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Abstract: The genes influencing cancer patient mortality have been studied by survival analysis for
many years. However, most studies utilized them only to support their findings associated with
patient prognosis: their roles in carcinogenesis have not yet been revealed. Herein, we applied an in
silico approach, integrating the Cox regression model with effect size estimated by the Monte Carlo
algorithm, to screen survival-influential genes in more than 6000 tumor samples across 16 cancer
types. We observed that the survival-influential genes had cancer-dependent properties. Moreover,
the functional modules formed by the harmful genes were consistently associated with cell cycle in
12 out of the 16 cancer types and pan-cancer, showing that dysregulation of the cell cycle could harm
patient prognosis in cancer. The functional modules formed by the protective genes are more diverse
in cancers; the most prevalent functions are relevant for immune response, implying that patients
with different cancer types might develop different mechanisms against carcinogenesis. We also
identified a harmful set of 10 genes, with potential as prognostic biomarkers in pan-cancer. Briefly,
our results demonstrated that the survival-influential genes could reveal underlying mechanisms in
carcinogenesis and might provide clues for developing therapeutic targets for cancers.

Keywords: survival influential genes; pan-cancer; prognostic biomarkers

1. Introduction

Genes with an impact on the survival of tumor cells [1,2] likely influence the survival
of cancer patients. So far, cancer-essential genes have been discovered by the clustered
regularly interspaced short palindromic repeats (CRISPR) method [3] and the cancer-
dependent genes with the Cancer Dependency Map (DepMap) [4]. The discovered cancer-
essential genes could facilitate the development of promising cancer therapies [5] and
carcinogenesis mechanisms. Although experimental studies hold promise for the accurate
detection of essential genes, they are capital and labor intensive, and time consuming.
Therefore, several computational approaches have been implemented to predict essential
genes in Saccharomyces cerevisiae, Escherichia coli [6], and humans [7,8]. However, the
identification of survival-influential genes (SIGs) in cancer patients and the investigation
of their role in carcinogenesis are largely unexplored.

Survival analysis is a branch of statistics that analyzes data, where the outcome
variable is the time until one or more events occur, e.g., death [9]. That is, the methods
of survival analysis measure the proportion of a population that will survive to passing
a certain time point, i.e., the survival rate of the population. Similarly, the experimental
approaches identifying essential genes measure the growth curves of the studied organism
population, such as yeast or E. coli [10–14]. However, it is impossible to recruit humans as
experimental targets with the purpose of screening essential genes or synthetic lethal gene
pairs in this way. Recently, benefiting from the large projects collecting information on
cancer patients’ genomics and transcriptomics data, such as TCGA (The Cancer Genome
Atlas), many patients’ clinical information, including survival time, was also gathered.
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These sets of clinical data make survival analysis a promising strategy for recovering SIGs
in cancer patients.

To identify and analyze the SIGs in cancer patients, we designed an in silico approach,
incorporating effect size derived from the Monte Carlo algorithm into the Cox regression
model, to assess the influence of gene expression on patient survival in cancer. We demon-
strated that the pan-cancer SIGs identified by our approach are significantly associated with
known oncogenic genes, and the SIGs identified in the individual cancer types displayed
cancer-dependent properties. Furthermore, we found that the harmful SIGs might be
involved in cell proliferation to promote carcinogenesis. However, the diverse functions of
protective SIGs across cancer types demonstrate that the strategies against carcinogenesis
developed by patients with different cancer types might be variable. Here, we present list
of SIGs which could reveal the underlying mechanisms in carcinogenesis and propose a set
of prognostic biomarkers that might be potential therapeutic targets for cancer.

2. Results
2.1. Overview of the Identified Survival Influential Genes in Cancers

In this study, we proposed a cancer-dependent approach that incorporated the Monte
Carlo algorithm into Cox regression to identify the SIGs in cancers. Briefly, this approach
created the simulated gene expression profiles of cancers through the Monte Carlo pro-
cesses. Then, by comparing with the simulated expression profiles, this approach can
estimate the effect size of the survival influence for genes in a certain cancer type. We
then calculated and investigated the effect sizes for all genes in every cancer separately, to
systematically define the proper threshold to identify SIGs for each cancer. We observed
that as the p-value increased, the effect size increased at first, and then decreased afterward
(Figure 1A,B, left panel). This result indicated the existence of a global maximal effect size.
Furthermore, we observed that the p-values reaching the maximal effect size were distinct
among cancer types (Figure 1A,B, right panel). This observation confirmed that a distinct
threshold of significance level is necessary for different cancer types when performing a
survival analysis [15,16]. Accordingly, in different cancer types, we used a p-value reaching
the maximum effect size as the threshold to identify the SIGs (Figure 1B, right panel).
The identified SIGs are listed in Supplementary Dataset S1. We observed that, among the
16 cancer types, eight cancer types included more harmful genes and the others included
more protective genes (Figure 1C). Additionally, the proportion of SIGs ranged from 5%
to 11%, except for low grade glioma (LGG) and kidney renal clear cell carcinoma (KIRC)
with 31% and 20%, respectively (Figure 1C). The high proportion of SIGs in LGG and KIRC
implied that the mortality of the patients with LGG or KIRC might be more sensitive to
aberrant gene expression. Similarly, a previous study reported a significant association
of ribonucleoproteins with poor patient survival in KIRC, LGG, and kidney renal papil-
lary cell carcinoma (KIRP) [17]. Additionally, we performed the proposed approach to
detect SIGs in pan-cancer. We finally identified 2450 pan-cancer SIGs: 1196 harmful and
1254 protective genes.

Next, to assess the association between the identified SIGs and cancer, we complied a
cancer-associated gene list from three datasets. Since the data on tumor suppressor genes
are limited, this cancer-associated gene list mainly consisted of oncogenes, i.e., cancer
essential or cancer dependent genes. In other words, they are potentially harmful to patient
survival. On the other hand, the three datasets collected these cancer-associated genes
from various cancer types. Therefore, we used them to evaluate the cancer association of
the pan-cancer harmful SIGs. Additionally, we used these cancer-associated genes to assess
the performance of our approach in the identification of SIGs. We also compared our ap-
proach with the conventional method with two fixed thresholds, which were p-value < 0.05
and <0.01, and the Cox regression model with the least absolute shrinkage and selection
operator (LASSO). We observed that our approach identified with a higher precision the
proportion of cancer-associated genes than these three approaches (Figure 1D). Further-
more, compared with the small but highly confident harmful gene set collected from the
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literature, the precision of our approach was lower but comparable (Figure 1D). It is worth
noting that the complied cancer-associated genes were significantly enriched in the iden-
tified pan-cancer harmful genes, but not significantly enriched in the literature-curated
gene set (Figure 1D). This observation might suggest that our pan-cancer harmful genes are
more associated with the compiled cancer-associated genes than the literature-curate ones.
Briefly, these comparisons further demonstrated the better performance of our approach,
and might show the confidence of the identified SIGs.
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Figure 1. Summary of the survival-influential genes in cancers. (A,B) The effect sizes of the different threshold p-values for
each cancer type. The effect sizes of p-values were estimated via 1000-time permutation test. The p-value producing the
largest effect size (right panel) was denoted as the cut-off of significance level for identifying survival influential genes.
(C) The number of identified survival influential genes in each cancer type. Red and green bars represent harmful and
protective genes respectively. The proportion of survival influential genes and the ratio of harmful to protective genes in
each cancer genome are also displayed. (D) Cancer association of the SIGs. Precision is the proportion of cancer-associated
genes in the SIGs identified from LASSO (Cox regression model with LASSO regularization), P05 and P01 (Cox regression
model with the threshold of p-value < 0.05 and 0.01), pan-cancer, and the literature. An asterisk signifies a significantly large
proportion of caner-associated genes (p-value < 0.05, Fisher’s exact test) in the corresponding category.

2.2. Exclusivity of the SIGs and Identification of the Pan-Cancer SIGs

To understand the characteristics of SIGs, we first investigated their prevalence across
cancers. We observed that 5684 genes were identified as survival influential in only
one cancer type (Figure 2A, unique region), and 9327 genes in at least two cancer types
(Figure 2A, shared region). Moreover, around 90% of harmful and protective genes are in
less than two cancer types, and no genes are survival influential in more than eight cancer
types (Figure S1). This observation indicates that the SIGs might be exclusive between
cancers. However, a too strict cutoff for identifying the SIGs might cause exclusivity. To
examine this scenario, we removed the condition of significance level and only used the
hazard ratio to determine the survival risk of the tested genes. That is, we denoted one gene
with a hazard ratio >1 and ≤1 as harmful and protective, respectively. Accordingly, each
gene was classified as either harmful or protective. Interestingly, we observed that only six
genes were identified as harmful in all sixteen cancer types and no genes were protective
in all 16 cancer types. Moreover, only 4.66% and 4.55% of genes were identified as harmful
and protective, respectively, in more than 13 cancer types (Figure 2B); and 45.03% of genes
had a mixed influence (harmful vs. protective: 8:8, 7:9, or 9:7) to patient survival across
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the 16 cancer types. In other words, even though we removed the significance cutoff of
SIGs, the survival risk for a gene was still barely consistent across cancers. Accordingly,
we concluded that the exclusivity of SIGs across cancers was not biased by the cutoff
significance. Furthermore, these above results also demonstrated that our approach might
be able to identify the particular SIGs in each cancer type.
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Figure 2. Exclusiveness and generality of SIGs. (A) Presence matrix of the survival influential genes across cancers. Each
column indicates cancer type and each row the union of both harmful genes and protective genes of 16 cancer types. (B) The
distribution frequency in which the genes were identified as harmful across cancers. (C) The association between the z-score
of genes in the merged cancer data set and the frequency with which the genes were identified as harmful across cancers.

