Vfold3D, SimRNA, RNAcomposer, and 
3dRNA were used to check the variation of binding energies to the determined structure 
of the aptamer. The 3D structure of the target protein was downloaded from the PDB 
database (ID 4PDB), and the binding sites of the protein to the aptamer were set as LYS54, 
GLN80, ALA114, SER130, and GLY147. The molecular docking was completed using 
ZDock (Discovery Studio), which could calculate the binding energy values with the fol-
lowing equation: binding_energy = complex_energy–(protein_energy + ligand_energy). 
As shown in Table 4, the aptamer predicted by the Vfold3D website had the lowest bind-
ing energy variation. Since the Vfold3D was consistently accurate in all aptamer structure 
predictions and had the smallest variation to the determined structure of the aptamer in 
molecular docking, Vfold3D is recommended to be used for the aptamer 3D structure pre-
diction.  

Table 4. Variation of binding energies between the predicted structures and the determined structures of aptamers in 
docking with the target protein. 

Methods Energy_Mixed Energy_Protein Energy_Aptamer Energy_Binding Energy_Binding_Variation 
Reference −13,472 −7983 −3318 −2171 0 
Vfold3D −13,324 −7983 −3661 −1680 491 
SimRNA −13,112 −8232 −3852 −1028 1143 

RNAcomposer −12,971 −8117 −3832 −1022 1149 
3dRNA −13,229 −8159 −3834 −1236 935 

Figure 3. The accuracies of 3D structure prediction methods.

Table 4. Variation of binding energies between the predicted structures and the determined structures of aptamers in
docking with the target protein.

Methods Energy_Mixed Energy_Protein Energy_Aptamer Energy_Binding Energy_Binding_Variation

Reference −13,472 −7983 −3318 −2171 0
Vfold3D −13,324 −7983 −3661 −1680 491
SimRNA −13,112 −8232 −3852 −1028 1143

RNAcomposer −12,971 −8117 −3832 −1022 1149
3dRNA −13,229 −8159 −3834 −1236 935

2.2.2. Structure Prediction for DNA Aptamers

Although DNA aptamers have been widely used in biomedical applications, the
computational methods for predicting 3D structures of DNAs are fewer than their RNA
counterparts [20]. 3D structure prediction methods for RNAs are commonly used for DNA
structure prediction. RNAComposer could be used to generate 3D structures of RNAs
and then transformed to DNA structures [44,45]. For example, Iman et al. introduced a
workflow for predicting 3D structures for DNA aptamers [20]. The workflow could be
divided into four main steps. Firstly, the Mfold online web server was used to predict
the secondary structure of DNA aptamers. Secondly, the Assemble2/Chimera software
was used to construct 3D RNAs. Thirdly, the VMD software was used to translate 3D
RNA structures to 3D DNA structures. Finally, the VMD software was used to refine 3D
structures of DNA aptamers. The validation of the workflow was conducted in a pool
of 24 DNA molecules and aptamers with available 3D structures. The validation results
indicated that the predicted structures of DNA molecules were in good agreement with the
real 3D structures.
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2.3. Docking

Molecular docking is a crucial tool to predict the predominant binding mode(s) and
binding sites of the protein and the ligand. For molecular docking tools, there are two main
steps: firstly, searching all potential binding poses between the protein and the ligand;
secondly, providing a scoring function to evaluate these binding poses [46]. Among these
molecular docking tools, ZDOCK, MDockPP, AutoDock, AutoDock Vina, and DOCK have
shown successful results in aptamer design.

