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Abstract: The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regu-
lating responses to environmental stress and inflammation. There is an ever-increasing plethora of
physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division
and embryonic development to the control of a multitude of diseases including retinal, cardiovascular,
and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a
viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence
supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical
p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving
p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the
classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has
only been characterized during pathophysiological stimulation. Recent studies have linked atypical
signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes,
complications during pregnancy, and bacterial and viral infections. Additional studies are required
to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the
development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively
inhibit pathological p38 signaling in a wide array of diseases.
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1. Introduction

The p38 mitogen-activated protein kinase (MAPK) family are critical cellular signaling
regulators that drive many physiological and pathophysiological pathways. Therefore, it is
not surprising that since their discovery in 1994 [1], over 45,000 research articles and reviews
have been published describing the mechanism of p38 activation and the role of p38 during
development and disease progression. The broader MAPK family includes c-Jun activated
Kinase (JNK), extracellular signal-related kinase 1 and 2 (ERK1/2), and protein kinase
B, also known as AKT kinase (AKT), all of which are critical in regulating a multitude
of cellular processes from cell division to cell death and everything in between. Cellular
stimuli/stress induces the activation of MAPKs, including hormones, growth factors,
and cytokines, as well as environmental stressors such as osmotic shock, UV radiation,
and ischemic injury [2]. As such, p38 MAPKs have been the subject of intense study to
generate clinically effective therapeutics. Despite ongoing clinical trials for many diseases,
including ischemic cardiac damage, COPD, multiple cancers, various neuropathies, and
ARDS/COVID-19, only one non-selective p38 inhibitor (pirfenidone) has been approved
for clinical use to treat idiopathic pulmonary fibrosis [3,4]. An underlying contributor to the
loss of efficacy and on-target toxicity of these drugs is thought to be due to the ubiquitous
and critical role p38 plays in normal physiology. Additionally, almost all current approaches
have centered around therapeutics that target the ATP-binding site of p38 resulting in
blockade of all p38 activity, both physiological and pathophysiological, regardless of the
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stimulus. Therefore, there is an increased focus on researching the downstream signaling
targets of p38 induced only during disease progression, such as the critical inflammatory
kinase MAPK-activated protein kinase 2 (MK2), or the alternative p38 activation pathways
selectively induced during inflammation and disease progression (see Figure 1).
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ronmental stress trigger the activation of a three-tiered kinase cascade. Environmental or inflammatory ligands induce the 
Figure 1. Mechanisms of mitogen-activated protein kinase (MAPK) p38 activation: (A) Inflammatory ligands and envi-
ronmental stress trigger the activation of a three-tiered kinase cascade. Environmental or inflammatory ligands induce
the activation of MAP3Ks through a complex array of different mechanisms. MAP3Ks then activate the critical MAP2Ks,
MKK3, MKK6, or (less commonly) MKK4. These MAP2Ks can then differentially activate the four isoforms of p38 (α, β,
γ, and δ). (B) The known mechanisms for atypical p38 signaling are (i) GPCR stimulation triggers G-protein dependent
c-Src phospho-activation of the E3 ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-2
(NEDD4-2). GPCRs recruit and are ubiquitinated by NEDD4-2. K63 ubiquitin chains recruit the ubiquitin-binding adaptor
protein TAK1-binding protein 2 (TAB2). In turn, TAB2 then recruits TAB1, which binds and induces autophosphorylation of
p38α. (ii) Oxidative stress triggers TGFβ activation, which drives TAB1 and p38 activation, although the exact mechanism is
unclear. (iii) Ischemia or hypoxia events drive activation of AMP-activated protein kinase (AMPK), which in turn promotes
the formation of the TAB1-p38α complex and p38α autophosphorylation. This process is negatively regulated by the heat
shock protein 90 (HSP90)-Cdc37 complex. (C) T-cell receptor (TCR) ligation to major histocompatibility complex (MHC)
drives intracellular activation of the src-family zeta-chain-associated protein kinase 70 (Zap70). Zap70 phosphorylates p38
at tyrosine 323, enabling autophosphorylation of p38α, or β.

In light of the sheer volume of p38 research articles and the wealth of excellent
reviews available, it would be impractical and redundant to cover all aspects of p38 MAPK
signaling. Therefore, this review will initially provide a brief overview of the history
of p38 and the many roles it plays in disease progression. This will be followed by a
more focused examination of the novel atypical p38 activation pathways, specifically
including atypical p38 activation by GPCRs, their implications for disease progression, and
therapeutic intervention. In comparison to classical p38 activity, atypical p38 signaling
has been understudied with only 44 publications, however, this growing body of work
represents a fresh perspective on p38 activity and function in disease.
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2. Classical Activation of Mitogen-Activated Protein Kinases (MAPK)

The classical pathway for MAPK activation is through a three-tiered kinase cascade,
where MAP kinase kinase kinases activate a MAP kinase kinase which in turn activate
MAPKs such as p38 (Figure 1). The most direct regulators of MAPK activity are the
serine/threonine MAP2Ks that phosphorylate conserved threonine (Thr) and tyrosine (Tyr)
sites on the activation loop of MAPKs [5]. Phosphorylation of the activation loop induces a
conformational change to open the substrate-binding site [6]. One distinct feature of the
subfamilies of MAPKs is their activating phosphorylation motifs. C-Jun N-terminal kinases
(JNK) feature a Thr-Pro-Tyr sequence, extracellular-signal-regulated kinase (ERK) have
a Thr-Glu-Tyr sequence, and p38 MAPK uses Thr-Gly-Tyr [7]. P38 MAPK was initially
discovered as a MAP kinase activated in response to endotoxin with a sequence distinct
from MAPK1 (ERK1) [1]. Further studies revealed p38 to be activated by a pair of unique
MAP2Ks (MAPKK3/MKK3 and MAPKK6/MKK6) [6,8].

2.1. Activation of p38 by MAPKK3 and MAPKK6

MKK6 and MKK3 share a high degree of sequence homology with an 86% amino
acid identity and selectively activate p38 MAPK over other MAP2Ks [7,9]. MKK3/6 are
ubiquitously expressed in all tissues, although MKK3 and MKK6 have differing expression
levels [10,11]. While MKK3/6 preferentially activate p38 MAPK, they can also activate
other MAPK family members, such as JNK [12]. However, MKK3/6 are essential for
classical p38 activation through phosphorylation of threonine [T180] and tyrosine (Y182)
residues on the active loop of p38 [13]. Although under extreme conditions, p38 can also
be activated by MKK4, typically selective to JNK [14]. The functional role of MKK3/6
is further emphasized through embryonic lethality seen in MKK3/6 double knockout
mice (mkk3−/−, mkk6−/−), suggesting functional conservation [14], while recent evidence
demonstrates that MKK3 and MKK6 can differentially activate specific p38 isoforms (see
below) [15].