On the other hand, the above observations unveiled that the genes identified as
harmful or protective in a large number of cancer types might possess the potential to be
pan-cancer SIGs. Indeed, genes with a more consistent pattern of survival influence across
multiple cancers tended to possess a higher survival influence (z-score) in the merged
cancer data set (Figure 2C). In other words, the identified pan-cancer SIGs tended to
keep a consistent pattern of survival influence across cancers. However, the pan-cancer
harmful and protective genes were not observed to affect patient survival significantly
in the individual cancer types, though they possessed stronger effects than other non-
SIGs (also excluding pan-cancer SIGs) in most cancer types (Figures S2 and S3). This
observation showed that the survival influence of pan-cancer harmful and protective SIGs
was amplified and recognized in the merged cancer data set, but was easy to ignore when
they were considered for each cancer type. More importantly, without using the merged
cancer data set, these pan-cancer SIGs could be omitted.
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2.3. Analysis of SIG Roles in the Human Co-Expressed Protein Interaction Network

Previous studies have demonstrated that the investigation of genes/proteins in the
biological network is powerful for elucidating their roles in the molecular mechanisms
during cancer development [18,19]. We investigated the properties of SIGs in the biological
system through studying their interactions in the human protein interaction network (PIN),
which was obtained from InBio Map [20]. Notably, the PIN used here was static and
therefore might not provide conditional information, e.g., cancer-activated protein-protein
interactions (PPIs). We further utilized the co-expressed PPIs (CePPIs) to extract the context-
dependent PPIs in each cancer type. In this study, we denoted a PPI formed by two genes
significantly co-expressed with each other (z-score of Spearman correlation coefficient
≥2) as a CePPI. We observed that the PPIs within harmful or protective SIGs showed a
significantly higher coherent expression pattern than other PPIs in the PIN (Figure 3A and
Figure S4), demonstrating the stronger functional association among SIGs with similar
survival influence. On the contrary, PPIs between harmful and protective genes tended
to exhibit a negative correlation of expression pattern (Figure 3A and Figure S4). This
observation might suggest an antagonistic effect between harmful and protective genes in
cancer patients.
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Figure 3. Co-expressed protein-protein interaction among SIGs. (A) The average Spearman correlation coefficient (SCC)
between SIGs in cancers. The average SCCs were calculated between two genes forming PPI only. The red and green circles
represent the mean SCCs within harmful and protective SIGs, respectively; yellow circles are the mean SCCs between
harmful and protective genes, between SIGs with different types; grey circles are SCCs between non-SIGs. (B) Comparison
of the co-expressed degree between harmful and protective SIGs and non-SIGs. The co-expressed degree is the number of
significantly co-expressed (z-score of SCC ≥ 2) PPI partners of one gene.

The proteins encoded by cancer genes have been observed to occupy more pivotal
positions, e.g., hubs, bottlenecks, or the center, than other proteins in the human interac-
tome [18]. Indeed, we found that in ten cancer types the SIGs, either harmful or protective,
had a significantly higher degree of co-expression than the non-SIGs (Figure 3B and
Table S1), that is, they tended to be hubs in the cancer CePINs. Additionally, we found
that, in the corresponding cancer type, except for OV, when one type of SIG showed a
higher co-expression degree than non-SIGs, the other type showed a lower (Figure 3B). This
competition of hub positions further supported the antagonistic effect between harmful
and protective genes in cancer patients. Moreover, in the static human PIN, which does
not filter out non-co-expressed PPIs, we did not observe a significant difference of degree
between the SIGs and non-SIGs in most cancer types (Tables S2 and S3). Therefore, the
SIGs identified in the individual cancer type might be cancer-specific instead of general
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hubs. These results also confirmed that our approach could identify the context-sensitive
SIGs, and cancer-specific, for cancers.

2.4. The Survival Influential Functional Modules

Next, we performed a network-based functional enrichment analysis to identify
the survival-influential functional modules, which are the protein interacting functional
modules formed by the coherently expressed SIGs in the corresponding cancer type.
However, we did not identify harmful modules in ESCA, HNSC, and OV or protective
modules in ESCA and PAAD under the predefined criterion. Through this analysis, we
could pinpoint the molecular mechanisms by which the SIGs are involved in carcinogenesis
affect patient prognosis. In the harmful SIGs, we observed that the functional modules
associated with cell cycle were consistent across six cancer types: BRCA, KIRC, LGG,
LIHC, LUAD, and PAAD (Figure 4). Interestingly, except for CESC, other cell cycle-
related modules also appeared in the remaining cancer types: positive regulation of cell
proliferation in COAD and GBM; positive regulation of cell differentiation in BLCA, LUSC,
and STAD; and G1/S transition of mitotic cell cycle in SARC. Briefly, twelve cancer types
presented the harmful modules involved in cell cycle, implying that the dysregulation
of cell cycle could be harmful to patients across cancers [21,22]. Indeed, we found that,
in the merged cancer dataset, the harmful SIGs were also significantly overrepresented
in the functional modules associated with cell cycle, such as “mitotic nuclear division”,
“cell cycle phase transition”, and “mitotic cell cycle process” (Figure 4). This observation
also demonstrates that the harmful SIGs between different cancers might be exclusive, but
the biological processes of harmful SIGs (regulation of cell cycle) might demonstrate the
generality of harmful SIGs’ survival characteristics across cancers. However, the functional
modules from the protective SIGs were more diverse than the harmful modules. The most
prevalent modules, which were discovered in CESC, HNSC, LUAD, and SARC, are relevant
for immune response (Figure 5). The activation of immune response-related functions is
known to improve patient prognosis [23,24]. The functional modules of protective SIGs
identified in the merged cancer dataset are involved in the regulation of gene expression
and protein trafficking (Figure 5). This is inconsistent with the modules identified from
the individual cancer types. This observation may confirm the exclusivity of protective
SIGs between cancers, and imply that patients with different cancer types might develop
different mechanisms against carcinogenesis.
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ta

bo
lic

 p
ro

ce
ss

an
ap

ha
se

-p
ro

m
ot

in
g 

co
m

pl
ex

-d
ep

en
de

nt

ca
ta

bo
lic

 p
ro

ce
ss

BRCA
GO1 anaphase-promoting complex-dependent catabolism, 42.2%
GO2 regulation of mitotic cell cycle, 25.6%
GO3 histone exchange, 21.9%
GO4 neutrophil mediated immunity, 7.4%
carboxylic acid metabolism, 2.8%

regulation of

D
N

A
 biosynthetic process

positive regulation of

organelle organization

positive regulation of

DNA biosynthetic process

positive regulation of

cellular component movement

po
sit

ive
 re

gu
la

tio
n 

of

ce
ll m

ig
ra

tio
n

re
gu

la
tio

n 
of

ce
ll 

m
ig

ra
tio

n

negative regulation of

cell death

regulation of
programmed cell death

regulation of

apoptotic process

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ap
op

to
tic

 p
ro

ce
ss

CESC
GO1 negative regulation of apoptotic process, 44.9%
GO2 regulation of cell migration, 28.4%
GO3 positive regulation of DNA biosynthesis, 26.7%

positive regulation of

cell proliferation

regulation of

endothelial cell proliferation

posit
ive

 re
gulatio

n of p
hosp

horyl
atio

n

tra
ns

m
em

br
an

e 
re

ce
pt

or
 p

ro
te

in

ty
ro

si
ne

 k
in

as
e 

si
gn

al
in

g 
pa

th
w

ay

po
si

tiv
e 

re
gu

la
tio

n 
of

si
gn

al
 tr

an
sd

uc
tio

n

po
si

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

co
m

m
un

ic
at

io
n

positive regulation of

intracellular signal transduction

regulation of phosphorylation

regulation of

intracellular signal transduction

re
gu

la
tio

n 
of

M
AP

K 
ca

sc
ad

e

re
gu

la
tio

n 
of

pr
ot

ei
n 

ph
os

ph
or

yl
at

io
n

COAD
GO1 regulation of MAPK cascade, 74.6%
GO2 regulation of endothelial cell proliferation, 25.4%

cellular response to

growth factor stimulus

regulation of

cell migration

po
si

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

pr
ol

ife
ra

tio
n

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

pr
ol

ife
ra

tio
n

re
gu

la
tio

n 
of

ep
ith

el
ia

l c
el

l p
ro

lif
er

at
io

n

GBM
GO1 regulation of epithelial cell proliferation, 79.7%
GO2 regulation of cell migration, 11.9%
GO3 cellular response to growth factor stimulus, 8.4%

additional categories

protein localization to chrom
osom

e, centrom
eric region

regulation of gene expression, epigenetic

negative regulation of gene expression, epigenetic

additional categories

regulation of ubiquitin-protein transferase activity

protein sumoylation

regulation of ubiquitin protein ligase activity

anaphase-promoting complex-dependent catabolic process
additional categoriesinterstrand cross-link repair

DNA replication

additional categories

negative regulation of chromosome segregation

protein-DNA complex assembly

DNA conformation change

regulation of mitotic metaphase/anaphase tra
nsition

regulation of nuclear division

regulatio
n of m

ito
tic

 nucle
ar d

ivis
ion

ATP-d
ependent c

hro
matin

 re
modelin

g
nu

cle
os

om
e 

as
se

m
bl

y
D

N
A 

pa
ck

ag
in

g

D
N

A
 re

pl
ic

at
io

n-
in

de
pe

nd
en

t

nu
cl

eo
so

m
e 

or
ga

ni
za

tio
n

hi
st

on
e 

ex
ch

an
ge

ce
nt

ro
m

er
e 

co
m

pl
ex

 a
ss

em
bl

y

ch
ro

m
at

in
 r

em
od

el
in

g 
at

 c
en

tr
om

er
e

nuclear division
additional categories

positive regulation of m
itotic cell cycle phase transition

positive regulation of cell cycle phase transition

positive regulation of m
itotic cell cycle

positive regulation of cell cycle arrest

regulation of cell cycle arrest

negative regulation of mitotic cell cycle

signal transduction involved in DNA damage checkpoint

negative regulation of cell cycle process

G1/S transition of mitotic cell cycle

G2/M transition of mitotic cell cycle

negative regulation of cell cycle

positive regulation of cell cycle

positive regulation of cell cycle process

regulation of mitotic cell cycle phase tra
nsition

re
gu

lat
ion

 o
f c

ell
 cy

cle
 p

ha
se

 tr
an

sit
ion

re
gu

la
tio

n 
of

 m
ito

tic
 c

el
l c

yc
le

re
gu

la
tio

n 
of

 c
el

l c
yc

le
 p

ro
ce

ss

KIRC
GO1 regulation of cell cycle process, 47.3%
GO2 nuclear division, 33.6%
GO3 DNA replication, 6.9%
GO4 anaphase-promoting complex-dependent catabolism, 6.7%

