Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata)
Abstract
:1. Introduction
2. Results
2.1. Bioinformatics’ Analysis of the CYP440A18 Enzyme
2.2. Kinetics and Substrate Specificity of the Recombinant CYP440A18 Enzyme
2.3. Analysis of Products of C18 Hydroperoxide Conversions by the CYP440A18 Enzyme
2.4. Analysis of Products of C20 Hydroperoxide Conversions by the CYP440A18 Enzyme
2.5. Formation of Cyclopentenones via Cyclization of Allene Oxides Biosynthesized from 13-HPOT and 15-HPEPE
3. Discussion
Concluding Remarks
- The full-length coding sequence of Branchiostoma belcheri CYP440A18 enzyme has been expressed in Escherichia coli cells.
- The recombinant CYP440A18 converted 9- and 13-hydroperoxides of linoleic and α-linolenic acids, as well as 15-hydroperoxides of eicosatetraenoic and eicosapentaenoic acids into the oxiranyl carbinols (EAS products) and α-ketols (AOS products). For example, the CYP440A18 converted the preferred substrate, 13-hydroperoxide of α-linolenic acid, into (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product) and 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product). Thus, the enzyme possessed dual epoxyalcohol synthase/allene oxide synthase activity.
- Along with α-ketols, 13-HPOT and 15-HPEPE yielded little amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic and dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acids, respectively.
- The described BbEAS/AOS (CYP440A18) is the first epoxyalcohol synthase/allene oxide synthase (CYP74 clan) found in Chordata.
4. Materials and Methods
4.1. Materials
4.2. Bioinformatic Methods
4.3. Expression and Purification of Recombinant Enzyme
4.4. Kinetic Studies of Recombinant Enzyme
4.5. Incubations of Recombinant Enzyme with Substrates
4.6. Methods of Instrumental Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.-L.; Zhang, G.-L.; Yuan, M.-L.; Dong, Z.-X.; Li, H.-W.; Guo, J.; Wang, F.; Deng, X.-Y.; Chen, J.-Y.; Lin, L.-B. A Phylogenomic Framework and Divergence History of Cephalochordata Amphioxus. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Cameron, C.B.; Garey, J.R.; Swalla, B.J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc. Natl. Acad. Sci. USA 2000, 97, 4469–4474. [Google Scholar] [CrossRef] [Green Version]
- Graham, A. Evolution and Development: Rise of the Little Squirts. Curr. Biol. 2004, 14, R956–R958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delsuc, F.; Brinkmann, H.; Chourrout, D.; Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 2006, 439, 965–968. [Google Scholar] [CrossRef]
- You, L.; Chi, J.; Huang, S.; Yu, T.; Huang, G.; Feng, Y.; Sang, X.; Gao, X.; Li, T.; Yue, Z.; et al. LanceletDB: An integrated genome database for lancelet, comparing domain types and combination in orthologues among lancelet and other species. Database 2019, 2019, 056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnam, N.H.; Butts, T.; Ferrier, D.E.K.; Furlong, R.F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E.; Terry, A.; Yu, J.-K.; et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453, 1064–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, C.; Lu, N.; Han, T.; Huang, Z.; Chen, J.-Y.; He, C.; Lu, Z. Whole-Genome Resequencing of Twenty Branchiostoma belcheri Individuals Provides a Brand-New Variant Dataset for Branchiostoma. BioMed Res. Int. 2020, 2020, 3697342. [Google Scholar] [CrossRef] [Green Version]
- Gerwick, W.H.; Moghaddam, M.; Hamberg, M. Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: Mechanism of formation of vicinal dihydroxy fatty acids. Arch. Biochem. Biophys. 1991, 290, 436–444. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R.; Nelson, S.D. Rearrangement reactions catalyzed by cytochrome P450s. Arch. Biochem. Biophys. 2011, 507, 95–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulos, T.L. Heme Enzyme Structure and Function. Chem. Rev. 2014, 114, 3919–3962. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R.; Goldstone, J.V.; Stegeman, J.J. The cytochrome P450 genesis locus: The origin and evolution of animal cytochrome P450s. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120474. [Google Scholar] [CrossRef] [Green Version]
- Grechkin, A. Recent developments in biochemistry of the plant lipoxygenase pathway. Prog. Lipid Res. 1998, 37, 317–352. [Google Scholar] [CrossRef]