MAP2Ks are activated by MAP3Ks, which are less specific than MAP2Ks and acti-
vate an array of regulatory proteins. MAP3Ks are categorized into three broad families:
MAPK/ERK kinase (MEK) kinases, mixed lineage kinases (MLKs), and thousand and
one kinases (TAOs) [2]. Several factors regulate MAP3Ks, such as membrane recruit-
ment, oligomerization, and phosphorylation [16]. Over 50 different MAP3Ks and adaptors
can regulate MAP2K activation; many of the activation and recruitment mechanisms are
still being actively investigated and substantial gaps remain in the pathways for activa-
tion. One example for adaptor-mediated activation is the MAP3K transforming growth
factor-β-activated kinase (TAK1)-dependent MKK3/6 activation. TAK1 has a direct role in
p38 MAPK activation as a mediator of the transforming growth factor-β signaling path-
way [9,12], and several other common inflammatory ligands including IL-1β, TNFα, and
LPS [17–19]. Critically, TAK1 is activated through direct binding to the adaptor proteins,
TAK1-binding protein 1 and 2 (TAB1 and TAB2) [20]. In contrast to the MKK3/6-dependent
pathway, recent studies have identified two atypical activation pathways, discussed below.

2.2. Distribution, Activation, and Function of the p38 Isoforms

There are four isoforms of p38 (α, β, γ, and δ). MAPK p38α is the founding member
of the family and is ubiquitously expressed throughout the body. The four isoforms
share a high degree of homology, p38β with 74% homology to p38α, p38γ with 63%
homology to p38α, and p38δ with 60% homology to p38α [21–23]. Contrary to p38α, the
other isoforms display differential tissue expression patterns. P38β is expressed mostly
in the brain, heart, and lungs, p38γ is only expressed in skeletal muscle, and p38δ is
expressed in the lungs and kidneys [13,21–23]. It is therefore not surprising that there is
predicted to be little to no functional redundancy in their activity. However, MKK3 and
MKK6 can differentially activate the separate isoforms, but all isoforms can be activated
by MKK6 [15]. For example, MKK3/6 are both essential for activation of p38β and p38γ
after environmental stress. While MKK6 regulates p38γ after TNFα stimulation, MKK3
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activates p38δ after UV radiation, hyperosmotic anisomycin, and TNFα stimulation [15].
Furthermore, p38δ is activated by MKK4 more so than the other isoforms [24]. Even
though p38α and p38β experience similar phosphorylation levels, activation of p38β is
more often carried out by MKK6 [15,21]. Opposingly, MKK3 is demonstrated to be the
primary activator of p38δ [15]. Whereas, p38γ, can be activated by MKK3 and MKK6 [15].

Notably, p38α is the only isoform that is essential for embryonic development, where
it regulates placental vasculogenesis and morphogenesis [25,26]. Additionally, while some
studies argue for it, p38β cannot compensate for p38α-controlled embryonic development,
and it has instead been suggested that p38β is redundant when in the presence of a
functional p38α [27,28].

The differential activation and signal transduction by MAPKs appear to be in part
regulated by binding to specific scaffold proteins [29–32]. Scaffolding proteins residing
in different subcellular locations may assist in the spatiotemporal activation of MAPKs.
An example of which is osmotic stress that induces the formation of a complex, including
Rac GTPase osmosensing scaffold for MEKK3 (OSM), MEKK3, and MKK3 for specific
activation of p38 [33]. In comparison, the PB1 domain of MAPK kinase of ERK kinase
(MEK2) drives endosomal ERK1/2 activation [34]. Furthermore, recent studies have shown
that GPCR ubiquitination causes p38α activation through an atypical mechanism, utilizing
TAB1 and TAB2 to form a signaling complex at endosomal structures to enhance vascular
inflammation and endothelial barrier disruption [31].

2.3. P38 Substrate Activation

As the downstream signal transduction pathways for p38 are highly complex, we refer
the reader to several outstanding and exhaustive reviews [35–37]. Briefly, the first down-
stream targets identified for p38 MAPK were the mitogen-activated protein kinase-activated
protein kinase 2 and 3 (MAPKAPK2, MAPKAPK3, or MK2, MK3, respectively) [38,39].
Phosphorylated MK2 and MK3 can then further activate other substrates such as cyclic
AMP-responsive element binding protein (CREB) [40] and heat shock protein 27 (HSP27)
to regulate actin filament remodeling [41]. MK2 is also an important regulator of post-
transcriptional regulation of gene expression through modulation of adenylate-uridylate-
rich elements (ARE)-binding proteins tristetraprolin (TTP) and HuR (reviewed here [42]).
However, mitogen- and stress-activated kinase 1 and 2 (MSK1 and MSK2) translocate to
the nucleus to mediate activation of nucleosome components and transcription factors [43].

There are over 100 substrates identified for the p38 family with selective activation
of specific substrates determined by the stimulation mechanism, including inflammation,
DNA repair, cell differentiation, stem cell physiology, stress responses, and neuronal func-
tion [35,36,44]. An interesting problem in the field is determining how p38 can selectively
modulate subsets of target proteins in different disease settings. One clue is that activation
of p38 never occurs in isolation, with multiple signaling pathways working in synergy to
regulate physiological outcomes. P38 substrate expression levels are often dynamically
regulated and cross-talk between different signaling pathways are likely to contribute to
the availability of specific substrates. Likewise, the magnitude of p38 activation, which
is often robustly activated during disease is likely to influence which substrates can be
phosphorylated and for how long. This raises the question of how p38 MAPK signaling
can be turned off.