GO5 regulation of gene expression, epigenetic, 3.9%
protein localization to chromosome, centromeric region, 1.6%

LGG
GO1 regulation of cell cycle process, 39.0%

GO2 DNA replication, 24.7%

GO3 DNA packaging, 22.9%

GO4 positive regulation of cysteine-type endopeptidase activity involved in
apoptotic process, 13.4%

additional categories

regulation of cysteine-type endopeptidase activity

regulation of endopeptidase activity

positive regulation of peptidase activity

positive regulation of cysteine-type endopeptidase

activity involved in apoptotic process

regulation of program
m

ed cell death
regulation of apoptotic process

additional categories

centrom
ere com

plex assem
bly

chrom
atin rem

odeling at centrom
ere

DNA replication-dependent nucleosome assembly

DNA replication-dependent nucleosome organization

DNA replication-independent nucleosome organization

DNA replication-independent nucleosome assembly

cilium assembly

nucleosome assemblynuclear divisionDNA packaging

additional categories

error-free translesion synthesis

error-prone translesion synthesis

DNA recombination

DNA repair

nucleotide-excision repair, D
NA gap filli

ng

DNA biosynthetic process

postre
plicatio

n re
pair

DNA sy
nthesis

 in
vo

lve
d in

 D
NA re

pair

DNA-dependent DNA replication

D
N

A
 replication

additional categories

regulation of cell cycle arrest

positive regulation of cell cycle arrest
negative regulation of m

itotic cell cycle
G

2/M
 transition of m

itotic cell cycle
signal transduction involved in

D
N

A
 dam

age checkpoint
positive regulation of cell cycle process

negative regulation of cell cycle process

positive regulation of cell cycle

negative regulation of cell cycle

regulation of mitotic

cell cycle phase transition

regulation of mitotic cell cycle

G1/S transition of mitotic cell cycle

regulation of cell cycle process
regulatio

n of c
ell c

ycle

phase tra
nsitio

n

additional categories

negative regulation of R
N

A catabolic process

anaphase-prom
oting com

plex-dependent

catabolic process

additional categories

regulation of cellular protein localization

nucleocytoplasmic transport

additional categories

histone modification

DNA packaging

regulation of nuclear division

nuclear division

ATP-dependent chromatin remodeling

regulatio
n of c

hromosome organizatio
n

re
gu

la
tio

n 
of

 o
rg

an
el

le
 o

rg
an

iza
tio

n
ad

di
tio

na
l c

at
eg

or
ie

s

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 n
uc

le
ar

 d
iv

is
io

n

po
si

tiv
e 

re
gu

la
tio

n 
of

 c
el

l c
yc

le
 p

ro
ce

ss

re
gu

la
tio

n 
of

 m
ito

tic
 n

uc
le

ar
 d

iv
is

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

 c
el

l c
yc

le
re

gu
la

tio
n 

of
 G

2/
M

 tr
an

si
tio

n
of

 m
ito

tic
 c

el
l c

yc
le

ne
ga

tiv
e 

re
gu

la
tio

n 
of

m
ito

tic
 c

el
l c

yc
le

re
gu

la
tio

n 
of

 c
el

l c
yc

le

G
2/

M
 p

ha
se

 tr
an

si
tio

n

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 c
el

l c
yc

le

negative regulation of

cell cycle process

regulation of m
itotic cell cycle

regulation of

m
itotic cell cycle phase transition

regulation of

cell cycle phase transition

regulation of cell cycle process

additional categories

mRNA splicing, via spliceosome

regulation of m
RNA metabolic process

regulation of cellular b
iosynthetic process

mRNA proce
ss

ing

RNA m
etabolic

 proce
ss

re
gu

lat
ion

 o
f m

ac
ro

m
ole

cu
le 

bio
sy

nt
he

tic
 p

ro
ce

ss

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 g
en

e 
ex

pr
es

sio
n,

 e
pi

ge
ne

tic

po
st

tra
ns

cr
ip

tio
na

l r
eg

ul
at

io
n 

of
 g

en
e 

ex
pr

es
si

on

re
gu

la
tio

n 
of

 R
N

A 
m

et
ab

ol
ic

 p
ro

ce
ss

D
N

A 
re

pl
ic

at
io

n 
in

iti
at

io
n

ne
ga

tiv
e 

re
gu

la
tio

n 
of

m
ac

ro
m

ol
ec

ul
e 

m
et

ab
ol

ic
 p

ro
ce

ss

R
N

A
 s

pl
ic

in
g

D
N

A
 r

ep
lic

at
io

n

R
N

A
 p

ro
ce

ss
in

g

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ni
tr

og
en

 c
om

po
un

d 
m

et
ab

ol
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 n
uc

le
ob

as
e-

co
nt

ai
ni

ng

co
m

po
un

d 
m

et
ab

ol
ic

 p
ro

ce
ss

LIHC
GO1 DNA replication, 32.8%
GO2 regulation of cell cycle process, 31.5%

GO3 regulation of chromosome organization, 22.1%

GO4 nucleocytoplasmic transport, 7.5%

GO5 anaphase-promoting complex-dependent catabolism, 6.0%

cellular response to decreased oxygen levels

tum
or necrosis factor-m

ediated signaling pathw
ay

D
N

A
 conform

ation change

regulation of sister chrom
atid segregation

regulation of chrom
osom

e organization

epiderm
al cell differentiation

keratinocyte differentiation

regulation of morphogenesis of an epithelium

Wnt signaling pathway, planar cell polarity pathway

positive regulation of proteolysis

positive regulation of apoptotic process

positive regulation of cell death

regulation of m
itotic nuclear division

regulatio
n of c

ell c
yc

le G
2/M

 phase
 tra

nsit
ion

negativ
e re

gulatio
n of c

ell c
yc

le G
2/M

 phase
 tr

ansit
ion

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 c
el

l c
yc

le
 p

ro
ce

ss

re
gu

la
tio

n 
of

 m
ito

tic
 c

el
l c

yc
le

re
gu

la
tio

n 
of

 m
ito

tic
 c

el
l c

yc
le

 p
ha

se
 tr

an
si

tio
n

re
gu

la
tio

n 
of

 c
el

l c
yc

le
 p

ro
ce

ss
re

gu
la

tio
n 

of
 c

el
l c

yc
le

 p
ha

se
 tr

an
si

tio
n

re
gu

la
tio

n 
of

 tr
an

sc
rip

tio
n 

fr
om

 R
N

A
 p

ol
ym

er
as

e 
II

pr
om

ot
er

 in
 r

es
po

ns
e 

to
 s

tr
es

s

positive regulation of ubiquitin protein ligase activity

anaphase-prom
oting com

plex-

dependent catabolic process

positive regulation of protein ubiquitination

involved in ubiquitin-dependent protein catabolic process

regulation of m
R

N
A catabolic process

m
odification-dependent m

acrom
olecule catabolic process

cellular protein catabolic process

positive regulation of protein modification

by small protein conjugation or removal

posttranscriptional regulation of gene expression

proteasome-mediated ubiquitin-

dependent protein catabolic process

proteasomal protein catabolic processregulatio
n of p

rotein ubiquitin
atio

n in
vo

lve
d in

ubiquitin
-dependent p

rotein ca
tabolic 

proce
ss

re
gu

la
tio

n 
of

 m
R

N
A 

m
et

ab
ol

ic
 p

ro
ce

ss

re
gu

la
tio

n 
of

 c
el

lu
la

r 
ca

ta
bo

lic
 p

ro
ce

ss

LUAD
GO1 regulation of cellular catabolism, 51.9%

GO2 regulation of cell cycle process, 16.0%

GO3 positive regulation of cell death, 15.4%

GO4 regulation of morphogenesis of an epithelium, 7.3%

GO5 regulation of chromosome organization, 5.1%

GO6 tumor necrosis factor-mediated signaling pathway, 4.3%

positive regulation of im
m

une response

neutrophil activation

involved in im
m

une response

neutrophil m
ediated im

m
unity

additional categories

protein phosphorylation

positive regulation of cell death

regulation of program
m

ed cell death

regulation of apoptotic process

positive regulation of transferase activity

positive regulation of cell differentiation

positive regulation of

macromolecule metabolic process

cellular response to growth factor stimulus

positive regulation of nitrogen

compound metabolic process

cellular response to cytokine stimulus

regulation of intracellular signal transductionpositive regulation of cell communication