- Hughes, R.K.; De Domenico, S.; Santino, A. Plant Cytochrome CYP74 Family: Biochemical Features, Endocellular Localisation, Activation Mechanism in Plant Defence and Improvements for Industrial Applications. ChemBioChem 2009, 10, 1122–1133. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Werck-Reichhart, D. A P450-centric view of plant evolution. Plant J. 2011, 66, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Nioche, P.; Hamberg, M.; Raman, C.S. Structural insights into the evolutionary paths of oxylipin biosynthesis enzymes. Nature 2008, 455, 363–370. [Google Scholar] [CrossRef]
- Koeduka, T.; Ishizaki, K.; Mwenda, C.M.; Hori, K.; Sasaki-Sekimoto, Y.; Ohta, H.; Kohchi, T.; Matsui, K. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 2015, 242, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Fatykhova, V.S.; Gogolev, Y.V.; Khairutdinov, B.I.; Mukhtarova, L.S.; Grechkin, A.N. Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae. ACTA (BBA) Mol. Cell Biol. Lipids 2017, 1862, 167–175. [Google Scholar] [CrossRef]
- Brash, A.R. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 2009, 70, 1522–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grechkin, A.N. Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid. Mediat. 2002, 68–69, 457–470. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Hamberg, M. The “heterolytic hydroperoxide lyase” is an isomerase producing a short-lived fatty acid hemiacetal. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2004, 1636, 47–58. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Brühlmann, F.; Mukhtarova, L.S.; Gogolev, Y.V.; Hamberg, M. Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals. Acta Mol. Cell Biol. Lipids 2006, 1761, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Mukhtarova, L.S.; Brühlmann, F.; Hamberg, M.; Khairutdinov, B.I.; Grechkin, A.N. Plant hydroperoxide-cleaving enzymes (CYP74 family) function as hemiacetal synthases: Structural proof of hemiacetals by NMR spectroscopy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Gorina, S.S.; Mukhitova, F.K.; Hamberg, M.; Ilyina, T.M.; Mukhtarova, L.S.; Grechkin, A.N. Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism. Acta Mol. Cell Biol. Lipids 2017, 1862, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Smirnova, E.O.; Gorina, S.S.; Mukhtarova, L.S.; Grechkin, A.N. Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii. Phytochemistry 2018, 156, 73–82. [Google Scholar] [CrossRef]
- Toporkova, Y.Y.; Fatykhova, V.S.; Gorina, S.S.; Mukhtarova, L.S.; Grechkin, A.N. Epoxyalcohol Synthase RjEAS (CYP74A88) from the Japanese Buttercup (Ranunculus japonicus): Cloning and Characterization of Catalytic Properties. Biochemistry 2019, 84, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Gorina, S.S.; Toporkova, Y.Y.; Mukhtarova, L.S.; Grechkin, A.N. The CYP443C1 (CYP74 clan) Cytochrome of Sea Anemone Nematostella vectensis–the First Metazoan Enzyme Possessing Hydroperoxide Lyase/Epoxyalcohol Synthase Activity. Dokl. Biochem. Biophys. 2019, 486, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Toporkova, Y.Y.; Gorina, S.S.; Bessolitsyna, E.K.; Smirnova, E.O.; Fatykhova, V.S.; Brühlmann, F.; Ilyina, T.M.; Mukhtarova, L.S.; Grechkin, A.N. Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: Identification and conversion into allene oxide synthases by site-directed mutagenesis. Acta Mol. Cell Biol. Lipids 2018, 1863, 369–378. [Google Scholar] [CrossRef]
- Gorina, S.S.; Mukhitova, F.K.; Ilyina, T.M.; Toporkova, Y.Y.; Grechkin, A.N. Detection of unprecedented allene oxide synthase member of CYP74B subfamily: CYP74B33 of carrot (Daucus carota). ACTA Mol. Cell Biol. Lipids 2019, 1864, 1580–1590. [Google Scholar] [CrossRef]
- Toporkova, Y.Y.; Askarova, E.K.; Gorina, S.S.; Ogorodnikova, A.V.; Mukhtarova, L.S.; Grechkin, A.N. Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants. ACTA Mol. Cell Biol. Lipids 2020, 1865, 158743. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, M. Regio- and stereochemical analysis of trihydroxyoctadecenoic acids derived from linoleic acid 9- and 13-hydroperoxides. Lipids 1991, 26, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Grechkin, A.; Kuramshin, R.; Safonova, E.; Latypov, S.; Ilyasov, A. Formation of ketols from linolenic acid 13-hydroperoxide via allene oxide. Evidence for two distinct mechanisms of allene oxide hydrolysis. Acta Lipids Lipid Metab. 1991, 1086, 317–325. [Google Scholar] [CrossRef]
- Hamberg, M. Mechanism of corn hydroperoxide isomerase: Detection of 12,13(S)-oxido-9(Z),11-octadecadienoic acid. Acta Lipids Lipid Metab. 1987, 920, 76–84. [Google Scholar] [CrossRef]
