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Abstract: Mitochondria are key regulators of cell survival and are involved in a plethora of mecha-
nisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy
and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of
these processes in pathophysiological conditions is fundamental to the balance between cell death
and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the in-
duction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have
a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an
intricate series of cellular impairments not yet completely clarified, and a further level of complexity
is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases,
cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be
due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With
this review, we aim to critically report the current evidence on the relationship between mitochondria
and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics,
mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches
or targets for overcoming cancer resistance.

Keywords: mitochondrial dynamics; mitochondrial Ca2+ homeostasis; metabolic plasticity; drug
resistance; cancer

1. Introduction

Cancer remains one of the greatest public health issues worldwide. According to
the National Cancer Institute (NIH), the incidence between 2013 and 2017 was 442.4 per
100,000 men and women per year, with a death rate of 158.3 per 100,000 men and women
per year (https://www.cancer.gov/about-cancer/understanding/statistics, accessed on
3 March 2021). The interest in developing novel and successful therapies is ardent and
continuous; nevertheless, this pursuit still suffers some failures, such as the rise in chemore-
sistance and multidrug resistance (MDR).

MDR represents the major cause of treatment failure and cancer relapse after surgical
removal. To date, two types of chemoresistance development mechanisms have been
reported: intrinsic and acquired [1,2]. Intrinsic chemoresistance, as the name suggests, is
an innate characteristic of cancer cells due to preexisting resistance-mediating factors in the
tumor mass that impede the effectiveness of the treatment even before it is administered.
On the other hand, acquired resistance, which develops after treatment administration, is
generally caused by mutations or alterations in the adaptive response machinery that span
from the increased expression of therapeutic targets, inactivation of drugs, overexpression

Int. J. Mol. Sci. 2021, 22, 4770. https://doi.org/10.3390/ijms22094770 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1981-750X
https://orcid.org/0000-0001-7108-6508
https://doi.org/10.3390/ijms22094770
https://doi.org/10.3390/ijms22094770
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.cancer.gov/about-cancer/understanding/statistics
https://doi.org/10.3390/ijms22094770
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094770?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4770 2 of 30

of transporters for drug extrusion (mdr pumps), promotion of DNA damage repair, and
metabolic changes to the activation of alternative survival pathways [3].

An additional feature of this quite intricate scenario is cell heterogeneity in the bulk
cancer; indeed, this permits the coexistence of diverse cell populations. Recent findings
have outlined that cancer stem cells (CSCs) may be the pioneers of innate/acquired [4–6]
conferring and spreading a resistance phenotype in the whole cancer pool and to other
organs [3,4,7,8].

Even if CSCs are a small percentage (less than 1–2%) [9,10] of the cancer population,
they have been found in leukemias (such as Acute Myeloid Leukemia [AML]) as in solid
tumors (such as breast, lung, brain, prostate, colon, liver and head and neck cancers) [11,12],
and generally, their relative abundance is associated with the clinical outcome [13]. As
CSCs have stemness features, they are more prone to last in a quiescent state than canonical
cancer cells; this is why most of the current treatments that target dividing cells have very
little effect on CSCs [14].

As mentioned above, cancer cells with acquired drug resistance may exhibit metabolic
changes, whereas CSCs are characterized by great metabolic plasticity that gives them
the ability to survive in adverse conditions such as hypoxia [15–17]. Mitochondria play a
central role in the bridge between metabolism and tumor progression, as they can decide
cell fate [18]. Interestingly, it has been observed that CSCs increase the expression of
genes encoding mitochondrial proteins [19,20], highlighting the crucial importance of
mitochondria for cancer cell survival, resistance, and spreading.

In recent years, there has been growing interest regarding mitochondria as potential
crucial targets for cancer therapy [21], mainly because mitochondria can rapidly adapt to
stressful conditions to permit cell survival. In fact, mitochondria are involved in metabolic
changes and survival pathways regulating the oxidative stress response, mitochondrial
plasticity, known as mitochondrial dynamics (mitochondrial fusion, mitochondrial fission,
mitochondrial transfer, mitophagy) and Ca2+ homeostasis [22–27], as they are the site
where all these processes are often strictly intertwined.

Therefore, it seems that mitochondrial plasticity is a key feature in many steps of tu-
morigenesis, especially chemoresistance. Indeed, recent research suggests that in chemore-
sistant ovarian cancer cells, the mitochondrial bioenergetic switch to oxidative metabolism
represents an advantage with respect to their non-resistant counterparts, and this shift oc-
curs along with relevant mitochondrial remodeling [28]. Another recent study showed that
the transfer of healthy mitochondria from fibroblasts to HeLa cells or SAS r0 cells (depleted
of mitochondrial DNA [mtDNA]) restored their proliferative capacity and sensitivity to
cisplatin treatment, suggesting that mitochondrial transfer can be considered a potential
therapeutic strategy [29].

With this review, we aimed to gather all the recent findings regarding mitochon-
drial dynamics and homeostasis to outline their roles in cancer chemoresistance. A
deeper understanding of these features could be crucial to overcoming the limitations
that chemotherapeutic treatments have in many cancer types to pave the way towards
more successful therapies.

2. Role of Mitochondrial Remodeling (Fusion, Fission, Mitophagy, and Transfer) in
Cancer Chemoresistance

Mitochondrial activities such as fusion, fission, mitophagy, and mitochondrial transfer
make mitochondria highly dynamic organelles [30]. The fine-tuned regulation of mitochon-
drial dynamics allows the maintenance of functional mitochondria through the control of
their shape, number, quality, and distribution in cells. In addition, to ensure correct mito-
chondrial functions, these coordinated dynamic transitions are essential for responding
to cellular requirements via rapid morphological adaptation to the metabolic state of the
cell [31]. Since many functions of mitochondria involved in cell homeostasis are closely
linked to their morphology [32], it is not surprising that dysregulation of mitochondrial
dynamics is related to several pathologies ranging from neurodegenerative diseases [33] to
ischemic stroke [34] and cancers [35,36]. In particular, impaired mitochondrial dynamics
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have been associated with the initiation and progression of several cancer types and cancer
metastasis, CSC survival, and drug resistance [37,38] (Figure 1), thus suggesting that tar-
geting mitochondrial dynamics is a potential therapeutic strategy for fighting cancer. In
this section, we critically reviewed the involvement of mitochondrial dynamics in cancer
chemoresistance.
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Figure 1. Mitochondrial dynamics in chemoresistance. Mitotransfer, mitophagy, and mitochondrial fusion and fission
(respectively, mitofusion and mitofission) are processes related to mitochondrial dynamics. These processes, depending on
their activation timing, tumor subtype, and microenvironment, can foster chemoresistance. The details of the processes are
reviewed in the paragraph. (Created with Biorender.com, accessed on 18 March 2021).

2.1. Mitochondrial Fusion and Mitochondrial Fission in Cancer Chemoresistance

Two opposing processes, mitochondrial fusion and fission, according to the cellular
metabolic requirements, allow mitochondria to constantly divide or connect to each other
to form networks or fragments, respectively [31,39]. Mitochondrial fusion and fission
are important in a variety of cell functions, including the cell cycle [40], developmental
processes [41], and apoptosis [42]. Moreover, different functions of mitochondria are
reflected in their structure. While fusion is commonly associated with high energy demand,
resulting in a hyperfused mitochondrial network with increased ATP production and
protection against autophagy [43–47]; fission is mainly linked to apoptosis, facilitating
the segregation of mtDNA upon mitosis and eliminating defective mitochondria through
selective isolation of parts of the organelle from the network [48–50]. In other words, pro-
survival signals are correlated with elongated mitochondria, while cell death is connected
to fragmented mitochondria.

