Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1
Abstract
:1. Introduction
2. Results
2.1. miR-130 Family Targeted LNA Suppresses Tumor Growth in an Orthotopic Bladder Cancer Model
2.2. miR-130 Family Upregulates Various Receptor Tyrosine Kinases in Bladder Cancer Cells
2.3. miR-130 Family Targets PTPN1 in Bladder Cancer Cells
2.4. PTPN1 Functions as a Tumor Suppressor in Bladder Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Reporter Plasmid Construction
4.2. Dual-Luciferase Reporter Assay
4.3. Cell Culture and Transfection
4.4. Water-Soluble Tetrazolium Salt-8 (WST-8) Cell Growth Assay
4.5. MiR-130-Targeted LNA Challenge on a Subcutaneous Xenograft Model
4.6. Tumor Challenge on Orthotropic Bladder Cancer Model
4.7. Construction of UM-UC-3 Cells Stably Expressing Luciferase Gene
4.8. Proteome-Wide Tyrosine Phosphorylation Analysis
4.9. Western Blotting Analysis
4.10. SILAC-Based Proteome Analysis
4.11. Cell Invasion Assay
4.12. Wound Healing Assay
4.13. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenis, A.; Lec, P.; Chamie, K.; Mshs, M. Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef]
- Sjödahl, G.; Lauss, M.; Lövgren, K.; Chebil, G.; Gudjonsson, S.; Veerla, S.; Patschan, O.; Aine, M.; Fernö, M.; Ringnér, M.; et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 2012, 18, 3377–3386. [Google Scholar] [CrossRef] [Green Version]
- Warrick, J.; Sjödahl, G.; Kaag, M.; Raman, J.; Merrill, S.; Shuman, L.; Chen, G.; Walter, V.; DeGraff, D. Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants. Eur. Urol. 2019, 75, 18–22. [Google Scholar] [CrossRef]
- Meeks, J.; Al-Ahmadie, H.; Faltas, B.; Taylor, J., 3rd; Flaig, T.; DeGraff, D.; Christensen, E.; Woolbright, B.; McConkey, D.; Dyrskjøt, L. Genomic heterogeneity in bladder cancer: Challenges and possible solutions to improve outcomes. Nat. Rev. Urol. 2020, 17, 259–270. [Google Scholar] [CrossRef]
- Forterre, A.; Komuro, H.; Aminova, S.; Harada, M. A Comprehensive Review of Cancer MicroRNA Therapeutic Delivery Strategies. Cancers 2020, 12, 1852. [Google Scholar] [CrossRef]
- Adam, L.; Zhong, M.; Choi, W.; Qi, W.; Nicoloso, M.; Arora, A.; Calin, G.; Wang, H.; Siefker-Radtke, A.; McConkey, D.; et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 2009, 15, 5060–5072. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liao, Y.; Tang, L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J. Exp. Clin. Cancer Res. 2019, 38, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egawa, H.; Jingushi, K.; Hirono, T.; Ueda, Y.; Kitae, K.; Nakata, W.; Fujita, K.; Uemura, M.; Nonomura, N.; Tsujikawa, K. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci. Rep. 2016, 6, 20574. [Google Scholar] [CrossRef]
- Hirono, T.; Jingushi, K.; Nagata, T.; Sato, M.; Minami, K.; Aoki, M.; Takeda, A.; Umehara, T.; Egawa, H.; Nakatsuji, Y.; et al. MicroRNA-130b functions as an oncomiRNA in non-small cell lung cancer by targeting tissue inhibitor of metalloproteinase-2. Sci. Rep. 2019, 9, 6956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirono, T.; Jingushi, K.; Kitae, K.; Nagata, T.; Sato, M.; Minami, K.; Aoki, M.; Takeda, A.; Umehara, T.; Egawa, H.; et al. MiR-301a/b function as oncomiRs in non-small-cell lung cancer. Integr. Mol. Med. 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Egawa, H.; Jingushi, K.; Hirono, T.; Hirose, R.; Nakatsuji, Y.; Ueda, Y.; Kitae, K.; Tsujikawa, K. Pharmacological regulation of bladder cancer by miR-130 family seed-targeting LNA. Integr. Mol. Med. 2015, 3, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, T.; Fucci, A.; Votino, C.; Sabatino, L.; Pancione, M.; Laudanna, C.; Monica, B.; Bigioni, M.; Maggi, C.A.; Parente, D.; et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia 2013, 9, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yan, F.; Deng, Q.; Li, F.; Lu, Z.; Liu, M.; Wang, L.; Conklin, D.J.; McCracken, J.; Srivastava, S.; et al. Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer. Cell Discov. 2015, 1, 15005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, D. Targeting Src family kinases in anti-cancer therapies: Turning promise into triumph. Trends Pharmacol. Sci. 2012, 33, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubé, N.; Cheng, A.; Tremblay, M. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc. Natl. Acad. Sci. USA 2004, 101, 1834–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, S.; Oudin, M.; Tadros, J.; Neil, J.; Rosario, A.; Joughin, B.; Ritsma, L.; Wyckoff, J.; Vasile, E.; Eddy, R.; et al. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol. Biol. Cell 2015, 26, 3867–3878. [Google Scholar] [CrossRef] [Green Version]
- Stuible, M.; Tremblay, M. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol. 2010, 20, 672–679. [Google Scholar] [CrossRef]
- Sweis, R. Methods to assess anticancer immune responses in orthotopic bladder carcinomas. Methods Enzymol. 2020, 635, 127–137. [Google Scholar]
- Naito, T.; Higuchi, T.; Shimada, Y.; Kakinuma, C. An improved mouse orthotopic bladder cancer model exhibiting progression and treatment response characteristics of human recurrent bladder cancer. Oncol. Lett. 2020, 19, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.; Langer, R.; Wood, M. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694. [Google Scholar] [CrossRef]
- Abe, Y.; Nagano, M.; Kuga, T.; Tada, A.; Isoyama, J.; Adachi, J.; Tomonaga, T. Deep phospho- and phosphotyrosine proteomics identified active kinases and phosphorylation networks in colorectal cancer cell lines resistant to cetuximab. Sci. Rep. 2017, 1, 10463. [Google Scholar] [CrossRef] [Green Version]
- Lessard, L.; Stuible, M.; Tremblay, M. The two faces of PTP1B in cancer. Biochim. Biophys. Acta 2010, 1804, 613–619. [Google Scholar] [CrossRef]
- Calalb, M.B.; Polte, T.R.; Hanks, S.K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: A role for Src family kinases. Mol. Cell Biol. 1995, 2, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Cabodi, S.; Camacho-Leal, M.; Stefano, P.; Defilippi, P. Integrin signalling adaptors: Not only figurants in the cancer story. Nat. Rev. Cancer 2010, 12, 858–870. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, A.; Possemato, A.; Wang, C.; Beard, L.; Carlin, C.; Markowitz, S.D.; Polakiewicz, R.D.; Wang, Z. Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene 2013, 16, 2087–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.H.; You, S.; Oh, J.W.; Yoon, J.; Yeon, A.; Shahid, M.; Cho, E.; Sairam, V.; Park, T.D.; Kim, K.P.; et al. Integrated proteomic and phosphoproteomic analyses of cisplatin-sensitive and resistant bladder cancer cells reveal CDK2 network as a key therapeutic target. Cancer Lett. 2018, 437, 1–12. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, A.; Gutierrez, J.; Sanz-González, S.; Ros, M.; Burks, D.; Valverde, A. Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 2010, 59, 588–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haj, F.; Markova, B.; Klaman, L.; Bohmer, F.; Neel, B. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J. Biol. Chem. 2003, 278, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Li, Q.; Niu, X.; Wang, G.; Zheng, S.; Fu, G.; Wang, Z. miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Oncol. Lett. 2017, 13, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Nagano, M.; Tada, A.; Adachi, J.; Tomonaga, T. Deep phosphotyrosine proteomics by optimization of phosphotyrosine enrichment and MS/MS parameters. J. Proteome Res. 2017, 16, 1077–1086. [Google Scholar] [CrossRef]
Protein Name | Position | miR-130b | miR-301a | miR-301b | Localization Probability | Posterior Error Probability | Score |
---|---|---|---|---|---|---|---|