positive regulation of signal transduction

positive regulation of

cellular metabolic process

regulation of kinase activity

positive regulation of kinase activity

positiv
e re

gulation of

cellular p
rotein metabolic process

posit
ive

 re
gulatio

n of p
rotein m

etabolic
 proce

ss

po
sit

ive
 re

gu
la

tio
n 

of

NF-
ka

pp
aB

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
ivi

ty

po
si

tiv
e 

re
gu

la
tio

n 
of

 p
ro

te
in

 k
in

as
e 

ac
tiv

ity

re
gu

la
tio

n 
of

 p
ro

te
in

 k
in

as
e 

ac
tiv

ity
po

si
tiv

e 
re

gu
la

tio
n 

of

I-
ka

pp
aB

 k
in

as
e/

N
F

-k
ap

pa
B

 s
ig

na
lin

g
re

gu
la

tio
n 

of
 c

el
lu

la
r

pr
ot

ei
n 

m
et

ab
ol

ic
 p

ro
ce

ss

positive regulation of M
A

P
K

 cascade

positive regulation of

intracellular signal transduction
positive regulation of

protein m
odification process

regulation of protein m
etabolic process

activation of protein kinase activity

regulation of MAPK cascade

positive regulation of

phosphorus metabolic process

regulation of protein modification process

regulation of phosphate metabolic process
positive regulation of phosphorylation

regulatio
n of p

hosp
horus m

etabolic
 proce

ss

po
sit

ive
 re

gu
la

tio
n 

of
 p

ro
te

in
 p

ho
sp

ho
ry

la
tio

n

re
gu

la
tio

n 
of

 p
ho

sp
ho

ry
la

tio
n

re
gu

la
tio

n 
of

 p
ro

te
in

 p
ho

sp
ho

ry
la

tio
n

LUSC
GO1 regulation of MAPK cascade, 94.4%

GO2 neutrophil mediated immunity, 5.6%

additional categories

antigen processing and presentation of exogenous

peptide antigen via M
H

C
 class I, TA

P
-dependent

additional categories

D
N

A packaging

centrom
ere com

plex assem
bly

chrom
atin rem

odeling at centrom
ere

nuclear division

regulation of organelle organization

additional categories

positive regulation of proteolysis

cellular protein catabolic process

modification-dependent macromolecule catabolic process

positive regulation of protein ubiquitination involved in

ubiquitin-dependent protein catabolic process

regulation of protein ubiquitination involved in

ubiquitin-dependent protein catabolic process

positive regulation of cellular catabolic process

regulation of p
roteolysis

regulatio
n of c

ellu
lar p

rotein ca
tabolic 

proce
ss

regulatio
n of p

roteolys
is 

invo
lve

d in

ce
llu

lar p
rotein ca

tabolic
 proce

ss

re
gu

lat
ion

 o
f p

ro
te

in 
m

od
ific

at
ion

 p
ro

ce
ss

an
ap

ha
se

-p
ro

m
ot

in
g 

co
m

pl
ex

-

de
pe

nd
en

t c
at

ab
ol

ic 
pr

oc
es

s

re
gu

la
tio

n 
of

 p
ro

te
in

 m
od

ifi
ca

tio
n 

by

sm
al

l p
ro

te
in

 c
on

ju
ga

tio
n 

or
 re

m
ov

al

pr
ot

ea
so

m
e-

m
ed

ia
te

d 
ub

iq
ui

tin
-

de
pe

nd
en

t p
ro

te
in

 c
at

ab
ol

ic
 p

ro
ce

ss

pr
ot

ea
so

m
al

 p
ro

te
in

 c
at

ab
ol

ic
 p

ro
ce

ss

ne
ga

tiv
e 

re
gu

la
tio

n 
of

 p
ro

te
in

 m
et

ab
ol

ic
 p

ro
ce

ss
ad

di
tio

na
l c

at
eg

or
ie

s
po

si
tiv

e 
re

gu
la

tio
n 

of
 c

el
l c

yc
le

po
si

tiv
e 

re
gu

la
tio

n 
of

 tr
an

sf
er

as
e 

ac
tiv

ity

regulation of G
1/S

 transition of m
itotic cell cycle

m
itotic D

N
A

 dam
age checkpoint

regulation of G
2/M

 transition of m
itotic cell cycle

regulation of cell cycle G
2/M

 phase transition

negative regulation of protein m
odification process

negative regulation of transferase activity

negative regulation of protein m
odification

by sm
all protein conjugation or rem

oval

regulation of ubiquitin-protein transferase activity

negative regulation of cellular protein metabolic process

negative regulation of ubiquitin-protein

ligase activity involved in mitotic cell cycle

negative regulation of cell cycle process

negative regulation of mitotic cell cycle

regulation of mitotic cell cycle phase transition

regulation of cell cycle phase tra
nsition

negativ
e re

gulatio
n of c

ell c
yc

le

re
gu

la
tio

n 
of

 c
el

l c
yc

le
 p

ro
ce

ss

re
gu

la
tio

n 
of

 m
ito

tic
 c

el
l c

yc
le

PAAD
GO1 regulation of mitotic cell cycle, 54.3%

GO2 proteasome-mediated ubiquitin-dependent protein catabolism, 29.2%

GO3 nuclear division, 13.3%

GO4 antigen processing and presentation of exogenous peptide antigen via MHC class I,
TAP-dependent, 3.1%

additional categories

regulation of organelle organization

regulation of chrom
osom

e organization

additional categories

positive regulation of R
N

A
 m

etabolic process

negative regulation of R
N

A
 catabolic process

negative regulation of m
R

N
A

 m
etabolic process

regulation of alternative
m

R
N

A
 splicing, via spliceosom

e

negative regulation of gene expression

regulation of m
R

N
A

 splicing, via spliceosom
e

regulation of R
N

A
 splicing

positive regulation of D
N

A
 biosynthetic process

regulation of m
R

N
A m

etabolic process

regulation of D
N

A m
etabolic process

negative regulation of cellular biosynthetic process

negative regulation of biosynthetic process

negative regulation of cellular m
acrom

olecule biosynthetic process

negative regulation of m
acrom

olecule biosynthetic process

negative regulation of RNA metabolic process

positive regulation of macromolecule metabolic process

regulation of cellular macromolecule biosynthetic process

negative regulation of nucleobase-containing

compound metabolic process

regulation of cellular biosynthetic process

regulation of DNA biosynthetic processnegative regulation of macromoleculemetabolic process
regulation of macromolecule

biosynthetic process

positive regulation of cellular

biosynthetic process

positive regulation of

biosynthetic process

positive regulation of macromolecule

biosynthetic process

positive regulation of nucleobase-

containing compound metabolic process

negative re
gulatio

n of

cellular m
etabolic process

negative regulation of nitrogen

compound metabolic process

positive regulation of gene expression

regulation of R
N

A m
etabolic process

regulation of gene expression

regulation of nucleobase-containing
com

pound m
etabolic process

m
R

N
A

 m
etabolic process

m
R

N
A

 processing

m
RNA splicing,

via spliceosom
e

RNA processing

RNA splicing

RNA metabolic process

SARC
GO1 RNA splicing, 95.4%

GO2 regulation of chromosome organization, 4.6%

positive regulation

of cell death

regulation of

cell developm
ent

generation of neurons

positive regulation ofcell differentiation

STAD
GO1 positive regulation of cell differentiation, 100.0%

additional categories

antigen processing and presentation

of exogenous peptide antigen via MHC class I, TAP-dependent

additional categories

negative regulation of transferase activity

regulation of cellular ketone metabolic process

regulation of cellular amine metabolic process
regulation of cellular amino acid metabolic process

additional categories

negative regulation of canonical Wnt signaling pathway

positive regulation of canonical Wnt signaling pathway

non-canonical Wnt signaling pathway

Wnt signaling pathway, planar cell polarity pathway

additio
nal categorie

s

nu
cle

ar
 d

ivi
sio

n

ad
di

tio
na

l c
at

eg
or

ie
s

re
gu

la
tio

n 
of

 s
te

m
 c

el
l d

iff
er

en
tia

tio
n

re
gu

la
tio

n 
of

 h
em

at
op

oi
et

ic
 p

ro
ge

ni
to

r 
ce

ll 
di

ffe
re

nt
ia

tio
n

re
gu

la
tio

n 
of

 h
em

at
op

oi
et

ic
 s

te
m

 c
el

l d
iff

er
en

tia
tio

n

re
gu

la
tio

n 
of

 o
rg

an
 m

or
ph

og
en

es
is

re
gu

la
tio

n 
of

 m
or

ph
og

en
es

is
 o

f a
n 

ep
ith

el
iu

m

a
d

d
iti

o
n

a
l c

a
te

g
o

ri
e

s

re
gu

la
tio

n 
of

 tr
an

sc
rip

tio
n 

fr
om

R
N

A
 p

ol
ym

er
as

e 
II 

pr
om

ot
er

 in
 r

es
po

ns
e 

to
 h

yp
ox

ia

D
N

A
 r

ep
lic

at
io

n

ad
di

tio
na

l c
at

eg
or

ie
s

negative regulation of protein modification process

positive regulation of protein catabolic process

regulation of mRNA catabolic process

negative regulation of protein modification by small protein conjugation or removal

positive regulation of proteolysis involved in cellular protein catabolic process

proteasomal protein catabolic process

proteasome-mediated ubiquitin-dependent protein catabolic process

positive regulation of protein modification by small protein conjugation or removal
regulation of ubiquitin-protein transferase activity
positive regulation of protein ubiquitination

positive regulation of ubiquitin-protein ligase

activity involved in regulation of mitotic cell cycle transition

anaphase-promoting complex-

dependent catabolic processadditio
nal c

ategorie
s

po
sit

ive
 re

gu
lat

ion
 o

f c
ell

 cy
cle

po
sit

ive
 re

gu
la

tio
n 

of
 c

el
l c

yc
le

 p
ro

ce
ss

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

cy
cl

e 
G

2/
M

 p
ha

se
 tr

an
si

tio
n

re
gu

la
tio

n 
of

 c
el

l c
yc

le

G
2/

M
 p

ha
se

 tr
an

si
tio

n

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

cy
cl

e

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

cy
cl

e 
pr

oc
es

s

n
e

g
a

tiv
e

 r
e

g
u

la
tio

n
 o

f
m

ito
tic

 c
e

ll 
cy

cl
e

re
g
u
la

tio
n
 o

f 
m

ito
tic

 c
e
ll

cy
cl

e
 p

h
a
se

 t
ra

n
si

tio
n

re
gu

la
tio

n 
of

 m
ito

tic
 c

el
l c

yc
le

re
gu

la
tio

n 
of

ce
ll 

cy
cl

e 
ph

as
e 

tra
ns

iti
on

regulatio
n of c

ell c
yc

le proce
ss

MergedCancer
GO1 regulation of cell cycle process, 35.0%

GO2 anaphase-promoting complex-dependent catabolism, 25.7%

GO3 DNA replication, 9.3%

GO4 regulation of morphogenesis of an epithelium, 9.1%

GO5 nuclear division, 7.2%

GO6 non-canonical Wnt signaling pathway, 6.9%

GO7 regulation of cellular ketone metabolism, 3.2%

negative regulation of transferase activity, 2.2%

antigen processing and presentation of exogenous peptide antigen via MHC class I,
TAP-dependent, 1.5%

Figure 4. The survival influential modules formed by harmful SIGs. Each pie chart shows the identified functional modules
in which the harmful SIGs are involved in the corresponding cancer type. The percentage is the relative significance of one
functional module to the others. The functional modules associated with cell cycle are marked by red; modules related to
cell proliferation or differentiation are marked by orange.