2.4. Signal Termination

With p38 MAPK playing a critical role in many cellular functions, dephosphorylation
of both threonine and tyrosine residues in the active loop is required for inactivation
of the kinase and signal termination. The most widely studied family responsible for
dephosphorylating p38 is the dual specificity phosphatases (DUSPs) also referred to as
MAPK phosphatases (MKPs). The DUSP family can dephosphorylate all members of the
MAPK family. However, DUSP1/MKP1, DUSP10/MKP5, DUSP26/MKP8, and DUSP12
display a higher degree of specificity to p38α than the other DUSP family members [45–47],
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whereas no DUSPs have been reported for p38δ and p38γ. Recent studies have shown that
temporal oscillations of MKP1 are key to robust proinflammatory gene expression [48].
Additional studies are required to determine whether the same phenomenon is displayed
by all DUSP family members and whether MKP1 oscillations are required for all p38α
activity. In addition to the DUSP family members, protein phosphatase 2 (PP2) [49],
Wip1 [50], and calcyclin-binding protein/Siah-1 interacting protein (SIP1) [51] have all
been shown to dephosphorylate p38. However, the broader roles of these phosphatases in
p38 activity have yet to be established.

2.5. Molecular Inhibition

Since its discovery, p38 has been recognized as a potentially critical therapeutic tar-
get [52,53]. Multiple small molecule p38 kinase inhibitors have since been developed
with tremendous specificity, largely owing to the rich structural information generated
by X-ray crystallography studies available for the p38 family of kinases [54–56]. Many
of these compounds have entered clinical trials, as shown in Table 1. These include in-
hibitors for the p38 kinase family (doramapimod, ralimetinib, and losmapimod) as well
as more specific p38α inhibitors (PH-797804 and related pyridinone scaffold inhibitors).
Pyridinone inhibitors exploit a unique binding model of a dual H-bond motif involving
Met109 and Gly110 residues with a flipped backbone conformation of Gly110 in its apo
state [57,58]. The unique methionine and glycine configuration in the gatekeeper region is
only conserved in the human kinome in p38α/β and Myt-1, the latter of which bears little
kinase resemblance to the former and has not shown to be cross-reactive with pyridinone
scaffold inhibitors [59]. Specific p38 inhibitors almost invariably have been designed to
target p38 kinase activity, primarily through binding to or near the ATP-binding pocket
and display effectiveness at selectively inhibiting p38 in preclinical studies [35,57]. In
early-stage investigations, many of these inhibitors show anti-inflammatory efficacy and
favorable toxicity profiles [60–64], but so far none have achieved prolonged efficacy against
chronic inflammatory disease, and only the p38γ inhibitor pirfenidone has reached the
market for treatment of idiopathic pulmonary fibrosis. Many promising compounds have
been reassigned for further investigation as combinatorial therapies such as repurposing
ralimetinib for combination therapy in breast cancer (ClinicalTrials.gov ID: NCT01663857).
Such an approach has proven effective for improving existing therapies, as seen in a study
of doramapimod administration alongside antibiotics improving mycobacterium clearance
in mice [65], and the well-studied losmapimod is currently being evaluated in a clinical
trial for safety and efficacy to treat SARS-CoV-2 (ClinicalTrials.gov ID: NCT04511819).

The consistent short-lived efficacy of current inhibitors suggests that compensatory
inflammatory pathways are upregulated over time in response to total p38 activity inhibi-
tion. While many well-designed investigations have studied p38 as a therapeutic target,
Much remains unknown about p38 subcellular localization and what controls its access to
downstream substrates after stimulation, especially pertaining to MKK3/6 verses atypical
activation. Current investigations into inhibitor design are shifting away from targeting
the catalytic site of p38 and instead focus on substrates and downstream signaling path-
ways [66–71]. Future therapeutics could avoid long-term efficacy issues from targeting
the catalytic site by focusing on alternate druggable sites on p38. Several promising leads
have recently been discovered. One example is the lead compound UM101, which binds
to the glutamate-aspartate (ED) substrate-docking site rather than the catalytic domain.
UM101 is selective for p38α and able to suppress LPS-induced acute lung injury in mice,
inflammation, and endothelial barrier disruption in mice, while leaving anti-inflammatory
MSK1 activation intact [67]. Another example targets a unique binding pocket in p38α,
which is only bound by the adaptor protein TAB1 during atypical p38 activation. A vir-
tual screen has revealed several promising lead compounds [66] and is described in the
following section. However, these compounds have yet to be assessed in cell-based or
animal models.
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Table 1. Clinical trials targeting p38 mitogen-activated protein kinase (MAPK).

Compound Isoform Specificity Diseases Targeted Identifier

AZD7624 p8α, p38β Endotoxin-induced
inflammation, COPD

NCT01937338
NCT02238483

LY2228820
(Ralimetinib) p38 pan-inhibition

Ovarian cancer,
glioblastoma (both

concomitant), metastatic
breast cancer

NCT02322853
NCT02364206
NCT01663857
NCT01393990

LY3007113 p38 pan-inhibition Metastatic cancer NCT01463631

VX-745
(Neflamapimod) p38α

Alzheimer’s disease,
Huntington disease,

Lewy body dementia

NCT03980938
NCT04001517
NCT03402659
NCT03435861

VX-702 p38α Rheumatoid arthritis NCT00395577
NCT00205478

PH-797804 p38α Rheumatoid arthritis,
COPD

NCT01321463
NCT00559910
NCT01589614

SB681323
(Dilmapimod) p38α

Neuropathic pain, COPD,
ALI/ARDS, Coronary

heart disease

NCT00134693
NCT00564746
NCT00390845
NCT00144859
NCT00320450
NCT00996840
NCT00291902

Losmapimod
GW856553X or

GSK-AHAB
(Losmapimod)

p38 pan-inhibition

Acute coronary
syndrome, COPD,
neuropathic pain,

SARS-CoV-2,
atherosclerosis, acute

coronary syndrome, focal
segmental

glomerulosclerosis,
facioscapulohumeral
muscular dystrophy

NCT04264442
NCT04511819
NCT02000440
NCT02299375
NCT04003974
NCT01541852
NCT01756495
NCT02145468
NCT01218126
NCT00633022

BMS-582949 p38 pan-inhibition Arterial inflammation,
atherosclerosis

NCT00162292
NCT00399906

ARRY-371797 p38α

LMNA-related dilated
cardiomyopathy,

rheumatoid arthritis,
osteoarthritis of the knee,

ankylosing spondylitis

NCT02351856
NCT03439514
NCT00729209
NCT01366014
NCT00811499

PF-03715455 p38α Asthma, COPD NCT02219048
NCT02366637

BIRB 796
(Doramapimod) p38 pan-inhibition

Crohn’s disease,
plaque-type psoriasis,
rheumatoid arthritis,
endotoxin-induced

inflammation

NCT02214888
NCT02209753
NCT02209792
NCT02209779
NCT02211170

SCIO-469
(Talapimod) p38α Rheumatoid arthritis,

multiple myeloma

NCT00095680
NCT00087867
NCT00043732
NCT00508768

Pirfenidone p38γ Idiopathic pulmonary
fibrosis NCT03208933

BCT-197
(Acumapimod) p38α COPD NCT01332097

NCT02700919

The burgeoning generation of selective atypical targets provides a promising new
direction for clinically viable approaches for anti-p38 therapeutics. Furthermore, it is
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predicted that the combinatory therapies described above will provide a template moving
forward to enable clinically viable strategies to target p38 activity.