The ZDOCK program uses the fast Fourier transform (FFT) algorithm to search
and obtain all the binding poses and utilizes a combination of shape/electrostatics to
score these binding poses [47]. ZDOCK achieved a high predictive accuracy on protein–
protein docking benchmarks, with a > 70% successful rate in the top 1000 predictions [48].
Computational simulations of Ang2–aptamer interactions were performed by using the
ZDOCK and ZRANK docking functions in Discovery Studio 3.5 [29]. Another FFT-based
docking algorithm is MDockPP [49]. MDockPP globally samples all putative binding
poses, and then the binding poses are refined with a knowledge-based scoring function.
Validation results demonstrated that MDockPP correctly modeled for six out of 11 targets.
In a study about designing the aptamer targeting the prostate-specific membrane antigen
(PSMA), the molecular docking was completed by MDockPP [25].

DOCK uses a shape-matching approach to sample alternative binding poses [50], and
the binding poses are scored using the Assisted Model Building with Energy Refinement
(AMBER) molecular force field [51]. In a study for identifying cytochrome p450 aptamers,
a series of aptamers were designed using DOCK [52]. AutoDock is a suite of software for
molecular docking and contains two applications, AutoDock4 and AutoDock Vina [53].
AutoDock4 calculates the free energy to score binding poses, while AutoDock Vina uses
an empirical scoring function to score the binding poses [54]. AutoDock4 performs better
in more hydrophobic, poorly polar, and poorly charged pockets, while AutoDock Vina is
more successful in polar and charged binding pockets [55]. In the research about designing
anti-Ang2 aptamers, the molecular docking process was completed by AutoDock Vina [43].

2.4. Molecular Dynamics (MD)

After the molecular docking, MD simulations need to be performed to evaluate the
stability of protein–aptamer complexes and determine the binding energies [11]. The
typical MD process contains the initial molecular configuration describing the atomic
interactions and model physics, running a simulation, and recording observations from the
trajectory [56]. Such simulations evaluate millions of interactions of particles for billions
of time steps, which can require extraordinary amounts of computational power and
time. Currently, MD are available in many software packages, such as AMBER [57] and
GROMACS [58]. The binding energy of protein–aptamer complexes could be simply
calculated by subtracting the sum of protein energy and ligand energy from the complex
energy [59]. Shcherbinin et al. investigated and designed aptamers toward cytochrome
p450 [52]. The GROMACS 4.0 program was used to perform MD simulations for DNA
aptamers against human thrombin [60].

2.5. Structure Prediction of G-Quadruplex (G4) Aptamers

G4 are noncanonical nucleic acid structures formed by particular guanine-rich oligonu-
cleotides [61]. The main G4 component is the guanine tetrad, a cyclic planar arrangement
of four guanines associated through Hoogsteen hydrogen bonds. Besides, the cations
in the center of the G4 could further stabilize the G4 structure [62]. Guanine-rich ap-
tamers have the ability to fold into stable G4 structures under physiological conditions
and recognize different proteins [63]. The advantages of G4-structured aptamers contain
thermodynamical and chemical stability, low immunogenicity, and resistance to serum
nucleases [64]. G4-structured aptamers have been used as therapeutic and diagnostic tools,
such as anticoagulants [65] and anticancer agents [64].
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Structure determation tools such as NMR [66] and X-ray crystallography [67] have
been used to characterize G4 structures. These techniques are not suitable for scanning
multiple G4 structures, but in silico methods could identify G4 structures on a whole-
genome scale [68]. Puig et al. systematically summarized the computational methods for
G4 formation detection from DNA/RNA sequences. The G4 structure detection methods
contain the regular expression matching approaches, scoring approaches, sliding window
algorithms, and machine-learning models. Among these computational methods, qsfinder
(scoring approach) outperformed all the other prediction tools [68].

Apart from DNA/RNA sequences, the binding affinities of aptamers to their targets
could be influenced by buffered solutions and presence of other aptamers. For example, the
Tris/K+ buffer could favor the G4 structures formation and increase the affinity between
the aptamer and the target. On the other hand, the PBS/Mg2+ buffer could destabilize the
G4 structure and is unfavorable for the binding of aptamers to target proteins [69]. Metal
ions control the folding of G4 and are critical to the inhibitory activities of aptamers [70].
Interestingly, Troisi et al. showed that the binding of a G4 aptamer at one exosite to
thrombin increases the binding affinity of another aptamer to thrombin at a different
exosite [71].