However, depending on the cell’s state, fusion and fission can be proapoptotic or
antiapoptotic, complicating their role in cancer [51,52].

Biorender.com
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Mitochondrial fusion results from the union of two distinct mitochondria into one
through a process that requires the coordination of three dynamin-related GTPases, optic
atrophy 1 (OPA1) and mitofusin (MFN) 1 and 2 [53,54]. Fusion of the outer mitochondrial
membrane (OMM) is mainly carried out by the formation of homotypic and heterotypic
oligomers of MFN1 and MFN2, which leads to membrane clustering in a GTP-dependent
manner [55,56], whereas OPA1, at IMM, requires MFN1 to mediate mitochondrial fu-
sion [54,57]. In contrast to MFN1 and MFN2, OPA1 requires proteolytic cleavages for
activation. The OPA1 precursor is imported into the mitochondrion, where it undergoes
removal of the N-terminal mitochondrial targeting sequence by peptidases, thus producing
the long isoform of OPA1 (l-OPA1) that is embedded in the IMM. Further processing
of l-OPA1 in the matrix is mediated by different proteases to form the OPA1 short iso-
form (s-OPA1). OMA1 is required for OPA1 cleavage, which occurs at basal levels but
is strongly induced by mitochondrial depolarization [58–60], while the intermembrane
(i-AAA) protease YME1L is involved in cleavage at the S2 site of OPA1 [61]. The absence of
OMA1 in cells results in the inhibition of stress-induced OPA1 processing, affecting both
mitochondrial fusion and fission. In this case, l-OPA1 is stabilized, and the formation of
s-OPA1 isoforms is prevented, resulting in the maintenance of a tubular mitochondrial
network and protection against apoptosis [62]. The combination of long and short Opa1
isoforms is mandatory for fusion, although only the long isoform has been demonstrated to
be fusion competent [60,63]. Additionally, accelerated OPA1 proteolysis has been reported
to trigger mitochondrial fragmentation [64]. A relevant role of mitochondrial fusion in
chemoresistance is now emerging; indeed, it has been reported that chemoresistant ovarian
cancer cells have more interconnected mitochondrial networks than their chemosensitive
counterparts [65,66]. Consistently, in the absence of OMA1 or p53, two proteins involved
in OPA1 processing, chemoresistant gynecologic cells, show fused mitochondria even
in response to cisplatin, reflecting their inability to undergo fragmentation when OPA1
processing is altered [67]. Interestingly, prolonged treatment with venetoclax in AML cells
results in drug resistance. In particular, venetoclax-resistant AML cells show upregulation
of OPA1, which likely establishes resistance to cytochrome c release upon stimulation [68].
In accordance with the role of mitochondrial fusion in chemoresistance, MFN2 and ox-
idative phosphorylation (OXPHOS) have been found to be significantly upregulated in
surviving leukemia cells since the knockout of MFN2 substantially increases Jurkat sensitiv-
ity to doxorubicin [69]. In addition, it has been found that the inhibition of mitochondrial
fusion by silencing MFN1 increases cisplatin sensitivity in human neuroblastoma cells [70].
All these findings indicate that mitochondrial fusion strictly relies on the adaptation of
metabolic changes by promoting cell survival, increasing ATP production, and decreasing
apoptosis and mitochondrial fragmentation, which may provide a potential target for
increasing chemotherapy efficacy. However, further investigation unraveling the links
between mitochondrial fusion and cell sensitivity to chemotherapy is necessary to develop
therapies offering improvement in clinical outcomes.

As stated before, mitochondrial fusion is balanced by opposing fission events. Mi-
tochondrial fission is characterized by the division of one mitochondrion into two mi-
tochondria and primarily requires the action of the master regulator of mitochondrial
fission, dynamin-related protein 1 (DRP1), which is a cytosolic guanosine triphosphatase
(GTPase) that is recruited to the OMM of mitochondria by outer membrane receptors,
including fission protein homolog 1 (FIS1), mitochondrial fission factor (MFF), and mito-
chondrial dynamics proteins (MIDs) 49/51, [71]. When DRP1 reaches the mitochondrial
membrane, it oligomerizes and wraps around the constriction points of dividing mitochon-
dria, promoting mitochondrial fission [72]. Of note, several post-translational modifications
regulate the role of DRP1 in mitochondrial fragmentation in response to specific fission
stimuli, especially phosphorylation. DRP1 phosphorylation is regulated by a variety of ki-
nases, including PKCδ [73], Cdk1/cyclin B [49], ERK1/2 [74], Ca2+/calmodulin-dependent
protein kinase I alpha (CaMKIalpha) [75], adenosine monophosphate (AMP)–activated
protein kinase (AMPK) [76], and cyclic AMP-dependent protein kinase (PKA) [77]. Al-
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though mitochondrial fission represents the opposite process of mitochondrial fusion,
increasing evidence shows an important role of the first process in chemoresistance as
well [78]. Interestingly, latent membrane protein 1 (LMP1), a major Epstein–Barr virus
(EBV)-encoded oncoprotein, has been found to regulate DRP1 through two oncogenic
signaling axes: AMPK and cyclin B1/Cdk1. Thus, in EBV-LMP1-positive nasopharyngeal
carcinoma (NPC), mitochondrial fission mediated by DRP1 phosphorylation promotes
cell survival and cisplatin resistance. This finding strongly suggests that targeting DRP1
could be a promising therapeutic strategy to overcome resistance in this kind of cancer.
Indeed, metformin or cucurbitacin E, which interferes with the DRP1 upstream kinase
AMPK or cyclin B1/Cdk1, increased the chemosensitivity of NPC cells to cisplatin [79].
Although several works reported the implication of different fission-independent signaling
pathways in chemoprotection following the interactions between leukemia cells and stro-
mal cells [80–82], ERK/DRP1-dependent mitochondrial fission has also been shown to be
involved in bone marrow-derived mesenchymal stem cell (MSC)-induced drug resistance
in T-cell acute lymphoblastic leukemia cells [83,84].

Hypoxia promotes mitochondrial fission and cisplatin resistance in ovarian cancer
cells via ROS; consistently, suppression of mitochondrial fission by Mdivi-1, a putative
DRP1 inhibitor, or DRP1 silencing enhanced the cisplatin sensitivity of hypoxic ovarian
cancer cells. Therefore, the mitochondrial fission of cancer cells adapting to the hypoxic
tumor microenvironment could be a potential target for chemoresistant cells [66,85]. More-
over, although Mdivi-1 is widely reported to inhibit Drp1-dependent fission, recent studies
highlighted that the compound acts by reversibly inhibiting complex I as well, thus mod-
ifying mitochondrial ROS production, possibly contributing to the observed effects [86].
In addition, it has been reported that Mdivi-1 impaired cell proliferation, also acting on
oxidative metabolism [87], highlighting that DRP1-inhibition remains an ongoing chal-
lenge. Conversely, it has been reported that increased levels of DRP1 induced by ABT737,
an inhibitor of antiapoptotic BCL-2/BCL-XL, promote mitochondrial fission, leading to
apoptosis and mitophagy in ovarian cancer cells resistant to cisplatin. Accordingly, Mdivi-1
weakened ABT737-induced processes. Thus, targeting antiapoptotic BCL-2 family proteins
may be an emerging therapeutic strategy for patients with cisplatin-resistant ovarian cancer
since it allows the induction of DRP1-dependent apoptotic mitochondrial fission [66,88].