3. Mechanisms of Atypical p38 Activation

MKK3/6 kinase activity is widely considered to be the primary mechanism for p38
phosphorylation. Nevertheless, there is a growing body of evidence to support alterna-
tive mechanisms for p38 activation (Figure 1). Two “atypical” or MKK3/6 independent
mechanisms exist that facilitate activation of the p38α through autophosphorylation in cis,
true autophosphorylation rather than phosphorylation of a neighboring p38 [72]. The first
example of atypical p38 signaling was discovered in 2002, when p38α was shown to directly
associate with transforming growth factor β-activated kinase 1 (TAK1) binding protein 1
(TAB1), an adaptor protein critical for both TGFβ and TAK1 signaling [73]. During osmotic
stress responses [74], TAB1 is responsible for oligomerization and autophosphorylation of
TAK1 after O-glycosylation, leading to TAK1 activation [75,76]. Conversely, in atypical p38
signaling, TAB1 binds directly and selectively to two discrete binding domains on p38α.
Specifically, TAB1 residues 404–412 interact at a canonical site used by other p38 substrates,
including MKK3 and MEF2a, and residues 389-394 bind to a non-canonical binding site
on the c-terminal lobe of p38α. This site does not exist on any of the other p38 isoforms,
and at the time of writing, no other proteins have been shown to bind to the same site on
p38α [66,70]. The direct interaction of TAB1 with p38α induces a conformational change
moving the active loop into the catalytic domain and enhancing ATP-binding, thus enabling
cis-autophosphorylation of the active loop at Thr180 and Tyr182 [72]. Consequently, this
leads to p38-induced phosphorylation of TAB1 at Ser423, downregulating TAB1 binding to
TAK1 and inhibiting TAK1-mediated MKK3/6 activation [77]. Additional studies have also
shown that TAB1 phosphorylation can alter its intracellular localization, where increased
phosphorylation at S452/453/456/457 blocks its nuclear translocation causing TAB1 re-
tention in the cytosol [78]. Intriguingly, TAB1 remains bound to p38α during atypical p38
activity, potentially suppressing the capacity of p38 nuclear translocation [70].

Reactive oxygen species are thought to be the initial driving force behind atypical p38
signaling in cardiac ischemia-reperfusion damage [70,72]. Similarly, cigarette smoke extract
(CSE) induced oxidative stress in fetal tissue upregulating TGFβ production and resulting
in TAB1-mediated p38 phosphorylation in a manner independent of TAK1 signaling or
the ASK1-signalosome [79]. In a separate cardiac ischemia model, the TAB1-p38 interac-
tion is upregulated in an AMPK-dependent manner [80] (Figure 1B ii). The interaction is
negatively regulated by the HSP90/CDC37 chaperone complex in myocytes [81]. TAB1
expression is also negatively regulated by the E3 ligase itch through ubiquitin-mediated
degradation. Where itch-deficient mice display dramatically increased dermal inflamma-
tion levels in an MKK3/6-independent manner [82]. The WW-domain in itch binds directly
to a conserved PPXY motif in TAB1 (aa145–148). This interaction drives TAB1 K48-linked
ubiquitination to regulate TAB1 turnover/degradation. TAB1 expression is significantly
elevated in the absence of itch, leading to enhanced atypical p38 activation and increased
cytokine production, including interleukin-6 (IL-6), interleukin-1beta (IL-1β), interleukin-
11 (IL-11), and interleukin-19 (IL-19). Critically, Wang et al. in 2013 developed a peptide
inhibitor fused to the HIV-TAT peptide, generating a cell-penetrating peptide inhibitor
that selectively disrupts the TAB1 interaction with p38, substantially attenuating atypical
p38 activation [83,84]. When used in the itch−/− mice, the peptide blocked atypical p38α
signaling and dermal inflammation was significantly suppressed [82]. Further studies have
shown that mutation of a critical proline proximal to the p38 binding peptide of TAB1
(P419) blocks TAB1 binding to p38α and prevents atypical p38α signaling [31,72,85], as
does mutation of four key residues within the p38α-binding peptide of TAB1 (V390A,
Y392A, V408G, and M409A) [70,72]. Critically, unlike the systemic knockout of TAB1 or
p38α, which are embryonically lethal [25,86], the TAB1 knock-in (TAB1-KI) mouse displays
no physiological abnormalities but is protected from myocardial ischemic damage [70].
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This critical interaction provides a novel opportunity to further develop the peptide
inhibitors or screen for small molecule inhibitors to target atypical p38 signaling selectively.
Indeed, using a virtual small fragment screen, a group of functionalized adamantanes,
specifically 3-amino-1-adamantanol, was found to bind to a critical hydrophobic pocket,
forming hydrogen bonds with two key residues, leucine 222 and 234, in the non-canonical
TAB1 binding site on p38α. Further screening found there to be three distinct fragment
binding sites within the non-canonical binding site. Linking sulfonamide scaffolds to
the adamantanol generated a small molecule with a high affinity to the three regions in
the non-canonical binding site [66]. Additional development of these compounds will
hopefully yield a viable therapeutic. However, it remains to be shown whether these lead
hits can block atypical p38 signaling in cells or in vivo.

Despite these detailed studies describing the exact molecular mechanism of TAB1-
p38α interaction and degradation, there are significant gaps in our understanding, specif-
ically for how osmotic stress, oxidative stress, LPS, or inflammatory cytokines such as
TNF-α and IL-1β initiate the TAB1-p38α interaction and atypical p38 signal transduc-
tion. Conversely, recent studies have shown that a family of G protein-coupled receptors
(GPCRs) can initiate the TAB1-p38 interaction through a novel ubiquitin-driven pathway
(described below and Figure 1B). This is the first example of a clearly defined mechanism
for the induction of atypical p38 signaling and demonstrates conservation of the mech-
anism for at least four GPCRs critical for vascular inflammatory signaling and vascular
homeostasis [31,32,87].