3. Aptamer Affinity Prediction through Machine/Deep Learning

Structure-based methods are not suitable or capable of scanning and predicting the
affinity of a vast number of sequences to one target at the same time. The machine-/deep-
learning methods could be directly and efficiently used for prediction of massive sequences
from the next-generation sequencing data. In addition, machine-/deep-learning methods
could provide more accurate affinity prediction.

Machine learning consists in extracting knowledge from data and determining the
internal relationships that can improve themselves without human intervention [72]. Deep
learning is one of the machine-learning techniques and imitates the human brain with deep
networks capable of learning and analyzing data [73]. Both deep learning and machine
learning are subsets of artificial intelligence. To the best of our knowledge, some studies
have been done to identify high binding affinity aptamers by machine learning and deep
learning [10,74].

3.1. Machine Learning in Aptamer Prediction

Machine learning (ML) methods can be divided into feature-based ones and similarity-
based ones. The feature-based methods use descriptors to generate feature vectors while
the similarity-based methods use the “guilt by association” rule [15]. The binding affinity
between the aptamer candidates and their targets are predicted based on the similarities
between the candidates. The similarities are commonly evaluated by clustering analysis
via sequence- or structure-based features.

3.1.1. Sequence-Based Clustering

Sequence clustering tools discover the closely related sequences by identifying sim-
ilarities between the actual sequences (A/T/G/Cs) of different aptamers in a SELEX
pool. These methods run fast since they treat aptamers as simple sequence strings, and
therefore leverage previously developed highly efficient string comparison algorithms.
AptaCluster can calculate the similarities between aptamer sequences based on the local
sensitive hashing (LSH) method, which can compare sequences with a reduced number of
dimensions [75]. FASTAptamer and PATTERNITY-Seq both use the Levenshtein distance
to cluster sequences [10,76]. The Levenshtein distance is determined by calculating the
minimum number of insertions/deletions/substitutions needed to convert one word into
another. By only using strings of A/T/G/Cs to represent aptamers, these sequence cluster-
ing models are able to achieve a high speed of analyzing large SELEX datasets. However,
the accuracy is a drawback of these models since structural information which is critical to
determine the affinity of an aptamer’s binding is not considered.
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3.1.2. Structure-Based Clustering

Structure-based clustering models attempt to cluster aptamers based on shared struc-
tural motifs and information and predict the binding affinity based on similarity to the
aptamers with known affinity to targets. AptaTrace and APTANI are two models both
clustering aptamers based on their structure motifs [77,78]. AptaTrace tries to associate
each structural motif observed in a library of aptamers with its impact on enrichment
levels. What is more, in each selection round, a specific structure can be predicted for each
aptamer, and the candidates are subsequently ranked by structural enrichment. APTANI
is a tool based on the AptaMotif algorithm to analyze SELEX data [79]. AptaMotif is
an ensemble-based method to extract structure motifs efficiently from SELEX-derived
aptamers. SMART-Aptamer was developed to identify high binding affinity aptamers by
multilevel structural analysis and unsupervised machine learning [80]. This model uses
both motif finding and cluster-based strategies while considering the overall secondary
structure. The RaptRanker uses clustering, scoring, and ranking methods to identify ap-
tamers with high binding affinity [81]. Firstly, the unique sequences in the dataset are
determined, and the nucleotide sequence and secondary structure features are used to clus-
ter all subsequences of the unique sequences. Then, to identify aptamers with high binding
affinity, the average motif enrichment (AME) score is applied to each unique sequence and
calculated based on the frequency of subsequence clusters. These models can incorporate
domain knowledge and capture structural information about aptamer binding; they tend
to take significantly longer time to run since they need to predict secondary structures.
Additionally, these tools are based on clustering which may be biased towards aptamers
that are highly similar to the already observed sequences. Therefore, these models limit
our ability to optimize SELEX results.