Chemoresistance is common in most patients with colorectal cancer. Notably, chemother-
apeutic drugs that promote the release of high-mobility group box 1 protein (HMGB1) from
dying cells elicit ERK1/2-mediated DRP1 phosphorylation via its receptor for the advanced
glycation end product (RAGE). All of these events trigger the autophagy process, inducing
chemoresistance and regrowth of the surviving cancer cells after treatment. Administration of
an HMGB1 inhibitor or a RAGE blocker abolished DRP1 phosphorylation, enhancing sensitiv-
ity to chemotherapeutic treatment by inhibiting autophagy [89]. Another study also elucidated
the role of ERK-induced DRP1 phosphorylation in the chemoresistance of bladder cancer cells.
The study reported that LASS2 inhibits bladder cancer invasion and chemoresistance through
the regulation of ERK-DRP1-induced mitochondrial fission [90].

Since mitochondrial fusion and fission represent adaptive cellular systems to cel-
lular metabolic requirements, multiple mechanisms of the mitochondrial dynamics reg-
ulation could represent cancer strategies for developing chemoresistance in a context-
dependent manner.

Accordingly, anticancer drugs promoting the release of HMGB1, in colorectal cancers,
or increased ROS production and hypoxic conditions in ovarian cancers, are commonly
associated with fission-driven chemoresistance. On the contrary, time-dependent exposure
to drug in AML, loss of function of p53 in ovarian cancers, increased levels of MFN2 and
OXPHOS in response to doxorubicin in Jurkat leukemia cells are usually associated with
fusion-driven chemoresistance. Thus, mitochondrial fusion or fission, although opposite
processes, depending on the cancer type and on the hypoxic or metabolic state, can be
both promoters of cancer chemoresistance. Depending on the conditions, the induction or
inhibition of mitochondrial fusion or fission could help in fighting cancer chemotherapy
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resistance. However, more insights into cellular fusion and fission strategies on the basis of
chemoresistance have to be further investigated.

2.2. Mitophagy in Cancer Chemoresistance

In addition to mitochondrial fusion and fission, proper mitochondrial function is also
ensured by an important degradative process involved in mitochondrial quality control
and mitophagy. Several studies have shown that mitochondrial fission coordinates with
mitophagy, representing a prerequisite to the mitochondrial degradation pathway in many
mammalian cell types [91,92]. The term mitophagy outlines the selective degradation
of damaged mitochondria in a process involving the formation of a double-membrane
structure called an autophagosome, which sequesters the organelle, allowing its autophago-
somal degradation following fusion with a lysosome [93]. Essentially, the mitophagy
pathway can be divided into two types: ubiquitin-mediated mitophagy and receptor-
mediated mitophagy. The most well-studied ubiquitin-mediated pathway involved in
cancer chemoresistance is the PINK1-Parkin pathway. Mitochondrial impairment or depo-
larization leads to the accumulation of phosphatase and tensin homolog (PTEN)-induced
kinase 1 (PINK1) at the OMM. Here, the kinase recruits and phosphorylates the E3 ligase
Parkin, promoting its E3 ligase activity [94–96]. Once activated, Parkin can ubiquitylate
several OMM proteins that are then recognized by ubiquitin-dependent receptors, also
known as autophagy receptors, such as p62/SQSTM1 (p62), optineurin (OPTN), NBR1
(neighbor of BRCA1), and NDP52 (nuclear dot protein 52 kDa). These receptors, which
harbor both ubiquitin-binding domains and LC3-interacting regions (LIRs), bind ubiquiti-
nated proteins and promote their degradation by mitophagy through binding to LC3 on
the autophagosome membrane [97].

Several mitophagy receptors are involved in PINK-Parkin-independent mitophagy, in-
cluding Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), BNIP3-like (BNIP3L)/NIX,
and FUN14 domain-containing protein 1 (FUNDC1), have been found to be associated with
chemoresistance. All these receptors are OMM proteins associated with hypoxia-mediated
mitophagy that bind LC3 through their own LIR [98–101].

Thus, mitophagy plays a dual role in cancer therapy; on the one hand, mitophagy
can induce cancer cell death; on the other hand, it is able to promote cancer cell sur-
vival [102], indicating the complexity of mitophagy regulation in cancer. The role of
autophagy/mitophagy differs in different stages of tumor development [103]. Although
the cancer type and tumor microenvironment complicate the role of this degradative path-
way in tumorigenesis, it is well accepted that in the early stage of cancer progression,
mitophagy inhibits tumor progression, while in the latest stages of tumor development, the
occurrence of mitophagy promotes cancer cell survival [102]. Importantly, the occurrence of
drug resistance to common chemotherapeutic drugs, including cisplatin, doxorubicin (Dox),
5-fluorouracil (5-FU), and paclitaxel, due to autophagy or mitophagy often leads to treat-
ment failure [104]. Therefore, an increasing number of studies highlight the involvement
of the mitophagy process in chemoresistance.

High levels of PINK1 expression have been associated with a poorer prognosis in
several tumor types. In non-small-cell lung cancer (NSCLC), PINK1 downregulation
potentiates cisplatin-induced NSCLC cell apoptosis [105,106], and similar results have been
obtained in esophageal squamous cell carcinoma (ESCC) patients undergoing neoadjuvant
chemotherapy [107]. In support of the role of mitophagy in cancer chemoresistance, it has
been reported that the inhibition of PINK1/Parkin-dependent mitophagy through PINK1
siRNA, mdivi-1, or bafilomycin A1 (Baf A1) promotes B5G1-induced cell death, sensitizing
multidrug-resistant cancer cells to a new betulinic acid analog, B5G1 [108]. Notably,
depletion of FUNDC1 in patients with cervical cancer, where high levels of FUNDC1
are associated with a poor prognostic outcome, significantly enhances cell sensitivity to
cisplatin and ionizing radiation [109]. Further, in hepatocellular carcinoma (HCC), it
has been reported that treatment with palliative transarterial embolization/transarterial
chemoembolization (TAE/TACE) promotes survival and the acquisition of a more invasive
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phenotype in HCC cells [110]. The blockage of DRP1-mediated mitochondrial fission,
and thus mitophagy, increases the incidence of mitochondrial apoptosis in HCC cells,
suggesting a new possible approach of targeting mitophagy to enhance apoptosis in
TAE/TACE-mediated ischemic hypoxic conditions [111].

In addition to the specific activation of mitophagy, cancer cell heterogeneity adds a
further layer of complexity to this process with respect to cancer chemoresistance. Indeed,
CSCs are known to be drug-resistant. Doxorubicin-induced mitophagy contributes to
drug resistance, and BNIP3L silencing enhances the sensitivity to doxorubicin in human
colorectal CSCs isolated from HCT8 cells, suggesting that mitophagy contributes to drug
resistance [112]. All these findings indicate a crucial role of mitophagy in cancer chemore-
sistance. Thus, combining drugs targeting mitophagy with chemotherapy drugs represents
an encouraging way to overcome chemoresistance and improve therapeutic outcomes in
several cancer types.

