Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia
Abstract
:1. Introduction
2. Results
2.1. Effects of Ovariectomy on Body Weight, Adiposity, Glucose Tolerance and Insulin Sensitivity
2.2. Effects of Ovariectomy on BAT Metabolic Activity
2.3. Effects of Ovariectomy on Serum and Hepatic Lipid Regulation and Transport
2.4. Effects of Ovariectomy on Oxidative and Dicarbonyl Stress in the Liver
3. Discussion
3.1. Body Weight
3.2. BAT
3.3. Insulin Sensitivity and Glucose Tolerance
3.4. Hepatic Lipid Dysmetabolism
3.5. CYP Protein Family
3.6. Hepatic Oxidative and Dicarbonyl Stress and Inflammation
4. Materials and Methods
4.1. Animals and Diet
4.2. Analytical Methods and Biochemical Analysis
4.3. Basal and Insulin-Stimulated Glucose Utilization in Adipose Tissue and Skeletal Muscles
4.4. BAT Activity
4.5. Oxidative and Dicarbonyl Stress Parameters
4.6. Gene Expression Profile
4.7. Western Blotting and CYP4A Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGE | advanced glycation end-products |
AUC0–120 | the area under the curve during the oral glucose tolerance test |
BAT | brown adipose tissue |
CYP450 | cytochrome P450 |
MCP-1 | monocyte chemoattractant protein-1 |
NEFA | non-esterified fatty acid |
NRF2 | nuclear factor erythroid-2-related factor 2 |
GPx | glutathione peroxidase |
GSH | reduced form of glutathione |
GSSG | oxidized form of glutathione |
PKC | protein kinase C |
SOD | superoxide dismutase |
SREBP | sterol regulatory element-binding protein |
TBARS | thiobarbituric acid-reactive substance |
TG | triglyceride |
WAT | white adipose tissue |
MG | methylglyoxal |
Glo1 | glyoxalase-1 |
References
- Dorum, A.; Tonstad, S.; Liavaag, A.H.; Michelsen, T.M.; Hildrum, B.; Dahl, A.A. Bilateral oophorectomy before 50 years of age is significantly associated with the metabolic syndrome and Framingham risk score: A controlled, population-based study (HUNT-2). Gynecol. Oncol. 2008, 109, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Yang, W.S.; Lee, L.T.; Chen, C.Y.; Liu, C.S.; Lin, C.C.; Huang, K.C. Insulin resistance, obesity, and metabolic syndrome among non-diabetic pre- and post-menopausal women in North Taiwan. Int. J. Obes. 2006, 30, 912–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfik, S.H.; Mahmoud, B.F.; Saad, M.I.; Shehata, M.; Kamel, M.A.; Helmy, M.H. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem. Res. Int. 2015, 2015, 567945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Kumar, S.P.; Shi, H. Estradiol regulates insulin signaling and inflammation in adipose tissue. Horm. Mol. Biol. Clin. Investig. 2014, 17, 99–107. [Google Scholar] [CrossRef]
- Nigro, M.; Santos, A.T.; Barthem, C.S.; Louzada, R.A.; Fortunato, R.S.; Ketzer, L.A.; Carvalho, D.P.; de Meis, L. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats. Endocrinology 2014, 155, 2881–2891. [Google Scholar] [CrossRef]
- Schilperoort, M.; Hoeke, G.; Kooijman, S.; Rensen, P.C. Relevance of lipid metabolism for brown fat visualization and quantification. Curr. Opin. Lipidol. 2016, 27, 242–248. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Martinez-Tellez, B.; Sanchez-Delgado, G.; Osuna-Prieto, F.J.; Rensen, P.C.N.; Boon, M.R. Role of Human Brown Fat in Obesity, Metabolism and Cardiovascular Disease: Strategies to Turn Up the Heat. Prog. Cardiovasc. Dis. 2018, 61, 232–245. [Google Scholar] [CrossRef]
- Lee, P.; Greenfield, J.R. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans. Mol. Cell Endocrinol. 2015, 418 Pt 2, 184–190. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef]
- Simpson, A.E. The cytochrome P450 4 (CYP4) family. Gen. Pharm. 1997, 28, 351–359. [Google Scholar] [CrossRef]