Int. J. Mol. Sci. 2021, 22, 4384 8 of 17

additional categories

R
N

A
 biosynthetic process

transcription, D
N

A
-tem

plated

nucleic acid-tem
plated transcription

transcription from
 R

N
A

 polym
erase II prom

oter

R
N

A
 processing

positive regulation of transcription
from

 R
N

A polym
erase II prom

oter

negative regulation of transcription from
 R

N
A polym

erase II prom
oter

regulation of transcription from
 R

N
A polym

erase II prom
oter

m
R

N
A splicing, via spliceosom

e

m
RNA processing

negative regulation of

macromolecule metabolic process

negative regulation of

cellular metabolic process

negative regulation of

transcription, DNA-templated

negative regulation of nitrogen

compound metabolic process
positive regulation of

transcription, DNA-templated
positive regulation of nucleobase-

containing compound metabolic process
positive regulation of gene expression

RNA splicing

regulation of transcription,

DNA-templated

regulation of nucleic acid-

templated transcription

positiv
e re

gulation of cellular

biosynthetic process

negativ
e re

gulatio
n of

RNA m
etabolic

 proce
ss

re
gu

lat
ion

 o
f R

NA

bio
sy

nt
he

tic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

 R
N

A

m
et

ab
ol

ic
 p

ro
ce

ss

m
R

N
A 

m
et

ab
ol

ic
 p

ro
ce

ss
ne

ga
tiv

e 
re

gu
la

tio
n 

of
ge

ne
 e

xp
re

ss
io

n
po

si
tiv

e 
re

gu
la

tio
n 

of
bi

os
yn

th
et

ic
 p

ro
ce

ss

negative regulation of
biosynthetic process

positive regulation of

m
acrom

olecule biosynthetic process

negative regulation of

cellular biosynthetic process
negative regulation of

m
acrom

olecule biosynthetic process

negative regulation of cellular

m
acrom

olecule biosynthetic process

negative regulation of nucleobase-

containing compound metabolic process

regulation of RNA

metabolic process

regulation of macromoleculebiosynthetic process

regulation of cellular

biosynthetic process

regulation of cellular m
acromolecule

biosynthetic process

re
gu

lat
ion

 o
f n

uc
leo

ba
se

-

co
nt

ain
ing

 co
m

po
un

d 
m

et
ab

oli
c p

ro
ce

ss

re
gu

la
tio

n 
of

ge
ne

 e
xp

re
ss

io
n

R
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

GBM
GO1 mRNA metabolism, 100.0%

positive regulation of

protein transport

regulation of

cell migration

positive regulation ofprotein kinase B signaling

transmembrane receptor

protein tyrosine kinase

signaling pathway

po
sit

ive
 re

gu
la

tio
n 

of
 p

ho
sp

ho
ru

s

m
et

ab
ol

ic 
pr

oc
es

s

po
si

tiv
e 

re
gu

la
tio

n 
of

ge
ne

 e
xp

re
ss

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

ph
os

ph
or

yl
at

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

 p
ro

te
in

m
et

ab
ol

ic
 p

ro
ce

ss
po

si
tiv

e 
re

gu
la

tio
n 

of
 p

ro
te

in
ph

os
ph

or
yl

at
io

n

po
si

tiv
e 

re
gu

la
tio

n 
of

 c
el

lu
la

r

pr
ot

ei
n 

m
et

ab
ol

ic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

m
ac

ro
m

ol
ec

ul
e 

m
et

ab
ol

ic
 p

ro
ce

ss

re
gu

la
tio

n 
of

 p
ro

te
in

m
od

ifi
ca

tio
n 

pr
oc

es
s

po
si

tiv
e 

re
gu

la
tio

n 
of

tra
ns

cr
ip

tio
n 

fro
m

R
N

A 
po

ly
m

er
as

e 
II 

pr
om

ot
er

positive regulation of

cellular m
etabolic process

positive regulation of nitrogen

compound metabolic process

regulation of protein

metabolic process

positive regulation of
hydrolase activity

regulation of phosphorus

metabolic process

regulatio
n of

phosphate m
etabolic process

re
gu

la
tio

n 
of

kin
as

e 
ac

tiv
ityre

gu
la

tio
n 

of
pr

ot
ei

n 
ki

na
se

 a
ct

iv
ity

re
gu

la
tio

n 
of

ph
os

ph
or

yl
at

io
n

re
gu

la
tio

n 
of

 p
ro

te
in

ph
os

ph
or

yl
at

io
n

LIHC
GO1 regulation of protein kinase activity, 72.2%

GO2 transmembrane receptor protein tyrosine
kinase signaling pathway, 18.1%
GO3 regulation of cell migration, 9.7%

regulation of ion transport

endocytosis

receptor-m
ediated

endocytosis

T cell receptor

signaling pathway

positive regulation of

cell-cell adhesion

antigen receptor-mediated

signaling pathway

positive regulation of

immune response
regulation of

T cell activation

positive regulation oflymphocyte activation

positive regulation of

cell activation

regulation of

lymphocyte activation

additio
nal categorie

s

po
sit

ive
 re

gu
lat

ion
 o

f p
ro

te
in 

m
et

ab
oli

c p
ro

ce
ss

re
gu

la
tio

n 
of

 d
ef

en
se

 re
sp

on
se

po
sit

ive
 re

gu
la

tio
n 

of
 b

io
sy

nt
he

tic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

nu
cl

eo
ba

se
-c

on
ta

in
in

g 
co

m
po

un
d 

m
et

ab
ol

ic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

 c
el

lu
la

r b
io

sy
nt

he
tic

 p
ro

ce
ss

pr
ot

ei
n 

ph
os

ph
or

yl
at

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

 c
el

lu
la

r p
ro

te
in

 m
et

ab
ol

ic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

tr
an

sc
rip

tio
n 

fr
om

 R
N

A
 p

ol
ym

er
as

e 
II 

pr
om

ot
er

po
si

tiv
e 

re
gu

la
tio

n 
of

 R
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

po
si

tiv
e 

re
gu

la
tio

n 
of

 tr
an

sc
rip

tio
n,

 D
N

A
-t

em
pl

at
ed

po
si

tiv
e 

re
gu

la
tio

n 
of

 p
ro

te
in

 k
in

as
e 

B
 s

ig
na

lin
g

po
si

tiv
e 

re
gu

la
tio

n 
of

 m
ac

ro
m

ol
ec

ul
e

m
et

ab
ol

ic
 p

ro
ce

ss

re
gu

la
tio

n 
of

 p
ro

te
in

 m
et

ab
ol

ic
 p

ro
ce

ss

re
gu

la
tio

n 
of

 c
el

lu
la

r 
pr

ot
ei

n 
m

et
ab

ol
ic

 p
ro

ce
ss

regulation of M
A

P
K

 cascade
positive regulation of

nitrogen com
pound m

etabolic process

positive regulation of

cellular m
etabolic process

regulation of

intracellular signal transduction

positive regulation of

phosphate metabolic process

positive regulation of

phosphorus metabolic process

positive regulation of

MAPK cascade

regulation of proteinmodification process

positive regulation of

cell communication

positive regulation of

signal transduction

regulation of

phosphorus metabolic process

re
gu

lat
ion

 o
f

ph
os

ph
at

e 
m

et
ab

oli
c p

ro
ce

ss

re
gu

la
tio

n 
of

ph
os

ph
or

yl
at

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

 i
nt

ra
ce

llu
la

r 
si

gn
al

 tr
an

sd
uc

tio
n

re
gu

la
tio

n 
of

pr
ot

ei
n 

ph
os

ph
or

yl
at

io
n

LUAD
GO1 positive regulation of MAPK cascade, 71.8%

GO2 regulation of lymphocyte activation, 20.6%

GO3 receptor-mediated endocytosis, 7.7%

negative regulation of
biosynthetic process

regulation of m
RNA

metabolic process

mRNA m
etabolic

 pro
ce

ss

R
N

A 
pr

oc
es

si
ng

m
R

N
A

 s
pl

ic
in

g,
vi

a 
sp

lic
eo

so
m

e

m
R

N
A

 p
ro

ce
ss

in
g

RNA sp
lic

ing

transcription,
DNA-templated

nucleic acid-

templated tra
nscription

R
N

A 
bi

os
yn

th
et

ic
 p

ro
ce

ss

R
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

tra
nsc

rip
tio

n fro
m

RNA polym
erase

 II 
promoter

LUSC
GO1 RNA splicing, 91.6%

GO2 negative regulation of biosynthesis, 8.4%

phagocytosis

endocytosis

additional categories

positive regulation of protein kinase B signaling

positive regulation of intracellular signal transduction

regulation of intracellular signal transduction

transm
em

brane receptor protein tyrosine kinase signaling pathway

additional categories

negative regulation of gene expression

negative regulation of biosynthetic process

negative regulation of cellular biosynthetic process

negative regulation of macromolecule biosynthetic process

negative regulation of cellular macromolecule biosynthetic process

negative regulation of RNA metabolic process

regulation of RNA biosynthetic process

positive regulation of RNA metabolic process
regulation of nucleic acid-templated transcriptionpeptidyl-amino acid modification