In addition to TAB1, a second discrete mechanism for p38 autophosphorylation
has also been demonstrated through src-family zeta-chain-associated protein kinase 70
(Zap70). This pathway is critical for T-cell activation through a T-cell receptor (TCR)
specific mechanism [88]. In contrast to TAB1-mediated autophosphorylation, p38α and
p38β isoforms are phosphorylated at Tyr323 by ZAP70, leading to dimerization and
mutual trans-autophosphorylation of the kinases at Thr180 alone. Tyr323 is located on the
L16 loop of p38, facilitating this autophosphorylation by inducing a shift in the flexible
phosphorylation lip of p38 (residues 171–183) [89]. Together, both TAB1- and ZAP70-
mediated autophosphorylation of p38 reveal the kinase’s atypical activation in an MKK3/6-
independent manner. The functional significance of these distinct activation mechanisms
is still unclear. Additional studies are required to elucidate how atypical activation alters
p38α substrate activation and induction of distinct signal transduction events. Notably,
p38α is phosphorylated at the same sites in both classical MKK3/6-mediated and TAB1-
mediated signaling, indicating that differential downstream signaling may instead be
regulated in a spatiotemporal context rather than kinase functionality.

4. Activation of Atypical p38 by GPCRs

As the most extensive and versatile family of membrane proteins, G protein-coupled
receptors (GPCRs) regulate many cellular pathways by activating MAPKs via G protein-
dependent and -independent mechanisms [90–94]. Many of the GPCR families can activate
p38α, but until recently, the mechanism for GPCR-mediated p38α activation remained
unclear or was predicted to be controlled through the classical MKK3/6 pathway. However,
several recent studies have linked vascular inflammatory GPCRs to the activation of the
TAB1-dependent atypical p38 signaling pathway [31,32,73,87,95,96]. The initial studies
examined thrombin-mediated activation of the protease-activated receptor 1 (PAR1) in
vascular endothelial cells. The authors noted that after activation, PAR1 was ubiquitinated,
despite being trafficked and degraded in a ubiquitin-independent manner [95,97–99]. α-
Thrombin, activation of PAR1 induces the receptor to couple to the G protein subunits Gαq
or Gα12/13 to induce activation of the proto-oncogene tyrosine-protein kinase c-Src (Src
short for sarcoma) and subsequent activation of the E3 ubiquitin ligase, neural precursor
cell expressed developmentally downregulated 4-2 (NEDD4-2) [32]. NEDD4-2 is one of a
family of nine Homologous to E6-AP Carboxy Terminus (HECT) domain-containing E3
ligases and mediates the covalent coupling of ubiquitin to the intracellular c-tail or intracel-
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lular loops of GPCRs [31,87]. C-Src activates NEDD4-2 through tyrosine phosphorylation
of a critical tyrosine residue, Y485, on a linker peptide between WW domain 2 and 3 (2,3
peptide). This 2, 3-linker peptide acts as a molecular switch that holds NEDD4-2 in an
inactive conformation. Phosphorylation of Y485 by c-Src induces a conformational change
that releases NEDD4-2 from an autoinhibited state. After activation, most likely at the
plasma membrane, NEDD4-2 is recruited to PAR1, leading to PAR1 ubiquitination [32],
although the exact mechanism as to how NEDD4-2 is recruited to PAR1 is unknown. Tradi-
tionally, GPCR ubiquitination serves as a sorting signal to cause endolysosomal trafficking
and protein degradation [31,95]. However, in this case, NEDD4-2-mediated ubiquitination
drives the recruitment of the TAB2-TAB1-p38 signaling complex [31,32,87,95]. TAB2 has
an NP14 zinc finger (NZF) domain that binds to the lysine 63-linked NEDD4-2 ubiquitin
chains and functions as an adaptor protein. It is predicted but has not been conclusively
shown that TAB2 subsequently binds to and recruits TAB1 and p38α, inducing p38α au-
tophosphorylation and TAB1 phosphorylation [31,100]. Interestingly, a structural homolog
to TAB2, TAB3, is also able to bind to TAB1 to produce p38 pro-inflammatory signaling
by GPCRs. However, it is not known what the contribution of each homolog is when
expressed in the same cell or whether they are functionally redundant [87]. As stated
above, the ubiquitinated endosomal receptors nucleate the formation and activation of
the TAB1-p38α complex and increase TAB1 phosphorylation and stability [31]. It is still
unclear whether GPCR-activated TAB1 sequesters p38 in the cytosol. Likewise, it is not
known how TAB1-p38 signaling is terminated.

Importantly, this pathway is not unique just to PAR1 and α-thrombin. NEDD4-2
dependent regulation of atypical p38 signaling is also conserved for the purinergic receptor
P2Y1. Furthermore, a recent study also demonstrated that the pathway is conserved for
prostaglandin E2 (PGE2), histamine, ADP, and α-thrombin-mediated p38 activation and
inflammatory cytokine production in primary human microvascular and macrovascular
endothelial cells [87]. Additional studies are required to determine how many GPCRs
utilize this pathway, whether atypical p38 signaling is critical for all cells, and how it
selectively contributes to pathophysiological responses.

5. Pathophysiological Implications of MKK3/6-Dependent p38 MAPKs

As p38 MAPKs play a critical role in the modulation of many physiological processes,
the dysregulation of their signaling pathways can result in the pathogenesis of a range
of inflammatory diseases, neurological diseases, retinopathies, and cancers. There have
been multiple recent outstanding studies and reviews that extensively cover the many
pathological pathways controlled by classical p38 signaling, some examples are highlighted
in Table 2.

Table 2. Pathological role of p38 MAPK signal transduction in a variety of diseases.

Disease Pathological Outcome References

Cardiovascular
Myocardial

infarction/Ischemia
reperfusion

Induces overexpression of pro-inflammatory cytokines like
IL-6, TNF-α, and IL-1β, and elevates intracellular calcium

(Ca2+
i) levels, inflammation, and apoptosis

[70,83,84,101–108]

Diabetic
cardiomyopathy

Overexpression of pro-inflammatory cytokines induces
cardiomyocyte apoptosis [109,110]

Atherosclerosis
Promotes ANG-II-dependent MerTK shedding in

macrophages resulting in defective efferocytosis and, in
turn, induces plaque progression

[111–115]

Pulmonary
Chronic obstructive
pulmonary disease

(COPD)

Activates transcription factors and induces overexpression
of pro-inflammatory cytokines and chemokines, amplifying

lung inflammation
[116–121]

Acute respiratory
distress syndrome

(ARDS)

Induces decreased corticosteroid responsiveness, alveolar
macrophage-induced

impairment of respiratory function, and overexpression of
pro-inflammatory cytokines like IL-6, IL-8, TNF-α and IL-1β

[63,101,122,123]

Acute lung injury
(ALI)

Induces overexpression of pro-inflammatory cytokines like
IL-6, TNF-α, and IL-1β, and cell apoptosis [60,123–126]
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Table 2. Cont.