2.3. Mitochondrial Transfer in Cancer Chemoresistance

Mitochondrial dynamics are accompanied by intercellular dynamics in a mechanism
called mitochondrial transfer. In both physiological and pathological conditions, two cells
respond to external signals, including chemokines and cytokines, as well as therapeu-
tic drugs, directly transmitting biological information via horizontal transfer [113–115].
The physical processes of this cellular communication mechanism include the estab-
lishment of gap junctions, tunneling nanotubes (TNTs), and extracellular vesicle (EV)
transport [116–119]. Among these connection mechanisms, a functional role for TNTs and
EVs in several cancer types is emerging. TNTs are transient cytoplasmic extensions char-
acterized by long actin-based fibers, with lengths of several hundred micrometers and
diameters ranging from 50 to 1500 nm, that connect nonadjacent cells [116,120]. TNTs
allow the trafficking of relatively large cargos, including organelles such as mitochondria,
through motor-adaptor protein complexes related to the mitochondrial Rho GTPase Miro1,
from a donor cell to a recipient cell [121]. EV communication is characterized by the
exchange of signals, including soluble and insoluble factors, as well as structural pro-
teins, nucleic acids, and lipids, through the release of membrane-enclosed particles termed
EVs [122–124]. EVs include several kinds of vesicles, including exosomes (30–100 nm in
diameter), microvesicles (MVs) (100–1000 nm in diameter), and a very recently identified
cancer-derived EV population called oncosomes (1–10 µm in diameter) [125]. In recent
decades, increasing attention has been given to intercellular communication, identifying
this mechanism as a crucial factor inducing heterogeneity in the tumor microenvironment,
highlighting its role in contributing to chemoresistance [113]. TNT-mediated mitochondrial
transfer, first observed in mesothelioma [126,127], occurs both between cancer cells and
between cancer and normal cells of the microenvironment of several cancer types [128–130].
An additional role of TNT in promoting drug resistance is through intercellular drug
efflux, as demonstrated in chemotherapy-induced pancreatic cancer cells [113]. Functional
benefits from the acquisition of mitochondria have been documented; the common result
of mitochondrial transfer in recipient cells is the acquisition of a survival advantage from
the mitochondrial uptake process. Indeed, mitochondria transferred by TNTs increase the
OXPHOS output and ATP production of the target cells, affecting their metabolism, and as
functional consequences, recipient cancer cells exhibit enhanced proliferative, migratory
properties and resistance to stress [131–133]. Therefore, it is not surprising that a number of
studies have reported that cancer cells take advantage of this mechanism to enhance their
chemoresistance and increase their regrowth potential after treatment. Consistently, it has
been reported that mitochondrial transfer from endothelial cells to MCF7 breast cancer cells
promotes their resistance to doxorubicin [134]. Moreover, functional mitochondria derived
from bone marrow stromal cells have been found to increase resistance to cytarabine treat-
ment in AML [135]. Accordingly, it has been proposed that mitochondrial transfer, from
primary bone marrow stromal cells (BMSC) to the primary AML blasts, via TNT likely con-
tributes to chemoresistance in AML [136]. In a study on ovarian cancer and breast cancer
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cell lines, it was demonstrated that the preferential transfer through TNT of mitochondria
was from endothelial to cancer cells, demonstrating that mitochondria uptake, inducing
phenotypic advantage in recipient cells, resulted in the acquisition of chemoresistance [128].
TNT mitochondrial transfer has also been linked to human tumor-activated stromal cells
(TASCs) and glioblastoma cells, conferring resistance to standard treatments (radiotherapy
and chemotherapy) [137]. Drug resistance in T-ALL makes this leukemia one of the most
aggressive hematologic malignancies. Interestingly, it has been demonstrated that upon the
induction of oxidative stress by chemotherapeutic drugs, T-ALL cells were able to transfer
mitochondria to MSCs; this process is mediated by TNTs and ICAM-1 and contributes to
the cell adhesion-mediated drug resistance [138].

In addition, it has been demonstrated that MSCs transfer mitochondria to damaged
neural stem cells (NSCs) via the formation of TNTs, allowing NSC survival after cisplatin
treatment. Consistently, the inhibition of actin polymerization in MSCs blocks the transfer
of mitochondria and abrogates the beneficial effect of MSCs on NSCs. Conversely, the
enhancement of mitochondrial transfer by Miro1 overexpression further increases the
survival of NSCs after cisplatin treatment [139]. In line with these studies, the horizon-
tal transfer of mtDNA in circulating EVs from patients with hormonal therapy-resistant
metastatic breast cancer promotes the exit of therapy-induced cancer stem-like cells from
dormancy, leading to endocrine therapy resistance in OXPHOS-dependent breast can-
cer [140]. Since mitochondrial transfer clearly provides survival advantages following
chemotherapy, this mechanism could represent a future therapeutic target for several
chemoresistant cancer types.

3. Role of Proteins That Regulate Mitochondrial Ca2+ Homeostasis in Cancer
ChemoResistance and Death Resistance: An Overview

Ca2+ signaling is essential for a plethora of cell functions; therefore, [Ca2+]i must be
kept under control to enable proper cell physiology. Specifically, extracellular [Ca2+] is
greater than 1 mM, while cytosol has a [Ca2+] concentration of approximately 100 nM, and
intracellular stores in the sarco/endoplasmic reticulum have a concentration >100 µM;
this homeostasis is finely tuned and maintained by Ca2+ transport systems, ion channels,
Ca2+ pumps, Ca2+ sensor proteins and other Ca2+-binding proteins that are located at the
plasma membrane, endoplasmic reticulum (ER), mitochondria, or cytoplasm [141,142].
Mitochondria are crucial organelles involved in the regulation of cell Ca2+ homeostasis.
Ca2+ regulates the mitochondrial respiration rate, which depends on ATP production;
nevertheless, too much Ca2+ could also prompt mitochondrion-mediated apoptosis [143].
Cancer cell survival strictly depends on the combination of sustained mitochondrial bioen-
ergetics together with evasion from death stimuli; to counterbalance metabolic demand and
survival signals, cells have evolved mitochondrial Ca2+ influx and efflux systems, which
have been found to be extremely helpful for tumorigenesis [144]. Due to its multifaceted
role in regulating the fate between cell survival and death, mitochondrial Ca2+ signaling
pathways are under growing investigation since the proteins involved in those pathways
may represent alternative targets for cancer therapy.

Together with mitochondria, the ER plays a central role in the regulation of [Ca2+]i,
specifically via a series of proteins and factors constituting membranous tethering systems
named mitochondria-associated membranes (MAMs) [145–154].

In fact, mitochondria-ER crosstalk has a pivotal role in cell adaptation to stress stimuli.
MAMs may play a role in response to chemotherapeutic treatment by regulating Ca2+

signaling, as the ER can regulate Ca2+ transfer not only to the mitochondria but also to the
cytoplasm. Chemotherapeutic drugs cause a rapid increase in [Ca2+]cyt [155,156]; moreover,
these shifts in cytosolic Ca2+ are thought to be early markers of cytotoxicity in response to
various oxidative stress stimuli [155,156].