3.1.3. Feature-Based Machine Learning

Supervised machine learning consists in learning a function from labeled training
data, and this function can predict outcomes for unlabeled data [82]. There have been
some studies to predict the aptamer binding ability by supervised machine learning.
Li’s team proposed a method to integrate the features derived from both aptamers and
their target proteins in the Aptamer Base [83,84]. They used the maximum relevance
minimum redundancy (mRMR) method and the incremental feature selection (IFS) method
to select the features, and then a random forest model was developed. Aptamers against
corresponding targets including human interleukin 17A, prothrombin, and human toll-like
receptor 3 ectodomain were used to test the accuracy of this method. Zhu et al. reported an
ensemble strategy to predict aptamer–protein interaction based on sequence characteristics
derived from aptamers and the target proteins in the same dataset as in Li’s study [85]. A
sparse autoencoder was applied to characterize features for target protein sequences. Then,
gradient boosting decision tree (GBDT) and incremental feature selection (IFS) methods
were applied to obtain the optimum combination of sequence characters. Eventually,
a prediction model was constructed based on three sub-support vector machine (SVM)
classifiers. Nevertheless, these models are empirical and knowledge-based and require
extensive training. Moreover, these shallow machine learning models with sequence data
usually cannot fully learn key characteristics (such as distance correlation), which leads to
inaccurate prediction.

3.2. Deep Learning in Aptamer Prediction

Deep-learning models may have better performance than machine-learning models
because they learn the features without the requirement of feature engineering, thus can
model long-range and multi-body atomic interactions [74]. The representation of input
data and the deep-learning architecture are two main aspects in deep-learning applications.
According to the input data, the current studies can be divided into sequence-based and
structure-based models to predict the aptamer–target binding affinity [15]. Meanwhile,
the widely used deep-learning architecture in aptamer studies is based on the recurrent
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neural network (RNN), the convolutional neural network (CNN), or the general regression
neural network (GRNN). RNN-based models are commonly used with aptamer sequences
since they can process the sequenced information as inputs in deep networks [86]. The
GRNN is slightly different from radial basis neural networks and the method is that every
training sample represents a mean to a radial basis neuron [87]. CNN-based models can
train and test input data through a series of convolution layers with filters, pooling and
fully connecting layers, thus they are often used to predict the binding ability based on
structural information [88].

Despite the power and accuracy of deep learning models to predict the aptamer
binding affinity, few applications have been reported so far. Michael et al. predicted
aptamer binding affinity by applying the conditional variational auto encoder (CVAE)
model for aptamers against a small molecule daunomycin [74]. The CAVE model used
a bidirectional long short-term memory network (LSTM), an RNN-based method, as
the encoder and a series of parallel feedforward networks as its decoder. This model
can capture the complex relationship of aptamer sequences to predict the novel aptamer
sequence with high affinity without inferring the structural data. In addition, Yu et al.
developed quantitative structure–activity relationships (QSAR) based on the GRNN to
predict the binding affinity between aptamers and the influenza virus [89]. Molecular
descriptors were calculated via the GRNN model for extracting the structural features from
aptamer sequences. These studies demonstrated the feasibility to calculate the aptamer
binding affinity by deep-learning models and to predict novel aptamer candidates with
higher affinity.

4. Perspectives

Here, we attempted to suggest some possible future avenues to improve prediction
methods by several subsections based on the different aspects of improvements towards
prediction of aptamer binding affinity.