- Gao, H.; Cao, Y.; Xia, H.; Zhu, X.; Jin, Y. CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROSinduced lipid peroxidation and inflammation. Int. J. Mol. Med. 2020, 45, 1121–1129. [Google Scholar]
- Wei, Y.; Wang, D.; Moran, G.; Estrada, A.; Pagliassotti, M.J. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutr. Metab. 2013, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bentley-Lewis, R.; Koruda, K.; Seely, E.W. The metabolic syndrome in women. Nat. Clin. Pr. Endocrinol. Metab. 2007, 3, 696–704. [Google Scholar] [CrossRef]
- Chalvon-Demersay, T.; Blachier, F.; Tome, D.; Blais, A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front. Nutr. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.M.; Gent, L.; Davis, K.; Clegg, D.J. Metabolic impact of sex hormones on obesity. Brain Res. 2010, 1350, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Maliszewska, K.; Kretowski, A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int. J. Mol. Sci. 2021, 22, 1530. [Google Scholar] [CrossRef] [PubMed]
- Heeren, J.; Scheja, L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018, 29, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kaikaew, K.; Grefhorst, A.; Steenbergen, J.; Swagemakers, S.M.A.; McLuskey, A.; Visser, J.A. Sex difference in the mouse BAT transcriptome reveals a role of progesterone. J. Mol. Endocrinol. 2021, 66, 97–113. [Google Scholar] [CrossRef]
- Quarta, C.; Mazza, R.; Pasquali, R.; Pagotto, U. Role of sex hormones in modulation of brown adipose tissue activity. J. Mol. Endocrinol. 2012, 49, R1–R7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Garcia, I.; Tena-Sempere, M.; Lopez, M. Estradiol Regulation of Brown Adipose Tissue Thermogenesis. Adv. Exp. Med. Biol. 2017, 1043, 315–335. [Google Scholar] [PubMed]
- Orava, J.; Nuutila, P.; Lidell, M.E.; Oikonen, V.; Noponen, T.; Viljanen, T.; Scheinin, M.; Taittonen, M.; Niemi, T.; Enerback, S.; et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell. Metab. 2011, 14, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaei, P.; Mehdizadeh, R.; Ansar, M.M.; Damirchi, A. Effects of ovariectomy and estrogen replacement therapy on visceral adipose tissue and serum adiponectin levels in rats. Menopause Int. 2010, 16, 100–104. [Google Scholar] [CrossRef]
- Laughlin, G.A.; Barrett-Connor, E.; May, S. Sex-specific determinants of serum adiponectin in older adults: The role of endogenous sex hormones. Int. J. Obes. 2007, 31, 457–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, D.; Son, Y.; Yoon, G.; Song, J.; Kim, O.Y. Role of Adiponectin and Brain Derived Neurotrophic Factor in Metabolic Regulation Involved in Adiposity and Body Fat Browning. J. Clin. Med. 2020, 10, 56. [Google Scholar] [CrossRef]
- Yin, C.; Kang, L.; Lai, C.; Zhou, J.; Shi, B.; Zhang, L.; Chen, H. Effects of 17beta-estradiol on leptin signaling in anterior pituitary of ovariectomized rats. Exp. Anim. 2017, 66, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Liu, P.; Liu, R.; Wu, X.; Cai, M. Relationship between serum leptin levels and bone mineral density: A systematic review and meta-analysis. Clin. Chim. Acta 2015, 444, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Zidon, T.M.; Padilla, J.; Fritsche, K.L.; Welly, R.J.; McCabe, L.T.; Stricklin, O.E.; Frank, A.; Park, Y.; Clegg, D.J.; Lubahn, D.B.; et al. Effects of ERbeta and ERalpha on OVX-induced changes in adiposity and insulin resistance. J. Endocrinol. 2020, 245, 165–178. [Google Scholar] [CrossRef]
- Szendroedi, J.; Yoshimura, T.; Phielix, E.; Koliaki, C.; Marcucci, M.; Zhang, D.; Jelenik, T.; Muller, J.; Herder, C.; Nowotny, P.; et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 9597–9602. [Google Scholar] [CrossRef] [Green Version]