However, mitochondrial Ca2+ homeostasis may also be affected by some chemothera-
peutic drugs since these drugs can either have a direct effect on mitochondria or indirectly
act on Ca2+ uptake by affecting mitochondrial membrane potential (∆Ψ) [157].
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Furthermore, it has been shown that patient-derived mesothelioma cancer cells criti-
cally deregulate intracellular Ca2+ signaling, mainly due to alterations in mitochondrial
Ca2+ uptake. This feature is correlated with evident resistance to cell death upon chemother-
apeutic treatment; indeed, the restoration of proper Ca2+ homeostasis resulted in increased
sensitivity to the drugs [158].

The relationship between mitochondrial Ca2+ uptake and cell death induction is
not unambiguous, since Ca2+ uptake is necessary for the maintenance of ∆Ψ as ATP is
produced; however, a persistent Ca2+ signal towards mitochondria is perceived as a stress
stimulus, thus translating into apoptosis activation (for a review on the mitochondrial Ca2+

issue, see [155]).
To date, the relevance of intracellular Ca2+ signaling in tumorigenesis and chemore-

sistance has undeniably been acknowledged; however, the majority of evidence takes
into consideration proteins located either on the ER membrane (STIM, SERCA, IP3R2,
and IP3R3) or plasma membrane (PMCAs, ORAI, TRPCs, TRPMs, TRPVs, and CACNAs)
or soluble proteins (calpains, S100 family, and calmodulin), which have effects on Ca2+

homeostasis overall [159–166].
The purpose of this chapter is to provide new insights into the role of some of the most

critical mitochondrion-resident or -associated proteins involved in the regulation of tumor
drug resistance through Ca2+ signaling, pointing towards potential novel investigation
targets (Figure 2).
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3.1. Mitochondrial Membrane Proteins

The contribution of mitochondria to the chemoresistant phenotype may be summa-
rized in two ways: (i) mitochondrial ATP production is necessary for the activity of mdr
pumps (mdr1 and mdr4), also known as P-glycoproteins (P-gp), that are ATP-binding
cassette family members involved in the active extrusion of xenobiotics outside the cells
(see introduction); (ii) defective mitochondrial outer membrane permeabilization (MOMP)
or impaired activation/opening of the mitochondrial permeability transition pore (mPTP),
that is involved in the release of proapoptotic factors, such as cytochrome c [167].

For these reasons, the ion channels residing both in the OMM and IMM may impact
resistance to death stimuli, since OMM channels participate in the permeabilization process,
while the IMM channels regulate the maintenance and adaptation of ∆Ψ, thus influencing
the efficiency of mitochondrial respiration and ROS production [168,169].

Next, we critically review the most important proteins in both the OMM and IMM,
outlining their implications in resistance to death stimuli in cancer cells.

3.1.1. The Mitochondrial Ca2+ Uniporter (MCU) Complex

The MCU complex (MCUC) is a macromolecular complex consisting of regulatory
and pore-forming subunits [170]; the pore consists of oligomers of MCU located in the
IMM formed by two transmembrane domains, where the C- and N-termini point to
the mitochondrial matrix [171]. Among the regulatory subunits, mitochondrial calcium
uptake protein 1 (MICU1) exerts a gatekeeper function, stabilizing the closed state of
the MCUC, thus allowing Ca2+ accumulation in the mitochondrial matrix but inhibiting
mitochondrial Ca2+ entry [172]. MICU2, which has a 25% identity with MICU1, interacts
with both MICU1 and MCU, and its function is still debated [173]. EMRE, an efflux
multidrug resistance protein, is a single-pass membrane member of the complex that
functions as a bridge between MICU1 and MCU, and its loss causes the same reduction in
mitochondrial Ca2+ uptake as MCU depletion [174]. MCUb is an MCU isogene that acts as
an endogenous dominant-negative isoform [175]. Finally, mitochondrial calcium uniport
regulator 1 (MCUR1) enhances MCU activity by directly interacting with MCU but not
with MICU1 [176].

Mitochondrial Ca2+ overload due to MCU activation causes mPTP opening and the
release of factors that initiate necrosis and/or apoptosis [151,177]. When cancer cells
are treated with proapoptotic stimuli, the expression of MCU relates to the sensitivity to
these treatments [178]. Moreover, it seems that a chronic increase in mitochondrial Ca2+

load through MCU leads to mitochondrial stress and fragmentation of the mitochondrial
network [167].

Regarding the implication of MCU in chemoresistance, there is evidence that in
human colon cancer, microRNA-25 (miR-25) is able to target and downregulate MCU
expression, decreasing mitochondrial Ca2+ uptake and favoring cancer cell proliferation
and resistance towards proapoptotic stimuli since the reintroduction of MCU sensitizes
cancer cells to the treatment [179,180]. On the other hand, a recent study demonstrated
that the overexpression of receptor-interacting protein kinase 1 (RIPK1) and its consequent
interaction with MCU is able to increase mitochondrial Ca2+ uptake, resulting in an increase
in the proliferation of cancer cells [181].

Additionally, other evidence shows that in HCC, the expression of MCUR1 is increased
and is correlated with an increase in MCU activity leading to greater mitochondrial Ca2+

uptake, which enables desensitization to proapoptotic stimuli [182].
In breast cancer patients, it has been demonstrated that survival rate is negatively

correlated with an increase in MCU expression and a decrease in MICU1 expression,
suggesting that MICU1 might act as an oncosuppressor [183]. Other evidence shows
that the downregulation of MICU1 and MICU2, which occurs in pancreatic cancer cells,
is facilitated by histidine triad nucleotide-binding protein (HINT2), whose decreased
expression correlates with a poor prognosis and chemoresistance [184]. Furthermore,
MICU1 knockout cells lose MCU gatekeeper function and become more susceptible to
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apoptotic and stress stimuli since oxidative stress and ROS production increase during
mitochondrial Ca2+ uptake [185].

Enhanced MICU1 expression has been found in many types of cancers, and it is
related to poor clinical outcomes and increased glycolysis and chemoresistance. Recent
evidence shows that miR-195 targets the MICU1 3′-untranslated region (UTR), lowering its
expression; in fact, stable miR-195 expression in ovarian cancer human xenograft models
significantly reduces tumor growth and enhances cell survival. Thus, miR-195, which
regulates MICU1, can be exploited to normalize abnormal MICU1 expression and reverse
chemoresistance [186].

Altogether, both MCU and its negative regulator MICU1 may be considered important
potential targets for combating cancer chemoresistance [187–189].

3.1.2. Voltage-Dependent Anion Channels (VDACs)

Mitochondrial porins are also known as VDACs, and they reside in the OMM and
take part in MOMP upon apoptotic stimulation. The porin family includes three isoforms
named VDAC1, VDAC2, and VDAC3 [190]; the first two isoforms are the most involved in
MOMP [191–194]. VDAC1 mediates the flow of small molecules, such as ROS, ATP, Ca2+

ions, and water molecules, across the OMM, making it crucial for metabolic signaling and
Ca2+ signaling under physiological conditions [167]. This isoform is expressed in many
types of cancers [192] and plays an essential role in tunneling ATP across the OMM directly
to the first enzyme of glycolysis, hexokinase, whose expression is increased in cancer cells
helping to maintain the Warburg effect [195–197].

The importance of VDAC1 has also been reported in chemoresistant cancer patients
since a truncated but channel-forming isoform of VDAC1 (VDAC1-∆C) has been detected
in late-stage tumor tissue and tissues from chemoresistant lung adenocarcinoma patients;
these findings demonstrate that VDAC1-∆C is induced by HIF-1 in hypoxic conditions,
conferring protection from apoptosis [198–200].