Disease Pathological Outcome References

Viral infections and
SARS-CoV-2

Induction of type 1 interferons, expression of IL-12,
promotion of viral replication, expression of

pro-inflammatory cytokines resulting in inflammation,
thrombosis, and vasoconstriction in SARS-CoV-2

[60,127–129]

Oncology Non-small cell lung
cancer (NSCLC)

Enhances proliferation, migration, chemoresistance, and
inflammatory cytokine expression [130–136]

Head and neck small
cell carcinoma

(HNSCC)

Inhibition of p38 increases HNSCC sensitivity to cisplatin,
cannabinoids promote progressive HNSCC via p38 [42],

increases mRNA stability via MK2, p38 isoforms as a
diagnostic of HNSCC, and regulates angiogenesis and

lymphangiogenesis

[137–140]

Breast cancer
Elevated p38δ levels promote cell detachment, migration,

invasion, and increased metastatic lesions, and inhibition of
p38 triggers DNA damage and tumor cell death

[133,141,142]

Bladder cancer Induces cell invasion and metastasis by increasing MMP-2
and MMP-9 activity [135,143]

Neurodegenerative Alzheimer’s disease Elevated p-p38 levels progress neuroinflammation tau
phosphorylation, neurotoxicity, and synaptic dysfunction [144–147]

Parkinson’s disease
p-p38 overload induces a COX-2-mediated inflammation

and subsequent
dopaminergic neuron degeneration

[148–150]

Amyotrophic lateral
sclerosis (ALS)

Induces defects in axonal retrograde transport of signaling
endosomes [151–153]

Spinal muscular
atrophy

Induces p38 MAPK-dependent p53 phosphorylation
leading to selective degeneration of motor neurons [154]

Ocular Age-related macular
degeneration (AMD)

Induces VEGF expression and angiogenesis, regulates
Ang-II-mediated MMP-2 and MMP-14, basigin expression,

and extracellular matrix accumulation in AMD
[155,156]

Diabetic retinopathy
ASK/p38 NLRP3 inflammasome signaling, retinal
angiogenesis, retinal endothelial cell dysfunction,

inner-blood-retinal-barrier leakage
[110,157–161]

Glaucoma Induces anterograde transport degradation and axon
degeneration in the optic nerve [162,163]

Early studies revealed that p38 MAPKs have a central role in the development of
various chronic inflammatory diseases due to pro-inflammatory cytokine (PIC) produc-
tion [35,164]. Specifically, p38α MAPK signaling regulates the biosynthesis of many in-
flammatory mediators in cells of the immune system, epithelial cells, fibroblasts, and
endothelial cells [165]. Excessive production of these mediators is associated with the
pathological progression of acute and chronic inflammatory diseases including chronic
obstructive pulmonary disease (COPD), rheumatoid arthritis (RA), gastritis, and psoria-
sis [35,166,167]. However, the story is complicated by a dichotomy of responses where
p38 can exert both pro- and anti-inflammatory effect during disease progression. P38
can directly phosphorylate pro-inflammatory transcription factors such as MEF2C [168],
and indirectly regulate inflammatory cytokine production through the MK2/3-TTP axis,
where p38 phosphorylation of TTP prevents TTP-dependent degradation of AU-rich cy-
tokine mRNA, leading to an accelerated inflammatory response [39,42,132]. As such p38 is
an essential driver of inflammatory mediators such as COX2, MMP9, iNOS, TNFα, and
IL6 [36,169–172]. Conversely, p38 also plays a central role in anti-inflammatory signaling.
An example of this is p38-dependent regulation of IL10, a powerful anti-inflammatory
cytokine which is important in resolving inflammatory insults [173,174]. IL10 expression
is regulated through p38 activation of MSK1/2. Additionally, MSK1/2 also enhances
DUSP1 expression which is required to restrain damaging hyperinflammation through
dephosphorylation of p38 as described above [175].

Likewise, there is strong evidence for p38 in both tumor suppressive cellular home-
ostasis, balancing proliferation, differentiation, and apoptosis, and tumor promoting roles
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through promoting cell survival, proliferation, and angiogenesis [136]. Furthermore, p38
can both sensitize some tumor types to chemotherapy and facilitates resistance in others,
where p38 inhibition may be beneficial in therapeutic approaches [136,176–178]. Of note,
p38 MAPK activity and increased expression have been linked to the progression of breast
cancer, prostate cancer, bladder cancer, liver cancer, lung cancer, thyroid cancers, leukemia,
and many more [35,135,179,180]. In solid tumor biology, the p38 MAPK pathway has
been shown to promote tumor cell survival and angiogenesis during periods of hypoxia,
reoxygenation, and nutrient deficiency by inducing expression of metalloproteinases and
vascular endothelial growth factor A (VEGFA) [135]. The context-dependent functions of
p38 are, therefore, critical to determine the therapeutic potential of p38 inhibitors in cancer
treatment, although p38 therapeutics have so far been unsuccessful in clinical trials.

In a similar manner, MAPK p38-induced cytokine expression during neuroinflamma-
tion accelerates the development of chronic neurodegenerative diseases such as multiple
sclerosis (MS) [181], Alzheimer’s disease (AD) [144], and Parkinson’s disease (PD) [148],
potentially through dysregulation of the neurovascular unit. During the pathophysiolog-
ical progression of AD, elevated p38α MAPK signal transduction in both microglia and
astrocytes results in subsequent neuroinflammation driving detrimental tau phosphory-
lation [145,146,148]. Conversely, p38γ signaling has recently been shown to mediate site-
specific increases of post-synaptic tau phosphorylation and reduce tau-mediated memory
deficits [147]. Furthermore, p38 MAPK-mediated microglial signaling is vital in dopamine
neuron degeneration in PD patients [182]. Again, these data suggest that p38 therapeutics
targeting the ATP pocket or catalytic domain are likely to be unsuccessful due to the dual
roles of p38 in both physiological, protective, and pathological signaling.