4.1. Machine/Deep Learning in Aptamer 2D Structure Prediction

Recently, machine-learning methods such as KNetfold and SPOT-RNA aiming at
predicting secondary structures of RNA have been considered to provide a novel method
for optimizing the predicted secondary structures of aptamers. KNetfold, a hierarchical
network of k-nearest neighbor classifiers, uses RNA sequence alignment to predict a
consensus RNA secondary structure [90]. KNetfold showed a significant improvement
compared with the secondary structure prediction methods PFOLD and RNAalifold [90].
SPOT-RNA is built by two-dimensional deep neural networks and transfer learning [91].
Initially, models of ResNets and LSTM networks are trained in a bpRNA dataset which
contains more than 10,000 nonredundant sets of RNA sequences with annotated secondary
structure from bpRNA at the 80% sequence identity cutoff [92]. Then, the models obtained
from the bpRNA dataset are transferred to further train on base pairs derived from high-
resolution nonredundant RNA structures (less than 250). SPOT-RNA, with a freely available
server and standalone software, improved by around 10% in the Matthews Correlation
Coefficient (MCC) and F1 score over the next best program by comparison [91].

4.2. Machine/Deep Learning in Aptamer 3D Structure Prediction

For protein design problems, progress in the field of deep generative models has
spawned a range of promising approaches such as AlphaFold (the AlphaFold team).
It could predict 3D structures of proteins with high accuracy, even for proteins with
fewer homologous sequences. The prediction process of AlphaFold consists in (1) making
predictions of the distances between pairs of residues; (2) constructing a potential of mean
force by residue distances to describe the shape of a protein.

On the other hand, with the development of computational methods, some researchers
tried to apply deep-learning methods to achieve 3D genome folding from DNA sequences
which may inspire the optimization of 3D structure prediction for DNA. Akita could predict
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genome folding from DNA sequences with a deep convolutional neural network [93].
Compared to the previous machine-learning approaches, Akita could also predict the
effects of DNA variants and the derived features of genome folding. Akita consists of the
“trunk” based on Baseji and the “head”, whose functions include learning DNA motifs
with combined grammar sin genome folding and recognizing the features relationships.
Akita could only represent DNA genome folding and it is not enough to predict the details
of 3D structures for DNA aptamers. However, this method showed the potential of deep
learning in 3D structural prediction of DNA aptamers.

4.3. Improvement and Potential of Machine/Deep Learning in Aptamer Prediction

For machine learning, there have been some models applied in predicting binding
affinity of small-molecule drugs, which can be great references for predicting aptamer
affinity. The Kronecker regularized least squares (KronRLS) and SimBoost approaches were
developed to achieve this goal; both are based on the hypothesis that similar drugs tend to
have similar targets [94,95]. KronRLS’s features include different types of drug–drug and
protein–protein similarity score matrices defined through the Kronecker product of drugs
and targets. SimBoost is a non-linear method that uses gradient boosting regression trees
to predict drug–target binding affinity. Similarity matrices and constructed features are
both used in this model. Comparing to the simple clustering methods, KronRLS can better
reflect the true complexity of the drug–target prediction problem in practical applications
since it is based on a more realistic formulation of the drug–target prediction problem.
The regularized least squares approach (RLS) has been used in many applications [96].
SimBoost overcomes the limitation of obtaining only linear dependencies of drug–target
binding. Furthermore, SimBoost applies a confidence score to a prediction because of
the bias in the training datasets. In aptamer binding affinity prediction, we can also
apply the RLS model or gradient boosting regression trees to build the prediction model.
Ashtawy et al. proposed a machine learning-based score function to predict Drug-Target
Binding Affinity (DTBA) between drugs and targets [97]. This score function utilizes a
total of six regression methods, including multiple linear regression (MLR), multivariate
adaptive regression splines (MARS), k-nearest neighbors (kNN), support vector machines
(SVM), random forests, and boosted regression trees (BRT). They use the training dataset in
collaboration with cross-validation to obtain appropriate values of the parameters because
most of these machine-learning methods benefit from parameter adjustments before their
use in prediction. This model can outperform other models with the best or near-best
performance in most datasets because it integrates several machine-learning models. For
prediction of aptamer binding affinity, the model can get more information from the
training data, find true interrelationships, and provide high prediction accuracy if we could
combine several machine-learning models.