Another study highlighted that dexamethasone-resistant childhood acute lymphoblas-
tic leukemia (ALL) patients showed lower expression levels of VDAC1 than healthy con-
trols; hence, VDAC1 might be considered a predictor of the chemotherapy response for
childhood ALL [201].

Regarding VDAC2, high transcript levels were found to be associated with a greater
risk of tumor recurrence and resistance to hormonal therapy in high-risk breast cancer
patients [202].

Furthermore, VDAC1 anchors to antiapoptotic BCL-2 and BCL-XL proteins, where
BCL-2 is able to decrease VDAC1 channel conductance by possibly binding directly to it.
Indeed, synthetic peptides corresponding to the VDAC1/BCL-2-interacting region decrease
protection against staurosporine-induced apoptotic cell death in BCL-2-overexpressing
cells, suggesting that a VDAC1-based peptide may prevent BCL-2 binding to the OMM,
thus potentiating the efficacy of chemotherapy [203]. Intriguingly, the efficacy of VDAC1-
based peptides has been proven over the years in different cancers by preclinical mod-
els [204]. It has been reported that these peptides can prevent the interaction with hexoki-
nase II, BCL-XL, and BCL-2 in in vivo models [205,206].

Then, the great challenge to overcoming VDAC-mediated chemoresistance would
be the design of specific VDAC1 inhibitors since it has been reported that VDACs are
“druggable” channels [187,207] and isoform-specific inhibitors are so far unavailable.

3.1.3. Na+/Ca2+/Li+ Exchanger (NCLX)

The majority of mitochondrial Ca2+ extrusion is mediated by NCLX, and the proper
balance between Ca2+ uptake by MCU and Ca2+ extrusion by NCLX has a critical role
in the maintenance of mitochondrial Ca2+ homeostasis, cell metabolism, and cell fate in
general [208]. Although mitochondrial Ca2+ homeostasis alteration can be considered a
cancer hallmark, the details of its role in the regulation of cancer progression, metastasis
and chemoresistance are still poorly understood.
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In the previous section, we discussed the role of MCU in cancer progression and
chemoresistance and how the altered expression of its components or of MCU itself in-
creases mtCa2+ intake with diverse outcomes in terms of cancer cell progression. The
NCLX-mediated process, however, occurs approximately 100-fold slower than that of
MCU; thus, NCLX function is a rate-limiting factor in the regulation of mitochondrial Ca2+

homeostasis [208,209].
Although NCLX plays an essential role, its role in cancer biology has not yet been

fully investigated.
A recent work by Pathak and collaborators demonstrated that NCLX loss decreases

mitochondrial Ca2+ extrusion and, as a consequence, inhibits proliferation and primary
tumor growth while enhancing metastasis and chemoresistance in colorectal cancer. This
dichotomous and apparently contradictory role of NCLX is supported by evidence that
a decrease in its expression is accompanied by the upregulation of genes involved in
epithelial-mesenchymal transition (EMT), cancer stemness, and downregulation of cell
cycle progression mediator genes. These changes result in mitochondrial Ca2+ overload,
membrane depolarization, and increased mitochondrial ROS production, which enhances
the mesenchymal phenotype, driving colorectal cancer towards metastatic dissemination
and treatment resistance [210].

3.2. Soluble Mitochondria-Related Proteins

Other than the role exerted by the proteins located at the IMM or the OMM, it is known
that there are soluble cytoplasmic proteins able to modulate mitochondrial plasticity and
Ca2+ homeostasis in many pathophysiological settings. In recent years, researchers have
focused on proteins that can locate, under certain conditions, at MAMs to regulate the func-
tion of channels or receptors resident in the ER or mitochondrial membranes. Nevertheless,
these proteins that are normally soluble in the cytoplasm are able to migrate to these
membranes, regulating intracellular Ca2+ homeostasis in many pathological conditions,
such as cancer, inflammation, diabetes, and neurodegeneration [24,25,211].

In the next section, we will focus on the role of some of the soluble proteins, other than
the ones that migrate to MAMs, whose involvement in the regulation of mitochondrial
Ca2+ homeostasis has been linked to the chemoresistant phenotype in cancer cells or
patients. The current findings suggest that not only mitochondria isolated from cells but
also mitochondria-associated soluble proteins may have dynamic action that might be
crucial in the understanding of the drug resistance condition.

3.2.1. S100A8

S100A8 is a part of the 22-member calcium-binding EF hand-containing superfamily,
and it is a multifunctional protein able to heterodimerize with S100A9 to form calprotectin
involved in the sequestration of divalent cations, acting mainly in the regulation of the
innate immune system [212,213].

According to the literature, S100A8 is involved in inflammation, cell proliferation,
and oncogenesis [214]; indeed, S100A8 has been reported to be associated with apoptosis,
autophagy, myeloid differentiation, and chemotherapy resistance [215–217]. Moreover,
S100A8 is widely expressed in many tissues and cells, but it is particularly abundant in
myeloid cells [218].

Some studies have reported that S100A8 has a role in mitophagy promotion in cancer
cells related to the crosstalk between mitochondria and lysosomes mediated by ROS or via
the activation of the autophagy initiation complex BECN1-PI3KC3 (see mitophagy section
in this review for further details) [215,217].

Furthermore, autophagy and mitophagy have been ascertained to play an essential
role in chemotherapy resistance [219]. Indeed, the inhibition of autophagy may pro-
mote sensitivity to chemotherapeutic treatment and apoptosis in many types of malig-
nant cancers [220]. Moreover, multiple chemotherapeutic drugs are able to increase the
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autophagic/mitophagic flux by promoting the drug resistance phenotype and cell sur-
vival [221,222].

In a recent work by Zhang and coworkers, the relationship between S100A8, mi-
tophagy, and chemotherapy resistance in B-cell lymphoma cells were characterized. They
reported that S100A8 increased drug resistance through the stimulation of BECN1-PI3KC3
and BECN1-BCL-2 complex formation, prompting early mitophagic signaling. In addition,
S100A8 enhanced BNIP3 expression, boosting mitophagic signaling activation [223]. BNIP3
is a 19 kDa BH3-only protein located at the mitochondria-ER interface; specifically, it is
anchored to the OMM through the C-terminal domain, while its N-terminal domain points
to the cytoplasm. BNIP3 is an autophagy and mitophagy inducer (see the paragraph) and
triggers cell death by affecting mitochondrial function [217,224–226]. It has been reported
that its aberrant expression is related to mitochondrial Ca2+ homeostasis and promotes cell
death [100,227].

Thus, S100A8, a small Ca2+-binding protein, might represent an intriguing link be-
tween chemoresistance, mitochondrial Ca2+ homeostasis, and mitophagy.

3.2.2. Sorcin

Soluble resistance-related calcium-binding protein (Sorcin) is a 22 kDa soluble protein
belonging to the Penta EF-hand (PEF) protein family. Basically, Sorcin works as a Ca2+

sensor in the cytoplasm, as its role was firstly characterized in cardiomyocytes. Indeed, it
takes part in the relaxation process after excitation-contraction coupling (EC coupling), by
restoring [Ca2+]i to resting conditions [228,229] and by activating SERCA pumps at the ER,
voltage-dependent L-type Ca2+ channels, and Na+/Ca2+ exchangers (NCXs) at the plasma
membrane, and possibly MCU at mitochondria while inhibiting the ryanodinic receptor
(RyR) at the ER [230–234].