- Geisler, C.E.; Renquist, B.J. Hepatic lipid accumulation: Cause and consequence of dysregulated glucoregulatory hormones. J. Endocrinol. 2017, 234, R1–R21. [Google Scholar] [CrossRef]
- Kitson, A.P.; Marks, K.A.; Aristizabal Henao, J.J.; Tupling, A.R.; Stark, K.D. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma. Nutr. Res. 2015, 35, 1085–1094. [Google Scholar] [CrossRef]
- Medina-Contreras, J.; Villalobos-Molina, R.; Zarain-Herzberg, A.; Balderas-Villalobos, J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020, 475, 261–276. [Google Scholar] [CrossRef]
- Patel, S.B.; Graf, G.A.; Temel, R.E. ABCG5 and ABCG8: More than a defense against xenosterols. J. Lipid Res. 2018, 59, 1103–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poruba, M.; Anzenbacher, P.; Racova, Z.; Oliyarnyk, O.; Huttl, M.; Malinska, H.; Markova, I.; Gurska, S.; Kazdova, L.; Vecera, R. The effect of combined diet containing n-3 polyunsaturated fatty acids and silymarin on metabolic syndrome in rats. Physiol. Res. 2019, 68, S39–S50. [Google Scholar] [CrossRef]
- DeBose-Boyd, R.A.; Ye, J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018, 43, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ngo Sock, E.T.; Chapados, N.A.; Lavoie, J.M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: Effects of exercise training. Horm. Metab. Res. 2014, 46, 550–555. [Google Scholar]
- Soffientini, U.; Caridis, A.M.; Dolan, S.; Graham, A. Intracellular cholesterol transporters and modulation of hepatic lipid metabolism: Implications for diabetic dyslipidaemia and steatosis. Biochim. Biophys. Acta 2014, 1842, 1372–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227–256. [Google Scholar]
- Zhang, Y.; Klaassen, C.D. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica 2013, 43, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, A.; Leclercq, I.; Farrell, G.C.; Robertson, G. Altered expression of hepatic CYP2E1 and CYP4A in obese, diabetic ob/ob mice, and fa/fa Zucker rats. Biochem. Biophys. Res. Commun. 1999, 255, 300–306. [Google Scholar] [CrossRef]
- Leclercq, I.A.; Farrell, G.C.; Field, J.; Bell, D.R.; Gonzalez, F.J.; Robertson, G.R. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Investig. 2000, 105, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, S.; Zhou, Y.; Su, W.; Ruan, X.; Wang, B.; Zheng, F.; Warner, M.; Gustafsson, J.A.; Guan, Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc. Natl. Acad. Sci. USA 2017, 114, 3181–3185. [Google Scholar] [CrossRef] [Green Version]
- Jamwal, R.; Barlock, B.J. Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals 2020, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Huttl, M.; Markova, I.; Miklankova, D.; Makovicky, P.; Pelikanova, T.; Seda, O.; Sedova, L.; Malinska, H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants 2020, 9, 803. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.; Rodrigues, T.; Sereno, J.; Simoes, C.; Castelhano, J.; Goncalves, J.; Bento, G.; Goncalves, S.; Seica, R.; Domingues, M.R.; et al. Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. Oxid. Med. Cell. Longev. 2019, 2019, 6362910. [Google Scholar] [CrossRef] [PubMed]
- Matafome, P.; Sena, C.; Seica, R. Methylglyoxal, obesity, and diabetes. Endocrine 2013, 43, 472–484. [Google Scholar] [CrossRef]
- Malinska, H.; Huttl, M.; Oliyarnyk, O.; Bratova, M.; Kazdova, L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 2015, 31, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Pravenec, M.; Landa, V.; Zidek, V.; Musilova, A.; Kazdova, L.; Qi, N.; Wang, J.; St Lezin, E.; Kurtz, T.W. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol. Res. 2003, 52, 681–688. [Google Scholar] [PubMed]
- Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 344 Pt 1, 109–116. [Google Scholar] [CrossRef]
- Arai, M.; Nihonmatsu-Kikuchi, N.; Itokawa, M.; Rabbani, N.; Thornalley, P.J. Measurement of glyoxalase activities. Biochem. Soc. Trans. 2014, 42, 491–494. [Google Scholar] [CrossRef]
- Poruba, M.; Matuskova, Z.; Huttl, M.; Malinska, H.; Oliyarnyk, O.; Markova, I.; Gurska, S.; Kazdova, L.; Vecera, R. Fenofibrate Decreases Hepatic P-Glycoprotein in a Rat Model of Hereditary Hypertriglyceridemia. Front. Pharm. 2019, 10, 56. [Google Scholar] [CrossRef] [Green Version]
W–Sham | W–OVX | p˂ | |
---|---|---|---|
Initial body weight (g) | 243 ± 18 | 253 ± 7 | n.s. |
Final body weight (g) | 292 ± 24 | 346 ± 15 | 0.05 |
Visceral adipose tissue weight (g/100 g) | 1.671 ± 0.325 | 1.908 ± 0.169 | 0.05 |
Brown adipose tissue weight (g/100 g) | 0.075 ± 0.006 | 0.101 ± 0.009 | 0.05 |
Fasting glucose (mmol/L) | 5.5 ± 0.2 | 5.9 ± 0.2 | n.s. |
Insulin (μmol/L) | 0.190 ± 0.034 | 0.224 ± 0.027 | n.s. |
Glucagon (ng/mL) | 0.182 ± 0.017 | 0.309 ± 0.083 | n.s. |
AUC0–120 (mmol/L) | 708 ± 14 | 755 ± 24 | n.s. |
Serum triglycerides (mmol/L) | 2.01 ± 0.36 | 1.80 ± 0.31 | n.s. |
Serum cholesterol (mmol/L) | 1.82 ± 0.11 | 2.01 ± 0.08 | n.s. |
NEFA (mmol/L) | 0.412 ± 0.045 | 0.568 ± 0.032 | 0.05 |
HDL-C (mmol/L) | 1.28 ± 0.09 | 1.64 ± 0.06 | 0.05 |
17β-estradiol (pg/mL) | 24.2 ± 2.4 | 9.5 ± 2.1 | 0.01 |
17β-hydroxyprogesterone (ng/mL) | 1.28 ± 0.09 | 0.28 ± 0.11 | 0.001 |
hs-CRP (μg/mL) | 523 ± 59 | 410 ± 41 | n.s. |
HMW adiponectin (μg/mL) | 4.08 ± 0.87 | 3.81 ± 0.63 | n.s. |
Leptin (pg/mL) | 3.41 ± 1.59 | 11.82 ± 1.47 | 0.001 |
Ghrelin (ng/mL) | 0.044 ± 0.002 | 0.040 ± 0.003 | n.s. |
MCP-1 (ng/mL) | 1.195 ± 0.268 | 1.908 ± 0.169 | 0.05 |
IL-6 (pg/mL) | 40.97 ± 7.52 | 42.10 ± 2.97 | n.s. |
W–Sham | W–OVX | p˂ | |
---|---|---|---|
Triglycerides in the liver (μmol/g) | 5.44 ± 0.85 | 12.76 ± 1.10 | 0.001 |
Cholesterol in the liver (μmol/g) | 8.98 ± 0.38 | 7.87 ± 0.64 | n.s. |
TBARS in the liver (μmol/mg prot) | 1.54 ± 0.16 | 2.07 ± 0.15 | 0.05 |
Triglycerides in muscles (μmol/g) | 3.79 ± 0.87 | 6.40 ± 0.55 | 0.05 |
Hepatic SOD (μmol/g) | 0.130 ± 0.012 | 0.110 ± 0.004 | n.s. |
Hepatic GPx (mmol/L) | 352 ± 17 | 237 ± 9 | 0.01 |
Hepatic GR (μmol/L) | 116 ± 8 | 108 ± 8 | n.s. |
GSH in the liver (μmol/g protein) | 63.32 ± 2.50 | 54.64 ± 6.64 | n.s. |
GSSG in the liver (μmol/g protein) | 2.32 ± 1.43 | 3.71 ± 0.16 | 0.05 |
GSH/GSSG | 28.36 ± 1.43 | 15.35 ± 1.29 | 0.01 |
ALT (μkat/L) | 1.16 ± 0.04 | 1.22 ± 0.15 | n.s. |
AST (μkat/L) | 2.74 ± 0.35 | 3.86 ± 0.47 | 0.05 |
GGT (μkat/L) | 0.015 ± 0.002 | 0.025 ± 0.003 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinská, H.; Hüttl, M.; Miklánková, D.; Trnovská, J.; Zapletalová, I.; Poruba, M.; Marková, I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int. J. Mol. Sci. 2021, 22, 4527. https://doi.org/10.3390/ijms22094527
Malinská H, Hüttl M, Miklánková D, Trnovská J, Zapletalová I, Poruba M, Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. International Journal of Molecular Sciences. 2021; 22(9):4527. https://doi.org/10.3390/ijms22094527
Chicago/Turabian StyleMalinská, Hana, Martina Hüttl, Denisa Miklánková, Jaroslava Trnovská, Iveta Zapletalová, Martin Poruba, and Irena Marková. 2021. "Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia" International Journal of Molecular Sciences 22, no. 9: 4527. https://doi.org/10.3390/ijms22094527
APA StyleMalinská, H., Hüttl, M., Miklánková, D., Trnovská, J., Zapletalová, I., Poruba, M., & Marková, I. (2021). Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. International Journal of Molecular Sciences, 22(9), 4527. https://doi.org/10.3390/ijms22094527