6. Pathophysiological Implications of Atypical p38 Signaling

Contrary to the highly studied MKK3/6-dependent pathway, the impact of TAB1-p38-
dependent signaling in physiology and disease remains largely understudied with just 44
research articles on the subject (Table 3). As mentioned above, the recent development of
the viable p38α-KI mouse [108] or the TAB1-KI mouse [70] suggests that perturbation of the
atypical pathway is less critical for developmental and physiological signaling compared
to the embryonically lethal systemic knockout of p38α or TAB1 [25,86]. It is perhaps then
not surprising that atypical p38 activation has so far only been identified as a contributor
to disease progression, which will be discussed below.

Table 3. Physiological roles of TAB1-dependent atypical p38 signaling.

Disease Mechanism of p38
Autophosphorylation Model Specific Cell or Animal Line

Murine in vivo [70,80,83,104,105]
MKK3−/− [80,105]; C57BL/6

[80,104]; Sprague Dawley [80]; Wistar
[83]; TAB1 KI [70]

Murine in vitro
[70,72,83,104,105,183]

H9c2 [105]; Sprague Dawley
[83,104,183]; Wistar [83]; C57BL/6

[70,72]
Human in vitro [70,83,84,104,108] HEK293 [70,83,104,108]

Cardiovascular ischemia
and reperfusion TAB1-mediated

Structural modeling [66]
Murine in vivo [107] Sprague Dawley

Murine in vitro [81,107,184] H9c2 [107]; Wistar [184]
Human in vitro [184] Patient heart

Myocardial infarction,
amyloidosis, and
cardiomyopathy

TAB1-mediated

Zebrafish in vivo [185]

Murine in vivo [31,82,186] BALB/c [186]; CD1/CD1 [31];
C57BL/6, Itch−/− [82]

Murine in vitro [31,82,186] Vβ8.1, OT-II [186]; TAB1−/− [31];
C57BL/6, Itch−/− [82]

Human in vitro [31,32,87] HUVEC [31,32,87]; HEK293 [31];
HDMEC [87]

General inflammation
and cancer

TAB1-mediated

Structural modeling [89,187]
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Table 3. Cont.

Disease Mechanism of p38
Autophosphorylation Model Specific Cell or Animal Line

Murine in vivo [188] BALB/c
Parasitic infection TAB1-mediated Murine in vitro [188–190] RAW264.9 [188]; MKK3−/− [189];

BALB/c [190]
Murine in vitro [128] C57BL/6, BC-1

Viral infection TAB1-mediated Human in vitro [127] Huh7.5.1, HEK293, patient liver
Human in vitro [191] HPMEC

Bacterial infection TAB1-mediated Shrimp [192]

Murine in vitro [193,194] β-TC6 [193,194]; Sprague Dawley,
NMRI [194]Diabetes TAB1-mediated

Human in vitro [194] Islet
Murine in vivo [195] Vβ8.1
Murine in vitro [195] 2B4Leukocyte dysfunction TAB1-mediated

Human in vitro [196–198] Patient blood
Murine in vitro [199] CD-1Pregnancy

complications TAB1-mediated Human in vitro [79,199] Patient placenta

Murine in vitro [200,201] MKK3−/−/6−/− [200]; MKK3−/−

[201]

Human in vitro [73,78,85,202] HEK293 [73,78,85,202]; MDA231
[202]Other TAB1-mediated

Structural modeling [203]
Murine in vivo [88] P116

Murine in vitro [204–207] Gadd45a−/− [204]; CD4SP [205];
C57BL/6 [206,207]

Human in vitro [88,208–211] Jurkat, P116

Immune system
(T-Cell) modulation

Zap70-mediated

Chicken in vitro [210] DT40

There is a growing awareness that atypical p38α activation plays a key role multiple
p38 driven pathologies. The initial studies describing atypical p38α activation demonstrate
its role in ischemic cardiac damage, ischemia-reperfusion injury, and amyloidosis. In an
MKK3−/− ischemic mouse, the TAB1-p38 interaction was a leading contributor to necrosis
in cardiomyocytes [105]. The role of atypical p38 was further confirmed in the progression
of ischemic damage when a cell-penetrating inhibitor peptide was developed that reduced
infarct size in ischemic rats [83]. Supporting this, the recent TAB1-KI mice where TAB1-
induced autophosphorylation of p38 was genetically perturbed had significantly reduced
infarction volume after induction of myocardial ischemia. Furthermore, the transphos-
phorylation of TAB1 was disabled [70], and cyclic GMP kinase 1 was found to inhibit
TAB1-p38α to prevent apoptosis in cardiomyocytes during IR [104]. Additionally, basal
activation of p38 autophosphorylation is suppressed by the HSP90/CDC37 complex where
CD37 directly interacts with p38α [81]. Inhibition of HSP90 during cardiac stress is thought
to dissociate HSP90 from p38α, enabling TAB1 interaction and p38α autophosphorylation
to drive IL-6 and TNFα expression and cardiomyocyte apoptosis [81]. Additional studies
have also shown that in a zebrafish model of amyloid light-chain (AL-LC) amyloidosis, AL-
LC drives TAB1-p38α signaling causing cardiotoxic signaling, impaired cardiac function,
pericardial edema, cell death, and subsequent heart failure [184,185].

Aside from the heart, p38 autophosphorylation has also been indicated in patho-
logical inflammation in dermal disorders, preterm birth, and more broadly in vascular
inflammation. In the itch−/− mice, TAB1 expression is significantly enhanced, leading
to robust p38 autophosphorylation and subsequent increases in inflammatory cytokine
expression, immune cell recruitment, and spontaneous skin lesions [82]. The use of the
cell-penetrating peptide inhibitor significantly reduced these phenotypes, suggesting that
itch-mediated p38 signaling could be exploited therapeutically [82]. In the field of repro-
ductive biology, term and preterm parturition are tied to oxidative-stress and inflammatory
TGF-β-induced TAB1-p38 activity resulting in amniochorion senescence [79]. Atypical p38
is also considered an essential component of the careful balance of endothelial mesenchy-
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mal transition (EndoMT) and mesenchymal endothelial transition (MEndoT) in human
and murine amnion cells that contributes to the timing of parturition [199].