In addition to its role in the regulation of intracellular Ca2+ homeostasis, as the name
itself suggests, it has been found to be widely overexpressed in many cancer types, espe-
cially in chemotherapy-resistant specimens [235–239]. In many cases, the chemoresistant
phenotype was a result of Sorcin co-amplification with mdr1, a gene coding for an ATP-
binding cassette pump considered a biomarker of MDR since its overexpression facilitates
the extrusion of drugs from cells [240–245]. Moreover, it has been demonstrated that Sorcin
overexpression is related to a poor clinical outcome in leukemia patients [246,247], and the
combination of Sorcin silencing or depletion and chemotherapy treatment improves the
effectiveness of treatment and the sensitivity to death stimuli [248–254].

In addition, it has been reported that a shorter isoform of Sorcin (18 kDa) interacts
with TRAP1, a mitochondrial chaperone (Hsp75) with antioxidant and antiapoptotic func-
tions, in mitochondria. TRAP1 exerts a role in MDR in cancer cells and is upregulated
together with Sorcin in colorectal carcinoma cells; moreover, their interaction is required
for Sorcin localization at mitochondria and TRAP1 stability [255]. TRAP1 and Sorcin are
co-upregulated in cancer, and this feature is considered a marker of drug resistance, but
their reciprocal regulation also relates to TRAP1 translational control of Sorcin; indeed,
TRAP1 silencing relates to Sorcin protein instability and degradation [255]. Moreover, this
quality control exerted by TRAP1 on Sorcin protects against apoptosis either induced by
ER stress pathway activation or paclitaxel administration in breast carcinoma [256].

A recent publication also showed that Sorcin silencing increases mitochondria-ER
proximity, while overexpression decreases the proximity with an effect mainly mediated
by cytosolic [Ca2+] alteration [257]. This evidence indicates that the Sorcin-mitochondria
relationship is a crucial feature in the regulation of cancer cell survival and chemotherapy
resistance, suggesting a potential role of proto-oncogenes as well as an intriguing thera-
peutic target since Sorcin links Ca2+ homeostasis to the mitochondrial response to stress
stimuli, which is related to drug resistance.
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3.2.3. PKCζ

Protein kinase C (PKC) is part of a protein family that comprises serine/threonine
kinases that are involved in a large number of signaling pathways from cell proliferation to
apoptosis and from muscle contraction to secretion [258–260]. The members of this protein
family have been subdivided into three classes: (i) conventional PKCs (isoforms α, β1,
β2, and γ) activated by diacylglycerol and Ca2+, (ii) novel PKCs (δ, ε, η, and θ) activated
by diacylglycerol and Ca2+-independent, and (iii) atypical PKCs (λ and ζ) that are both
diacylglycerol- and Ca2+-independent [261]. Interestingly, Ca2+ activation of some PKCs
and PKC kinases affects the spatiotemporal pattern of the Ca2+ cellular response since it
has been noted that PKCs can modulate agonist-mediated Ca2+ release from the ER and
differentially decode low- and high-frequency Ca2+ spikes [262,263].

Among the isoforms, PKCζ is implicated in either apoptotic or mitogenic signals as
it acts on different pathways. These characteristics provide important implications for
PKCζ in tumorigenesis [264–268]. Moreover, it has been reported that PKCζ acts as an
antiapoptotic factor reducing cancer cell sensitivity to chemotherapeutic treatment [269,270]
and is possibly implicated in linking cancer-related inflammation and chemoresistance
via NF-kB activation and nuclear translocation [271]. Indeed, there is evidence that upon
oxidative stress, PKCζ is able to translocate to the nucleus and to increase resistance to
apoptotic inducers; in turn, a recombinant nuclear PKCζ inhibitor restores the sensitivity
towards apoptotic stimuli in chemoresistant cells [272].

It has also been demonstrated that PKCζ, similar to some other PKCs, is linked to
the regulation of mitochondrial Ca2+ concentration upon agonist stimulation. Specifically,
this isoform increases mitochondrial uptake of Ca2+ upon histamine stimulation with no
significant variation in the increase in ROS production or ∆Ψ, which can be considered
the Ca2+ driving force in the mitochondria; no significant changes in either cytosolic or ER
Ca2+ concentration occur during this process [273].

Although it is mainly soluble and expressed in the nucleus, PKCζ affects mitochondrial
[Ca2+] with possible implications in cancer progression regulation and multidrug resistance
in a way that has not yet been fully disclosed. Thus, the understanding of the signaling
pathways in which PKCζ lies at the crossroads between mitochondrial Ca2+ regulation and
chemoresistance would be extremely helpful and interesting in the development of novel
therapeutic strategies.

4. Oxidative Stress and Bioenergetic Remodeling in Chemoresistance

In 1954, Gerschman and his group first theorized about the toxic effects of oxygen
due to partially reduced forms known as free radicals [274], generated as a byproduct
of metabolic processes. ROS include the superoxide anion (O2

−), singlet oxygen (1O2),
hydrogen peroxide (H2O2), and hydroxyl radical (HO·). Free radicals also include reactive
nitrogen species (RNS). These unstable and partially reduced oxygen derivatives act as
second messengers in cell signaling. Within the cell, they play a double role since they
have both beneficial and deleterious effects. On the one hand, at low doses, they are
involved in intracellular signaling and adaptive and innate immune responses. On the
other hand, high levels lead to biological damage known as oxidative stress as a result
of an imbalance between ROS production and antioxidant defense systems [275,276].
Mitochondria represent the major source of ROS, producing almost 90% of total ROS
as a consequence of OXPHOS [277]. It is well recognized that ROS accumulation can
cause direct damage to organelles and biomolecules (DNA, proteins, and lipids), which,
through an inflammatory response, may lead to cancer development [278]. However, to
counterbalance ROS overproduction, cells adopt not only enzymatic antioxidants, such
as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPxs), and
thioredoxin (Trx) but also nonenzymatic antioxidants, which jointly minimize oxidative
stress [279].
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In cancer cells, an increased metabolic rate, the dysfunction of mitochondria, and
activation of oncogenes (e.g., c-Myc, Kras, and BRCA1) are thought to be some of the
factors responsible for ROS production [280–283].

ROS support tumor cells in several cancer-related mechanisms, such as survival,
angiogenesis, and metastasis [284–286]. Interestingly, conflicting roles of ROS as crucial
secondary messengers in cancer and during cancer chemotherapy have emerged [286,287].
Indeed, a growing body of evidence supports the role of ROS not only as a tumor promoter
but also as a tumor suppressor [288] in view of the fact that most chemotherapy, radiother-
apy, and photodynamic therapy approaches increase intracellular levels of ROS to trigger
cancer cell death [289].

In this context, anthracyclines, such as doxorubicin, daunorubicin, and epirubicin, pro-
duce the highest ROS levels [290]. Platinum complexes, alkylating agents, camptothecins,
and topoisomerase inhibitors also induce the production of high amounts of cellular
ROS [291–293]. In contrast, vinca alkaloids, taxanes, and antimetabolites (antifolates and
nucleosides) lead to lower levels of ROS [289]. Mitochondrial ROS generation and inhi-
bition of the antioxidant system represent the main reasons for elevated ROS levels. For
instance, arsenic trioxide, used in leukemia treatment, provokes mitochondrial membrane
potential reduction and inhibition of complexes I and II of the electron transport chain
(ETC), triggering ROS overproduction [294,295].