regulation of transcription, DNA-templated

positive regulation of transcription, DNA-templated

negative regulation of transcription, DNA-templated

protein phosphorylation

peptidyl-tyrosine autophosphorylation

protein autophosphorylation

peptidyl-ty
rosine modification

peptid
yl-

tyr
osin

e phosp
horyl

atio
n

additio
nal c

ategorie
s

re
gulatio

n of le
uko

cy
te diffe

re
ntia

tio
n

re
gu

lat
ion

 o
f ly

m
ph

oc
yte

 d
iffe

re
nt

iat
ion

Fc 
re

ce
pt

or
 m

ed
ia

te
d 

st
im

ul
at

or
y 

sig
na

lin
g 

pa
th

way

Fc
-g

am
m

a 
re

ce
pt

or
 s

ig
na

lin
g 

pa
th

way

Fc
 re

ce
pt

or
 s

ig
na

lin
g 

pa
th

w
ay

re
gu

la
tio

n 
of

 ly
m

ph
oc

yt
e 

pr
ol

ife
ra

tio
n

T 
ce

ll 
di

ffe
re

nt
ia

tio
n

T 
ce

ll 
re

ce
pt

or

si
gn

al
in

g 
pa

th
w

ay

po
si

tiv
e 

re
gu

la
tio

n 
of

ce
ll-

ce
ll 

ad
he

si
on

B
 c

el
l r

ec
ep

to
r

si
gn

al
in

g 
pa

th
w

ay

positive regulation of

cell activation

positive regulation of

lymphocyte activation

positive regulation of
immune response

antigen receptor-

mediated signaling pathway

re
gu

la
tio

n 
of

T 
ce

ll 
ac

tiv
at

io
n

re
gu

la
tio

n 
of

 ly
m

ph
oc

yt
e 

ac
tiv

at
io

n

HNSC
GO1 regulation of lymphocyte activation, 71.0%

GO2 peptidyl-tyrosine phosphorylation, 22.3%

GO3 transmembrane receptor protein tyrosine kinase signaling pathway, 5.0%

endocytosis, 1.8%

regulation of type I

interferon production

regulation of transcription,DNA-templated

regulation of

apoptotic process

regulation of

programmed cell death

regulation of

peptide tra
nsport

regulatio
n of

protein tra
nsp

ort

re
gu

la
tio

n 
of

 in
tra

ce
llu

la
r

sig
na

l t
ra

ns
du

ct
io

n
pa

tte
rn

 r
ec

og
ni

tio
n 

re
ce

pt
or

si
gn

al
in

g 
pa

th
w

ay

po
si

tiv
e 

re
gu

la
tio

n 
of

im
m

un
e 

re
sp

on
se

re
gu

la
tio

n 
of

 in
na

te

im
m

un
e 

re
sp

on
se

po
sit

ive
 re

gu
lat

ion
 o

f

inn
at

e 
im

m
un

e 
re

sp
on

se

cellular response
to cytokine stimulus

positive regulation of

defense response

re
gu

la
tio

n
of

de
fe

ns
e 

re
sp

on
se

re
gu

la
tio

n 
of

 I-
ka

pp
aB

 k
in

as
e/

N
F

-k
ap

pa
B

 s
ig

na
lin

g

SARC
GO1 regulation of I-kappaB kinase/NF-kappaB signaling, 76.0%
GO2 regulation of protein transport, 6.7%
GO3 regulation of programmed cell death, 6.0%
GO4 regulation of transcription, DNA-templated, 5.8%
GO5 regulation of type I interferon production, 5.5%

cellular response to

peptide horm
one stim

ulus

transm
em

brane receptor

protein tyrosine kinase

signaling pathw
ay

regulation of cell migration

regulation of protein
phosphorylation

regulation of lip
id

metabolic process

re
gu

la
tio

n 
of

 p
ho

sp
ho

ru
s

m
et

ab
ol

ic
 p

ro
ce

ss regulation of phosphate

m
etabolic process

regulation of

phosphorylation

ca
rb

ox
yli

c a
cid

m
et

ab
oli

c p
ro

ce
ss

KIRC
GO1 regulation of lipid metabolism, 77.0%

GO2 regulation of cell migration, 12.6%

GO3 transmembrane receptor protein tyrosine
kinase signaling pathway, 10.4%

peptidyl-tyrosine m
odification

peptidyl-tyrosine phosphorylation

additional categories

regulation of nuclear division

regulation of m
itotic nuclear division

regulation of m
icrotubule

cytoskeleton organization

additional categories

negative regulation of

m
acrom

olecule biosynthetic process

negative regulation

of cellular m
acrom

olecule biosynthetic process

DNA synthesis involved in DNA repair

DNA replication

DNA-dependent DNA replication

positive regulation of immune response

antigen receptor-

mediated signaling pathway
B cell receptor

signaling pathwaypositive regulation ofcell activation

positive regulation of l
ymphocyte activation

regulation of

lymphocyte activation

additional categories

tra
nscription fro

m RNA polymerase II p
romoter

regulatio
n of g

ene exp
ressi

on

posit
ive

 re
gulatio

n of m
acro

molecu
le

metabolic
 proce

ss

po
sit

ive
 re

gu
lat

ion
 o

f

ce
llu

lar
 m

et
ab

oli
c p

ro
ce

ss

re
gu

la
tio

n 
of

 c
el

lu
la

r

bi
os

yn
th

et
ic 

pr
oc

es
s

po
si

tiv
e 

re
gu

la
tio

n 
of

 n
itr

og
en

co
m

po
un

d 
m

et
ab

ol
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 c
el

lu
la

r m
ac

ro
m

ol
ec

ul
e

bi
os

yn
th

et
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 R
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 m
ac

ro
m

ol
ec

ul
e

bi
os

yn
th

et
ic

 p
ro

ce
ss

re
gu

la
tio

n 
of

 le
uk

oc
yt

e
ce

ll-
ce

ll 
ad

he
si

on

regulation of transcription,
D

N
A

-tem
plated

regulation of R
N

A

biosynthetic process

positive regulation of

cell-cell adhesion

regulation of nucleic acid-

tem
plated transcription

regulation of nucleobase-

containing com
pound m

etabolic process

regulation of transcription from

RNA polym
erase II prom

oter

positive regulation of

gene expression

positive regulation of

cellular biosynthetic process

positive regulation ofbiosynthetic process

positive regulation of

macromolecule biosynthetic process

positive regulation of nucleobase-

containing compound metabolic process

po
sit

ive
 re

gu
lat

ion
 o

f t
ra

ns
cr

ipt
ion

 fr
om

RNA p
oly

m
er

as
e 

II 
pr

om
ot

er

po
si

tiv
e 

re
gu

la
tio

n 
of

 tr
an

sc
rip

tio
n,

D
N

A
-te

m
pl

at
ed

po
si

tiv
e 

re
gu

la
tio

n 
of

R
N

A
 m

et
ab

ol
ic

 p
ro

ce
ss

CESC
GO1 positive regulation of cell-cell adhesion, 70.0%

GO2 regulation of lymphocyte activation, 14.2%

GO3 DNA-dependent DNA replication, 8.8%

GO4 regulation of microtubule cytoskeleton organization, 4.4%

peptidyl-tyrosine phosphorylation, 2.6%

re
gulatio

n of

pro
gra

mmed

ce
ll d

eath

negativ
e re

gulatio
n of

ce
llu

lar b
iosy

nthetic proce
ss

ne
ga

tiv
e 

re
gu

la
tio

n 
of

nu
cl

ei
c 

ac
id

-t
em

pl
at

ed

tr
an

sc
rip

tio
n

BRCA
GO1 negative regulation of nucleic acid-templated
transcription, 79.3%
GO2 regulation of programmed cell death, 20.6%

amide transport

peptide transport

nucleocytoplasmic transportmitochondrial respiratory
chain complex I assembly

NADH dehydrogenase
complex assembly

mitochondrial respiratory

chain complex assembly

cellular macromolecular

complex assembly

regulation of gene expression, epigenetic

amide biosynthetic process

tra
nslation

aerobic 
resp

ira
tio

n

RNA m
et

ab
oli

c p
ro

ce
ss

sp
lic

eo
so

m
al

 s
nR

N
P

 a
ss

em
bl

y

m
R

N
A

 m
et

ab
ol

ic
 p

ro
ce

ss

m
R

N
A

 p
ro

ce
ss

in
g

R
N

A 
sp

lic
in

g RNA pro
ce

ss
ing

mRNA splicing, via spliceosome

nucleoside monophosphate

metabolic process

purine rib
onucleoside

monophosphate metabolic process

pu
rin

e 
rib

on
uc

le
os

id
e

tri
ph

os
ph

at
e 

m
et

ab
ol

ic
 p

ro
ce

ss

m
ito

ch
on

dr
ia

l A
T

P
 s

yn
th

es
is

co
up

le
d 

el
ec

tr
on

 tr
an

sp
or

t

pu
rin

e 
rib

on
uc

le
ot

id
e

m
et

ab
ol

ic
 p

ro
ce

ss

nu
cle

os
id

e
tri

ph
os

ph
at

e

m
et

ab
ol

ic 
pr

oc
es

s

BLCA
GO1 purine ribonucleoside triphosphate metabolism, 83.5%
GO2 mitochondrial respiratory chain complex assembly, 11.7%

GO3 nucleocytoplasmic transport, 4.9%

positive regulation of

macromolecule

metabolic process

re
gu

la
tio

n 
of

 c
el

lu
la

r
pr

ot
ei

n 
lo

ca
liz

at
io

n

positiv
e regulation of

intracellular tr
ansport

STAD
GO1 positive regulation of intracellular transport, 100.0%

negative regulation of
transcription from RNA polymerase II promoter

negative regulation of nucleobase-containing

compound metabolic process
regulation ofgene expression

negative regulation of
macromolecule metabolic process

mRNA metabolic process

amide biosynthetic process

translation

negativ
e re

gulatio
n of

gene exp
ress

ion

rR
NA 

m
et

ab
ol

ic 
pr

oc
es

s
nc

R
N

A 
pr

oc
es

si
ng

rR
N

A
 p

ro
ce

ss
in

g

R
N

A
 c

at
ab

ol
ic

 p
ro

ce
ss

nu
cl

ea
r-

tr
an

sc
rib

ed
 m

R
N

A

ca
ta

bo
lic

 p
ro

ce
ss

,

no
ns

en
se

-m
ed

ia
te

d 
de

ca
y

vir
al

 tr
an

sc
rip

tio
n

protein localization to

organelle

protein localizationto membrane

protein localization to

endoplasmic reticulum

pr
ote

in 
tar

ge
tin

g

to 
mem

br
an

e

S
R

P
-d

ep
en

de
nt

co
tr

an
sl

at
io

na
l p

ro
te

in

ta
rg

et
in

g
to

 m
em

br
an

e

co
tr

an
sl

at
io

na
l p

ro
te

in

ta
rg

et
in

g 
to

 m
em

br
an

e

pro
tein ta

rg
etin

g

MergedCancer
GO1 protein targeting, 55.0%
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Figure 5. The survival influential modules formed by protective SIGs. Each pie chart shows the identified functional
modules in which the protective SIGs were involved in the corresponding cancer type. The percentage is the relative
significance of one functional module to the others. The functional modules associated with immune response are marked
by green.