ABI1 | 213 | 1.66 | 1.57 | 1.50 | 0.996 | 3.E-12 | 69.361 |
BCAR1 | 128 | 1.72 | 1.78 | 1.82 | 1.000 | 8.E-13 | 76.301 |
CDK1 | 15 | 1.90 | 1.59 | 1.56 | 1.000 | 1.E-29 | 145.88 |
CDK16; CDK17 | 176; 203 | 1.88 | 1.43 | 1.43 | 0.986 | 4.E-06 | 56.043 |
CDK2; CDK3 | 15; 15 | 1.50 | 1.23 | 1.30 | 1.000 | 1.E-14 | 122.64 |
CLASP2 | 1022 | 4.19 | 3.67 | 2.05 | 0.890 | 1.E-06 | 54.281 |
DDX5; DDX17 | 202; 279 | 1.81 | 1.78 | 1.28 | 1.000 | 2.E-04 | 74.841 |
EPHA2 | 575 | 1.80 | 1.76 | 1.53 | 0.999 | 2.E-05 | 89.301 |
EPHA2 | 588 | 2.98 | 2.49 | 2.23 | 0.850 | 4.E-36 | 130.83 |
EPHA2 | 594 | 2.98 | 2.45 | 2.23 | 0.800 | 5.E-42 | 155.37 |
EPHA2 | 772 | 2.45 | 1.93 | 1.82 | 1.000 | 3.E-47 | 164.88 |
FYN; YES1; SRC; LCK | 420; 426; 419; 394 | 2.29 | 1.64 | 1.68 | 0.996 | 1.E-25 | 146.16 |
GART | 348 | 2.70 | 3.28 | 2.60 | 0.979 | 2.E-03 | 54.157 |
HIST1H2BL; HIST1H2BM; HIST1H2BN; HIST1H2BH; HIST2H2BF; HIST1H2BC; HIST1H2BD; H2BFS; HIST1H2BK | 41; 41; 41; 41; 41; 41; 41; 41; 41 | 1.91 | 1.64 | 1.93 | 0.999 | 3.E-05 | 87.476 |
HIST3H2BB; HIST2H2BE; HIST1H2BB; HIST1H2BO; HIST1H2BJ; HIST2H2BD; HIST2H2BC | 41; 41; 41; 41; 41; 41; 41 | 2.73 | 2.78 | 3.02 | 0.999 | 3.E-05 | 87.476 |
HSPA9 | 118 | 1.89 | 1.30 | 1.73 | 0.991 | 2.E-18 | 115.1 |
IGF1R; INSR | 1165; 1189 | 2.02 | 1.81 | 1.58 | 0.881 | 1.E-04 | 79.148 |
INPPL1 | 1162 | 2.27 | 1.63 | 1.69 | 0.995 | 2.E-24 | 125.73 |
LDHA | 239 | 3.85 | 2.83 | 3.47 | 1.000 | 2.E-07 | 94.767 |
LYN | 306 | 1.82 | 1.50 | 1.69 | 1.000 | 8.E-05 | 94.662 |
MAPK14 | 182 | 1.91 | 1.53 | 2.41 | 0.969 | 2.E-10 | 96.756 |
MKI67 | 1552 | 2.04 | 2.04 | 2.03 | 0.998 | 3.E-03 | 44.543 |
MRPL22 | 165 | 1.60 | 1.34 | 1.62 | 1.000 | 3.E-03 | 46.426 |
PPP1CA | 306 | 1.70 | 1.42 | 1.39 | 1.000 | 3.E-19 | 117.53 |
PRKCD | 313 | 1.90 | 2.05 | 1.46 | 1.000 | 5.E-33 | 139.74 |
PRPF4B | 849 | 2.38 | 1.98 | 2.71 | 0.954 | 6.E-20 | 98.543 |
RAB2B | 3 | 2.01 | 1.49 | 1.60 | 0.856 | 2.E-02 | 67.032 |
RHOT1 | 465 | 2.54 | 3.58 | 4.51 | 0.824 | 2.E-08 | 78.69 |
SHROOM1 | 33 | 1.65 | 1.50 | 1.44 | 0.861 | 3.E-06 | 51.495 |
SSBP1 | 101 | 1.94 | 1.55 | 1.79 | 0.998 | 1.E-06 | 95.502 |
TJP2 | 1118 | 1.56 | 1.67 | 1.76 | 1.000 | 2.E-04 | 59.908 |
TYRO3; MERTK | 685; 753 | 1.88 | 1.35 | 1.36 | 0.992 | 6.E-08 | 108.74 |
Protein Name | |
---|---|
HMGN4 | RPL24 |
ARPC2 | SRSF3 |
HNRNPR | SRSF2 |
BUB3 | CAP1 |
WDR1 | SLC7A5 |
HIST1H1E | TWF1 |
HSPA8 | HNRNPA0 |
PTPN1 | EIF3I |
VCL | PTGES3 |
MAP4 | MAPRE1 |
MAPK1 | TIMM50 |
RPL13A | PABPN1 |
LRPPRC | SERBP1 |
RPL5 | FERMT2 |
METAP1 | FUBP1 |
ADK | ERP44 |
MTPN | SFXN1 |
ABCE1 | TMOD3 |
RPS15A | SHPK |
RPL8 | CDV3 |
SRPRB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monoe, Y.; Jingushi, K.; Kawase, A.; Hirono, T.; Hirose, R.; Nakatsuji, Y.; Kitae, K.; Ueda, Y.; Hase, H.; Abe, Y.; et al. Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1. Int. J. Mol. Sci. 2021, 22, 4751. https://doi.org/10.3390/ijms22094751
Monoe Y, Jingushi K, Kawase A, Hirono T, Hirose R, Nakatsuji Y, Kitae K, Ueda Y, Hase H, Abe Y, et al. Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1. International Journal of Molecular Sciences. 2021; 22(9):4751. https://doi.org/10.3390/ijms22094751
Chicago/Turabian StyleMonoe, Yuya, Kentaro Jingushi, Akitaka Kawase, Takayuki Hirono, Ryo Hirose, Yoshino Nakatsuji, Kaori Kitae, Yuko Ueda, Hiroaki Hase, Yuichi Abe, and et al. 2021. "Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1" International Journal of Molecular Sciences 22, no. 9: 4751. https://doi.org/10.3390/ijms22094751
APA StyleMonoe, Y., Jingushi, K., Kawase, A., Hirono, T., Hirose, R., Nakatsuji, Y., Kitae, K., Ueda, Y., Hase, H., Abe, Y., Adachi, J., Tomonaga, T., & Tsujikawa, K. (2021). Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1. International Journal of Molecular Sciences, 22(9), 4751. https://doi.org/10.3390/ijms22094751