- Grechkin, A.N.; Mukhtarova, L.S.; Latypova, L.R.; Gogolev, Y.; Toporkova, Y.Y.; Hamberg, M. Tomato CYP74C3 is a Multifunctional Enzyme not only Synthesizing Allene Oxide but also Catalyzing its Hydrolysis and Cyclization. ChemBioChem 2008, 9, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, M. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids 1998, 33, 1061–1071. [Google Scholar] [CrossRef]
- Ziegler, J.; Wasternack, C.; Hamberg, M. On the specificity of allene oxide cyclase. Lipids 1999, 34, 1005–1015. [Google Scholar] [CrossRef]
- Grechkin, A.N. Cyclization of natural allene oxide fatty acids. The anchimeric assistance of β, γ -double bond beside the oxirane and the reaction mechanism. ACTA Lipids Lipid Metab. 1994, 1213, 199–206. [Google Scholar] [CrossRef]
- González-Pérez, A.B.; Grechkin, A.; De Lera, A.R. Rearrangement of vinyl allene oxide geometric isomers to cyclopentenones. Further computational insights with biologically relevant model systems. Org. Biomol. Chem. 2017, 15, 2846–2855. [Google Scholar] [CrossRef]
- Koljak, R.; Boutaud, O.; Shieh, B.-H.; Samel, N.; Brash, A.R. Identification of a Naturally Occurring Peroxidase-Lipoxygenase Fusion Protein. Science 1997, 277, 1994–1996. [Google Scholar] [CrossRef] [PubMed]
- Varvas, K.; Järving, I.; Koljak, R.; Valmsen, K.; Brash, A.R.; Samel, N. Evidence of a Cyclooxygenase-related Prostaglandin Synthesis in Coral. J. Biol. Chem. 1999, 274, 9923–9929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löhelaid, H.; Teder, T.; Tõldsepp, K.; Ekins, M.; Samel, N. Up-Regulated Expression of AOS-LOXa and Increased Eicosanoid Synthesis in Response to Coral Wounding. PLoS ONE 2014, 9, e89215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Boeglin, W.E.; Zheng, Y.; Schneider, C.; Brash, A.R. Evidence for an Ionic Intermediate in the Transformation of Fatty Acid Hydroperoxide by a Catalase-related Allene Oxide Synthase from the Cyanobacterium Acaryochloris marina. J. Biol. Chem. 2009, 284, 22087–22098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashhadi, Z.; Newcomer, M.E.; Brash, A.R. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides. ChemBioChem 2016, 17, 2000–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.A.; Gardner, H.W.; Keller, N.P. Cultivar-Dependent Expression of a Maize Lipoxygenase Responsive to Seed Infesting Fungi. Mol. Plant. Microbe Interact. 2001, 14, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Chechetkin, I.R.; Osipova, E.V.; Tarasova, N.B.; Mukhitova, F.K.; Hamberg, M.; Gogolev, Y.V.; Grechkin, A.N. Specificity of oxidation of linoleic acid homologs by plant lipoxygenases. Biochemistry 2009, 74, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins; Bryson, V., Vogel, H.J., Eds.; Academic Press: New York, NY, USA, 1965; pp. 97–166. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Schenkman, J.B.; Jansson, I.; Ian, P.R.; Elizabeth, S.A. Spectral Analyses of Cytochromes P450. In Cytochrome P450 Protocols; Humana Press: Totowa, NJ, USA, 2006; Volume 320, pp. 11–18. [Google Scholar] [CrossRef]
Substrate | Km, μM | kcat, s−1 | kcat/Km, μM−1·s–1 | Specificity, % |
---|---|---|---|---|
13-HPOT | 17.6 | 431.8 | 24.5 | 100 |
13-HPOD | 18.6 | 174.2 | 9.4 | 38.4 |
9-HPOT | 31.8 | 247.9 | 7.8 | 31.8 |
9-HPOD | 37.0 | 164.0 | 4.4 | 18.0 |
Substrate | α-Ketols, % | Cyclopentenones, % | Oxiranyl Carbinols, % |
---|---|---|---|
15-HPEPE (ω3) | 17.1 | tr.* | 82.9 |
15-HPETE (ω6) | 6.3 | n.d.** | 93.7 |
13-HPOT (ω3) | 17.4 | 3.7 | 78.9 |
13-HPOD (ω6) | 2.3 | n.d. | 97.7 |
9-HPOT (ω3) | 5.2 | n.d. | 94.8 |
9-HPOD (ω6) | 3.4 | n.d. | 96.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toporkova, Y.Y.; Smirnova, E.O.; Lantsova, N.V.; Mukhtarova, L.S.; Grechkin, A.N. Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata). Int. J. Mol. Sci. 2021, 22, 4737. https://doi.org/10.3390/ijms22094737
Toporkova YY, Smirnova EO, Lantsova NV, Mukhtarova LS, Grechkin AN. Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata). International Journal of Molecular Sciences. 2021; 22(9):4737. https://doi.org/10.3390/ijms22094737
Chicago/Turabian StyleToporkova, Yana Y., Elena O. Smirnova, Natalia V. Lantsova, Lucia S. Mukhtarova, and Alexander N. Grechkin. 2021. "Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata)" International Journal of Molecular Sciences 22, no. 9: 4737. https://doi.org/10.3390/ijms22094737
APA StyleToporkova, Y. Y., Smirnova, E. O., Lantsova, N. V., Mukhtarova, L. S., & Grechkin, A. N. (2021). Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata). International Journal of Molecular Sciences, 22(9), 4737. https://doi.org/10.3390/ijms22094737