2.5. The Cancer Hallmarks of SIGs in Pan-Cancer

To investigate how these SIGs influence carcinogenesis in pan-cancer, we obtained hall-
mark gene sets from the Molecular Signature Database (MSigDB) [25–27] and performed
enrichment analysis using Fisher’s exact test. These hallmark gene sets are well-defined
and representative biological processes and pathways in cells. We observed that pan-
cancer harmful genes were significantly over-represented for all the hallmark categories
(Figure 6A). This observation implies that the way harmful SIGs are involved in carcino-
genesis might be variable and prevalent in respect to cellular function. More specifically,
we found that the pan-cancer harmful SIGs were significantly enriched with several cancer-
relevant hallmarks, such as epithelial mesenchymal transition, DNA repair, glycolysis,
hypoxia, apoptosis, MYC target, p53 pathway, and E2F targets (see full significant list
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in Table S4) [28,29]. This result suggests that the pan-cancer harmful SIGs might pro-
mote carcinogenesis through participating in these cancer hallmark processes. In contrast,
we observed that pan-cancer protective genes were significantly overrepresented only
in the metabolic category, but underrepresented in the immune response and pathway
categories (Figure 6B). Interestingly, two cancer-relevant hallmarks, bile acid and fatty
acid metabolism, in which pan-cancer protective SIGs are enriched have been reported to
contain cancer-therapeutic potential [30,31].
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Figure 6. Enrichment analysis of pan-cancer SIGs in cancer-relevant hallmarks. (A,B) Overrepresentation or underrepresen-
tation of pan-cancer harmful (A) and protective (B) genes in MsigDB hallmark gene sets. The x-axis shows the MSigDB
hallmark category. The y-axis shows the proportion of the pan-cancer harmful (B), and protective (C) genes of the total
genes in the MSigDB category. Dark and light bars represent overrepresentation and underrepresentation, respectively.
An asterisk signifies a significant proportion of pan-cancer SIGs (p-value < 0.05, Fisher’s exact test) in the corresponding
hallmark category. (C,D) Risk score of pan-cancer harmful (C), and protective (D), SIGs in the MSigDB category compared
to overall patient survival. Positive scores represent a high expression level of genes significantly associated with poor
survival, and negative scores indicate better survival. The dashed lines represent an absolute standardized risk score value
of ±1.96 (corresponding to a p-value < 0.05).

To investigate the pan-cancer harmful and protective SIGs in hallmark categories
associated with patient survival, we built a risk score using the univariate z-score for
overall survival for each patient. We observed that pan-cancer harmful and protective
SIGs in the MSigDB category tended to have a positive and negative standardized risk
score, respectively (Figure 6C,D). This observation suggested that the pan-cancer harmful
genes in all the MSigDB categories were significantly associated with poor patient survival,
emphasizing the role of the pan-cancer harmful SIGs in promoting carcinogenesis through
involving the cancer-relevant hallmarks. In contrast, the pan-cancer protective genes in the
signaling and metabolic category were highly significantly associated with good patient
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survival. Collectively, these observations further highlighted the potential roles played by
the identified pan-cancer SIGs in carcinogenesis.

2.6. Identification of Clinically Relevant Pan-Cancer Harmful SIGs in the Proliferation Hallmark

According to the above results, we could conclude that the harmful genes involved in
proliferation are critical to the poor prognosis of cancer patients. Therefore, we selected
pan-cancer harmful genes in the proliferation category and performed a series of analyses.
First, we performed a pairwise co-expression analysis by applying spearman correlation,
and then transformed the obtained SCCs into z-scores using Fisher’s z-transformation
in the merged cancer dataset, and also in each cancer. With a z-score cut-off of three,
we identified 5950 co-expressed gene pairs in common, suggesting a strong correlation
between harmful genes in all 16 cancer types. To have a more detailed view of these co-
expressed genes, we identified 174 of them possessing a unique protein-protein interaction
among the 96 pan-cancer harmful genes (harmful proteins) in the human interactome.
Highly connected nodes are usually defined as “hubs”. We filtered the 10 genes (CDK1,
CDC20, PLK1, AURKA, AURKB, BRCA1, BUB1B, MCM2, BUB1, and MCM7) which were
the top 10 highly connected and having a maximum degree of 20 and a minimum degree
of 7 (Figure 7A). In addition, two distinct sub-networks were observed. The large sub-
network consisted of key cancer proliferation genes mainly categorized as kinases, while
the other small sub-network were mainly categorized as proteasomes (Figure 7A). We also
identified that these genes were differentially expressed in primary tumor and matched
normal samples in pan-cancer (Figure 7B) and also upregulation in 10 cancer types (Figure
S5), further suggesting the oncogenicity of these pan-cancer harmful SIGs. We further
categorized the expression profile of these 10 highly co-expressed genes into low expression
groups and high expression groups, based on their median expression. We found the high
expression levels of these genes were significantly associated with poor survival of patients
through pan-cancer analyses (Figure 7C–L). We also found that some of the 10 genes showed
clinical relevance by associating with patient survival in at least 11 cancer types (Figure S6).
Interestingly, the Kaplan-Meier plot of AURKA, AURKB, BUB1, BUB1B, CDC20, CDK1, and
PLK1 showed a wide clear separation between low expression and high expression curves
in KIRC and LGG (Figure S6), suggesting them as prognostic biomarkers. For example,
CDC20, a potential novel target for cancer therapy has been reported to be dysregulated
in the majority of human cancers, including oral squamous cell carcinoma [32], human
bladder carcinoma [33], pancreatic cancer [34], colorectal cancer [35], breast cancer [36],
glioblastoma [37], and non-small cell lung cancer [38], and showed clinical relevance in six
cancer types, i.e., BLCA, KIRC, LIHC, LUAD, LGG, and PAAD (Figure S6), while PLK1,
another potential target for cancer therapy [39] showed clinical relevance in eight cancer
types, including BLCA, COAD, HNSC, KIRC, LIHC, LUAD, LGG, and PAAD (Figure S6).
Taken together, a strong correlation between these ten SIGs and their significant association
with major cancer types further suggested their potential role in promoting carcinogenesis.
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P = 3.83 × 10−10 P = 2.89 × 10−15

P = 7.30 × 10−8 P = 1.11 × 10−15

P = 1.39 × 10−10 P = 1.79 × 10−14

P = 9.17 × 10−9 P = 4.14 × 10−12

P = 6.22 × 10−7 P < 2.2 × 10−16

Figure 7. Clinically relevant genes in pan-cancer. (A) The human interactome of significantly co-expressed pan-cancer
harmful genes (harmful proteins) in the MSigDB category of proliferation. Nodes represent genes and edges protein-protein
interactions. Node size is proportional to the degree of the node. Nodes shown in color represent nodes with the 10 highest
degrees. (B) Expression profile of clinically relevant genes in primary tumor and matched normal samples of pan-cancer.
The RSEM normalized expression value is displayed in the log2 (x + 1) scale. (C–L) Survival estimates of overall survival in
pan-cancer patients (n = 6584). Kaplan-Meier plots of low expression and high expression groups, based on the median
expression. The p-values were obtained using a Mantel log-rank test.

3. Discussion

In this study, we identified genes influencing patient survival in 16 individual cancer
types and pan-cancer. Moreover, our approach tried to identify the survival influential
genes depending on each cancer type, instead of using a global and fixed cut-off across all
the studied cancer types. Intuitively, the survival influential genes should not be prevalent
in the genome to control the fatal sensitivity to the perturbations inside or outside the
cells. Accordingly, previous studies have reported that the proportion of essential genes
in the human cancer genome is only about 10% [1,40,41]. Likely, the proportion of SIGs
identified by our approach was around 10%, except for LGG and KIRC, which were
still with a relatively higher proportion of around 31% and 20%, respectively (Figure
1C). This observation might reveal a limitation of our approach. Even so, our approach
outperformed the conventional method of a fixed threshold and LASSO algorithm, and
successfully identified the SIGs possessing cancer-dependent properties from co-expressed
network analysis. However, the permutation strategy is computationally expensive, thus
a more effective approach for assessing cancer-dependent thresholds to determine the
survival-influential genes in different cancers is needed.
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Furthermore, we observed that the expression level of survival-influential genes
in the corresponding cancer type is distinguishable from the other cancers (Figure S7).
Interestingly, in the corresponding cancer type, the harmful SIGs were down-regulated,
and the protective SIGs were up-regulated, compared to other cancer types (Figure S7).
This observation might suggest one imaginable scenario: cancer patients fight against
carcinogenesis through inhibiting the harmful SIGs and/or activating the protective SIGs.
It is worth noting that most samples in the data set are biased to alive patients; namely
the harmful and protective genes could be repressed and promoted respectively to aid
patient survival. Indeed, we observed that, in deceased patients, the expression level
of harmful and protective genes was elevated and decreased, respectively (Figure S8).
However, this observation could be biased by the objective of the Cox regression model,
to assess the association between covariates (gene expression level in this study), and the
risk of patient survival. That is to say, genes increasingly or decreasingly expressed in
deceased samples compared to censored ones have a higher probability of being identified
as harmful or protective genes, respectively. Indeed, the z scores of coefficients from the
Cox regression model were significantly and positively correlated with the Cohen’s D of
gene expression level between deceased and censored samples (deceased-censored) for all
16 cancer types (the averaged Spearman correlation coefficient was 0.6, all p-values were
smaller than 10−128). Interestingly, we found that the harmful and protective genes were
expressed less and more, respectively, in censored (alive) patients with early stage tumors
compared to late stage in 7 out of 13 cancer types (Figure S9). This observation implies
that, in the patients with a lower risk of survival, the harmful and protective genes could
be repressed and promoted, respectively. However, experiments to demonstrate the effect
of survival influential genes on carcinogenesis or patient survival are required to validate
this observation.