For deep learning, here, we summarized several concepts of deep-learning models
applied in small-molecule drug discovery, which may improve the accuracy and robustness
in current aptamer studies: (a) CNN-based models to extract structural information; In
the Pafnucy algorithm, a CNN model was applied to extract the input drug structure
with 3D grids and 4D tensors [98]; 3D-CNN models have been used to build multiple
AK-Score predictors with a better performance than a single predictor [99]; (b) artificial
neural network (ANN) models to combine multiple models; for the BgN-Score (ensemble
neural networks through bagging) and the BsN-Score (ensemble neural networks through
boosting), total features are ensembled from each protein–ligand complex and then boosted
in a stage-wise fitting manner with ANN learners [100]; it has a significant improvement
with ANN comparing to a single neural network; furthermore, ANN-based ensembling
approach does not need to further modify network architectures and can be easily applied
to most existing models; (c) combination of RNN-based and CNN-based models; in the
DeepAffinity algorithm [101], input protein sequences are encoded by an RNN-based
Seq2seq model, which has achieved great success in modeling sequence data in natural
language processing [102]; then, the decoded features are trained in a CNN-based model;
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attention mechanisms are also jointly applied to focus on a certain part, compound, or
protein; (d) the word-based CNN model to represent the sequence information: word-
based methods use a set of words to represent the sequence and can detect shorter lengths
of residues that represent protein characteristics, and thus this aspect is considered as
an advantage comparing to character-based methods; DeepDTA and WideDTA both use
CNN to form prediction models for drug–target binding affinity [103,104]; in the input
representation part, DeepDTA is character-based, while WideDTA is word-based; fur-
thermore, WideDTA incorporates four text-based information sources: protein sequence,
ligand sequence, motif and domain sequences for proteins, and the maximum common
substructures (MCS) sequence for the ligand, which provides more information than the
focus only on the protein–ligand sequence; as a result, WideDTA features a better per-
formance than DeepDTA; (e) generative adversarial networks (GANs)-based methods to
improve the performance of a large database: GANsDTA, a semi-supervised GANs-based
method [105], generates fake samples according to a given noise distribution. Then, all the
fake and real samples are input to the discriminator to train a local feature extractor for
better classification. As a result, a GANs-based model can achieve similar performance
to DeepDTA and it may achieve better prediction for large datasets. Diagrams of four
popular deep-learning models (ANN, GAN, RNN-based LSTM, and CNN) are shown in
Figure 4, as an illustration of different learning processes among these algorithms. These
deep-learning models all use neural networks to learn from large data, which is inspired
by the human brain. They all have the input layer and the output layer. Figure 4a is an
artificial neural network (ANN), which consists of the input layer, hidden layers, and
the output layer. Every node in one layer is connected to other nodes in the next layer.
Figure 4b is a generative adversarial network (GAN), which has two main components: a
generator model for generating new data and a discriminator model for classifying whether
the input data are real, come from the domain, or fake, generated by the generator model.
Figure 4c is an RNN-based long short-term memory networks (LSTM), which consists of
the input gate, the output gate, and the forget gate. LSTMs take inputs from the previous
timestep into account when modifying the model’s memory and input weights. Figure 4d
is a convolutional neural network (CNN), which consists of convolution layers with filters,
pooling layers, fully connected layers (FC), and softmax functions. CNNs are often used in
image research.
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5. Conclusions

Structure-based methods are the most used in computer-aided drug design. Advanced
machine-/deep-learning models have witnessed successes in predicting the binding abil-
ities between targets and ligands in drug discovery and thus potentially offer a robust
and accurate approach to predict the binding between aptamers and targets. More models
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could be applied for machine/deep learning for aptamer binding prediction. Moreover, a
combination of structure-based and machine-/deep-learning methods could be a promis-
ing approach in aptamer–target binding ability prediction. This review could facilitate the
development and application of high-throughput and less laborious in silico methods for
aptamer selection and characterization.
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