Vascular inflammation also directly activates GPCR-dependent p38 signaling in en-
dothelial cells. In these studies, GPCR ligand α-thrombin induces endothelial barrier
disruption driving vascular leakage and permeability. Additionally, recent studies of
GPCR-mediated TAB1-p38 activity have demonstrated that it is conserved in multiple
endothelial vascular beds and activated by a family of GPCR ligands associated with
inflammation such as histamine, PGE2, ADP, and potentially many others [31,32,87]. While
it has not yet been definitively shown, it stands to reason that any cell that expresses these
GPCR receptors has the potential to induce atypical p38 signaling. This being the case, it
will be essential to understand the role of GPCR signaling in fibroblasts, epithelial cells,
mural/pericyte cells, and neuronal cells. Therefore, the impact of GPCR-induced atypical
signaling is likely to play an, as of yet, undiscovered or overlooked role in many other
vascular inflammatory diseases.

Beyond the vasculature, the role of atypical p38 is also explored in the modulation
of the immune system by inflammatory ligands, attenuation of the TCR, and response
to pathogens. Basophils and eosinophils isolated from healthy patients undergo p38 au-
tophosphorylation in response to cytokine exposure from TNFα and GM-CSF, contributing
to prolonged inflammation like that seen in pulmonary inflammatory disorders [196].
Conversely, TAB1-p38 interaction is also associated with maintaining anergic CD4+ T-
cells through increased expression of TAB1 following antigen exposure and abrogating
TCR [195]. Similarly, TAB1-p38 drives T-cell senescence via an AMPK-dependent regula-
tory pathway, resulting in downregulation of TCR signalosome [197]. AMPK also plays
an essential role in the TAB1-p38 activation of HSP27 in simulated sepsis, maintaining
vascular integrity [191]. Intracellular infection leading to TAB1-p38 activity was first shown
in macrophages in mice infected with Toxoplasma gondii, resulting in pro-inflammatory
IL-12 production specific to atypical signaling [189]. Leishmania infection results in parasite
GP63-induced degradation of TAB1 to reduce p38 activation [190], the reversal of which
sharply attenuates infection [188]. These studies suggest a vital role for the TAB1-p38
interaction in the host defense during intracellular pathogen infection.

Another example of atypical p38 activation comes from a recent study that demon-
strated that multiple viruses utilize atypical p38 signaling to drive viral infections. In-
hibition of TAB1-dependent p38 activation impaired hepatitis C virus (HCV) assembly
and viral replication. This was also confirmed for severe fever with thrombocytopenia
syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1), and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [127]. Indeed, the p38 inhibitor losmapimod is
currently in a clinical trial to treat SARS-CoV-2 (ClinicalTrials.gov ID: NCT04511819). It
will be important for future studies to understand how atypical p38 signaling contributes
to viral and bacterial infections and whether selective atypical p38 inhibitors could support
current therapeutic regimens.

In the realm of type 1 diabetes, a link was found for TAB1-p38 interaction in the
apoptosis of beta cells via oxidative stress by NO [193] and cytokine-induced beta-cell
death [194]. These investigators noted that the effect of TAB1 signaling was specific to the
TAB1α splicing product of the TAB1 gene located on chromosome 22, which has also been
linked to systemic sclerosis and type 2 diabetes, hinting at a potential genetic component
involving TAB1 mutation in the initiation of these diseases.

Contrary to TAB1-dependent signaling, Zap70-dependent activation of p38 is ex-
clusive to T-cell activation via the TCR response, which is negatively regulated by p38
phosphorylation of upstream Zap70 [88,89]. However, a recent study also showed that
TCR-mediated p38 activation occurs simultaneously through a classical kinase cascade
and inflammatory augmentation by the alternative, atypical p38 activation. Intriguingly,
it is suggested that uncoupling of the classical p38 activation mediated by the adaptor
protein LAT and the guanine nuclear exchange factor, Son of Sevenless 1/2 (SOS1/2),
reduced T-cell development and exacerbated autoimmune disease in mice [210]. At the
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same time, the genetic blockade of the TAB1-Zap70 suppressed T helper cell activation
(TH1 and TH17) and expression of IFNγ and IL17. Indicating that both the classical and
atypical p38 activation pathways could work synergistically to induce a balance between
pro- and anti-inflammatory responses [210]. It is currently unclear whether there are some
cases when TAB1-p38 activation may work in consort with MKK3/6, albeit in a TAK1-
independent manner as TAB1 phosphorylation by p38 during atypical p38 signaling blocks
TAB1′s interaction with TAK1 preventing TAB1-TAK1 dependent MKK3/6 activation [77].

7. Conclusions

The 25-year history of p38 MAPK has clearly demonstrated that this family of in-
flammatory kinases are essential for normal physiological processes and, if dysregulated,
can be significant contributors to many diseases. Yet, despite many outstanding studies
and carefully controlled clinical studies, therapeutic interventions targeting the conserved
ATP pocket or structural scaffolds have so far been unsuccessful in the clinic. How-
ever, there are some promising avenues like targeting downstream signaling transducers
such as MK2. Furthermore, the selective inhibition of pathological atypical p38 signaling
represents a significantly under-investigated avenue and potentially critical target for
therapeutic intervention.

Although there has been important progress in understanding the structural basis
of the TAB1-p38 interaction and a clear mechanism has been defined for GPCR induced
activation of atypical p38 signaling, there remain many gaps in our understanding of where,
when, and why this pathway exists. There is still little understanding of how atypical p38
signaling alters the functional outcome of p38 activation to drive disease progression.

As outlined above, there is a growing body of clear evidence describing TAB1-
dependent atypical p38 signaling (Table 3). Atypical p38 signaling has yet to be imple-
mented in physiological pathways but is instead initiated only during disease progression,
including cancer, viral infections, cardiac diseases, dermal inflammation, and vascular
inflammation. This does raise a question of what evolutionary pressure resulted in the
establishment of this pathway separate to MKK3/6 driven p38 activity. As more selective
therapeutics are developed, it will be critical to determine whether blockade of TAB1-
mediated p38 activation alters physiological or protective pathways. An important area
of research should be in defining how TAB1 biases p38 signaling and identifying what
substrates lay downstream of TAB1-p38. These studies would provide critical insight
into how TAB1-p38 activity drives functional outcomes that, at present, appear to be only
activated to drive disease progression.

Based on the significant role of GPCR ligands and p38 in the progression of so many
diseases, it is clear that the current research has only just scratched the surface of the
potential import of atypical p38 signaling. Future studies will yield critical detail to the
broader mechanism of activation, and the development of TAB1-p38-selective inhibitors
could pave the way forward to developing a clinically viable therapeutic.
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