Additionally, we have identified ten clinically relevant genes whose expression can
identify the high-risk group of patients with poor outcome in various cancer types. Our
findings were also supported by various published literature reports. High expression
of CDC20 showed an association with tumor recurrence and patient death in bladder
cancer and pancreatic cancer [33,34]. Additionally, high expression of CDC20 was sig-
nificantly associated with overall survival in advanced clinical stage (stage III and IV)
patients with colorectal cancer [35]. A meta-analysis report from five studies on approxi-
mately 700 colorectal patients showed that high expression of PLK1 was associated with
worse patient survival [42]. Moreover, multivariate cox regression analysis, after adjusting
for clinicopathological factors confirmed that high PLK1 expression at the protein level
was independently associated with poor outcome in patients with lung squamous cell
carcinoma [43].

4. Materials and Methods
4.1. Data Collection and Preprocessing

The RNA-Seq V2 transcriptome expression datasets and corresponding clinical infor-
mation from The Cancer Genome Atlas (TCGA) were downloaded from the UCSC Xena
browser [44]. We used normalized read counts inferred via RSEM (RNA-Seq by Expectation
Maximization) algorithm from RNA-Seq V2 data as mRNA expressions. To increase the
statistical power of the survival analysis, we only included the cancer types with sufficient
samples (>150) and deceased events (>50); and kept genes and samples with less than
50% unexpressed (RSEM = 0) samples and genes, respectively. Finally, we obtained 6584
samples in total (Figure S10A) and around 17,690 detectable genes on average (Figure S10B)
across 16 cancer types (Table S5). To identify survival influential genes in pan-cancer, we
assembled a pan-cancer gene expression profile that covered 6584 samples and 16,056
intersecting genes across 16 used cancer types, and termed it merged cancer. The studies
in the pan-cancer atlas from TCGA developed and adopted this strategy to enhance the
pan-cancer features cross cancers [45–47].
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4.2. Identification of Survival Influential Genes in Cancers and Pan-Cancer

In this study, we applied the Cox regression model as the main framework to discover
survival influential genes in cancers. We first used the univariate Cox regression model to
examine the association between clinical variables and patient survival time and to identify
the potential clinical confounding factors (Supplementary Dataset S2). Then, we utilized
the multivariate Cox regression model (the covariates are the expression level of the tested
gene and the identified significant clinical confounding factors) to assess the influence of a
gene on patient survival. In this study, we denoted the genes with positive and negative
coefficients as harmful and protective to patient survival, respectively. The significance of
the coefficient β was determined by comparing with the null model, which hypothesizes
that the changes of tested gene expression level have no effect on patient survival, and was
further tested by a likelihood ratio test and the Wald test [48,49]. The Wald test examines
whether the observed regression coefficient statistically differs from zero, a reported a
z-score (standard score), and a p-value estimated by z-score for the observed regression
coefficient. The Cox regression model was performed using the Survival R package [50].

Previous studies have observed that the distributions of p-values derived from the
Cox-regression model vary across cancers [15,16]. Accordingly, we applied the Monte Carlo
algorithm combined with effect size to determine the p-value threshold of the regression
coefficient for each cancer type independently. First, we created 1000 simulated cohorts for
each cancer type. Each simulated cohort was provided with the same number of patients in
the real data, but with randomly permutated survival information. Notably, both survival
time and deceased status were coupled as a pair to be permutated. Accordingly, the
simulated cohort contained identical survival profiles but randomly permutated gene
expression profiles. Then, we used a Cox-regression model on each simulated cohort to
assign the simulated p-values of regression coefficient to genes. We then calculated the odds
ratio to estimate the effect size of each significance level. The odds ratio can be described
as below:

ORp =
OI
OS

=
NSI
NSS

/
NI I
NIS

(1)

where ORp is the odds ratio of the significance level p-value < p; OI (OS) is the odds of
significant genes in real data being identified as insignificant (significant) in the simulated
data; NSI and NSS (NII and NIS) represent the number of significant (insignificant) genes in
real data being identified as insignificant and significant in the simulated data, respectively.
In other words, the odds ratio in this study described the disagreement between the
significant genes in the real data and the insignificant genes in the simulated data under
the given significance level.

For each cancer type, the above steps were repeated for 1000 simulated cohorts,
and the mean odds ratio was used as the effect size of each significance level. We then
applied a p-value reaching the maximum effect size as the threshold to determine the
survival-influential genes. The effect size was calculated for harmful and protective
genes separately.

We then performed the same procedure on the merged cancer data set to identify the
pan-cancer SIGs. To increase the generality of the pan-cancer SIGs, we created 16 cancer
minus gene expression profiles that merged gene expression profiles from 15 cancer types:
for example, the BRCA minus merged the gene expression profiles from 15 out of the 16
used samples, except for BRCA. We then performed the same procedure on each cancer
minus data set to identify cancer minus SIGs. Subsequently, we defined the genes identified
as SIGs in (1) the merged cancer dataset, (2) at least one cancer type, and (3) all cancer
minus datasets as the pan-cancer SIGs.

4.3. Compilation of the Cancer-Associated Genes

Next, to assess the association between the identified SIGs and cancer, we complied
a cancer-associated gene list from three datasets: (1) 688 cancer genes from the COSMIC
release (v85) [51]; (2) 550 cancer essential genes screened from the CRISPR system in hu-
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man cancer cell lines [3]; and (3) 769 cancer genes from the cancer dependency map [4].
Additionally, we collected a small but highly confident harmful gene set from the litera-
ture [52–57]. We then performed enrichment analysis using Fisher’s exact test to evaluate
the association between SIGs and cancer.

4.4. Functional Modules of SIGs

To investigate the biological processes of SIGs involved in carcinogenesis, we per-
formed conventional and network-wise functional enrichment analyses to identify the
functional modules. The functional annotations of genes were obtained from gene ontology
(GO) [58,59]. In the conventional functional enrichment analysis, the significance was
established by p-value derived from the hypergeometric test, which is described below:

P(X = k) =

(
m
k

)(
N − m
n − k

)
(

N
n

) (2)

where X denotes the evaluated function; N represents the number of GO annotated genes;
m indicates the number of SIGs; n represents the number of genes with the evaluated
function; and k indicates the number of SIGs with the evaluated function. To enhance the
functional relationship between the identified genes, protein interaction and network-wise
functional enrichment analyses were incorporated to discover the functional modules
within SIGs [60]. The source of the human protein-protein interaction (PPI) data was
InBio Map [20]. The network-wise functional enrichment analysis was modified from
the conventional method. The significance of the tested function was based on p-values
produced from a modified hypergeometric test. The hypergeometric distribution for the
network-wise approach is described below:

Pe(X = ke) =

(
me
ke

)(
Ne − me
ne − ke

)
(

Ne
ne

) (3)

where e is the abbreviation of the PPI. Each symbol has the same meaning as in the
conventional hypergeometric distribution, but the counting objects are changed from genes
to functional PPIs. The functional PPIs are interactions formed by the two genes involved
in the same functions. This approach revealed the significant protein interaction functional
modules in which the identified genes were involved. To incorporate the conditional
information (related to cancer) into the functional modules, we only studied co-expressed
PPI in the network-wise functional enrichment analysis; and genes that were formed by
co-expressed PPI in the conventional analysis. Furthermore, we used co-expressed PIN
as a background instead of the static PIN to enhance the cancer-dependent constraint.
Subsequently, the function modules with adjusted p-value <0.05 from both analyses were
identified as the significantly enriched function modules. These two p-values were adjusted
by the Benjamini and Hochberg multiple testing procedures to control the false discovery
rate (FDR) [61]. Additionally, only the significant function modules with a depth greater
than six in the GO database were used to increase the functional specificity. The depth is
the shortest path length from a function to the root, which is the term biological process
(GO:0008150), in the GO tree structure. Finally, the significant functional modules with
more than five SIGs and five co-expressed PPIs were identified as the functional modules
for the following analyses.

The discovered functional modules were further summarized by the REVIGO [62]
algorithm, with a similarity ≥0.9, which was calculated from the SimRel algorithm [63]
and visualized using the CirGO package [64].
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5. Conclusions

In this study, we tried to identify SIGs in cancers and pan-cancer and investigated
the characteristics of SIGs in carcinogenesis. In summary, the SIGs are highly exclusive
across cancers, and tend to occupy pivotal positions in the co-expressed PIN associated
with the cancer. More specifically, the harmful SIGs prefer to participate in the biological
processes related to cell cycle and cell proliferation. However, the functions of protective
SGIs are variable across cancer types, but might be involved in bile acid or fatty acid
metabolism to improve patient survival. Briefly, the identified SIGs may provide a potential
biomarker pool for cancer therapy, and facilitate improving our knowledge of the molecular
mechanism of carcinogenesis.
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