Imexon, a prooxidant small molecule, binds to glutathione (GSH) and cysteine, causing
a decrease in the level of cellular GSH and causing the accumulation of ROS in patients with
metastatic cancer [296]. The anticancer activity and safety of imexon in leukemia have been
confirmed in preclinical and phase I/II clinical trial studies [297]. Mangafodipir inhibits
SOD, leading to an increase in H2O2 levels that triggers apoptosis in cancer cells [298].

Cisplatin, one of the most effective and widely used chemotherapeutic drugs, is
known to provoke DNA adducts that, if not repaired, cause DNA damage, leading to ROS
generation [299]. Interestingly, Marullo et al. demonstrated that exposure to cisplatin stim-
ulates a mitochondrion-dependent ROS response that boosts its cytotoxic effect towards
cancer cells [300].

Even though most chemotherapeutic drugs increase ROS to cytotoxic levels, in cancer
cells, such ROS exposure may also minimize chemotherapy effects in the long term, thereby
causing chemoresistance [287,301,302].

Notably, resistance to chemotherapeutic drugs is among the leading causes of cancer-
related death [303]. It has been reported that 2-deoxy-D-glucose (2-DG) is able to promote
chemoresistance through ROS-stimulated upregulation of P-glycoprotein expression (P-
gp) [304,305]. In addition, 2-DG may also induce chemoresistance in human ovarian
and breast cancer cells by upregulating the expression of dihydrodiol dehydrogenases
(DDHs) [306]. Rimessi et al. demonstrated that oxidative stress triggers PKCζ accumu-
lation within the nucleus and reduced the sensitivity of cancer cells to chemotherapeutic
agents, confirming that this PKC isoform may serve as a useful target for tumor cell
chemosensitization [272] (Table 1).

Tumor heterogeneity plays a key role in chemotherapeutic drug resistance [301]. Given
that, heterogeneity has been noted to be tightly correlated with high levels of ROS [307].

However, ROS involvement in tumor heterogeneity still requires further investigation.
In this scenario, increasing evidence suggests that CSCs co-occur, at least in part, in the
emergence of cancer heterogeneity [301].

Especially in recent decades, CSCs have gained growing attention since they are a
subset of cancer cells with stemness characteristics that have been detected in several
tumors, such as leukemia [308], breast cancer [309], and pancreatic cancer [310]. For
this reason, CSCs appear to be responsible for cancer recurrence after chemotherapy or
radiotherapy [311].
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Table 1. Effects and targets of chemotherapeutic drugs on mitochondrial and cellular oxidative stress.

Chemotherapeutic Drug Target Effect References

Anthracyclines: Doxorubicin,
Epirubicin, and Daunorubicin Topoisomerase II ↑ ROS [290]

Doxorubicin Electron transport system
(ETS) [289]

Alkylating agents, camptothecins, and
topoisomerase inhibitors

DNA
topoisomerase I ↑ ROS [291–293]

Vinca alkaloids, Taxanes, and
Antimetabolites (antifolates and

nucleoside)
Cytoskeleton, β-tubulin ↓ ROS [289]

Arsenic trioxide Complexes I and II of the ETC ↓ ∆Ψm ↑ ROS [294,295]
Imexon GSH and cysteine ↓ GSH ↑ ROS [296]

Mangafodipir SOD Increase in H2O2 levels that
trigger apoptosis [298]

Cisplatin DNA DNA adducts, and
ROS generation [299]

2-deoxy-D-glucose (2-DG) ↑ P-gp
↑ DDHs

Chemoresistance
↑ ROS

Chemoresistance
[304–306]

↑: represents the increased production, in the case of ROS, or increased expression levels of P-gp or DDHs. ↓: represents the decrease in
ROS production or mitochondrial membrane potential (∆Ψm), or decreased expression levels of GSH.

In murine and human breast, CSCs have been detected to have a lower level of
ROS than their corresponding nontumorigenic cells, which was correlated with higher
expression of free radical scavenging system components. Hence, this indicates that
enhanced ROS defenses may be responsible for tumor radioresistance [312].

Similarly, Phillips et al. demonstrated that breast CSCs were radiotherapy-resistant
and displayed low levels of ROS [313].

Hence, it would be advantageous to develop new delivery strategies, such as nanopar-
ticle delivery systems, to be applied in the clinic to boost and maintain ROS levels for a
certain period of time to reverse drug resistance [287].

In the context of chemoresistance, metabolic reprogramming has gained substantial
consideration and is now considered a cancer hallmark [314]. These metabolic alterations,
some more glycolysis-oriented and some more oxidant-oriented are adopted by cancer
cells to overcome stress conditions such as hypoxia or limited nutrients. In addition, these
different bioenergetic features may coexist within the same tumor mass (tumor hetero-
geneity), leading to different responses to chemotherapy [315]. In addition to glycolysis
and OXPHOS, it is well documented that most cancer cells are also avidly dependent on
glutamine supply, which is referred to as “glutamine addiction” [316,317].

For years, tumor cells have been considered to be more reliant on glycolysis (the “War-
burg effect”) than normal cells and are characterized by dysfunctional mitochondria [318].

However, in recent years, the importance of OXPHOS in many cancer settings has
been increasingly reported, highlighting the different metabolic requirements of cancer
cells [319].

High-grade serous ovarian cancer (HGSOC) is one of the most aggressive ovarian
cancers and has been reported by Gentric and collaborators to display the highest metabolic
heterogeneity. They identified two distinct cellular subgroups, low OXPHOS (relying on
glycolysis) and high OXPHOS (relying on OXPHOS, glutamine, and fatty acid oxidation).
Interestingly, high-OXPHOS HGSOC exhibited chronic oxidative stress that stimulated the
activation of PGC1α. Active PGC1α enhanced the synthesis of ETC complexes, promoting
mitochondrial respiration and thus leading to an increased response to conventional
chemotherapies [320]. In contrast, in another study, it was reported that cisplatin-resistant
HGSOC cells relied on OXPHOS more than their sensitive counterparts and that inhibition
of OXPHOS restored cisplatin sensitivity [321].
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Furthermore, it has been demonstrated that reduced expression of the mitochondrial
chaperone tumor necrosis factor-associated protein (TRAP1), which is known to have a
pivotal role in metabolic rewiring, mediates a shift towards OXPHOS, which causes ovarian
cancer resistance to cisplatin treatment [322].

Conversely, in a recent study, it was demonstrated that in ovarian cancer cells, MICU1
increases aerobic glycolysis and thus chemoresistance [323].

Additionally, melanomas exhibit unexpected metabolic features. Indeed, it has been
reported that this highly aggressive type of cancer develops alternative metabolic strategies
to survive and proliferate [324]. Lim and coworkers demonstrated that a subset of human
melanomas depend on OXPHOS and that PGC1α overexpression in these cells facilitates
resistance to oxidative stress. Intriguingly, the inhibition of PGC1α triggers ROS overpro-
duction, HIF1α stabilization, and a metabolic switch towards glycolysis. Subsequently,
suppression of both PGC1α and HIF1α causes energetic defects that lead to the emergence
of a compensatory mechanism based on the use of glutamine to survive.

Hence, this evidence demonstrates that three alternative metabolic strategies ensure
tumor resistance and survival and that combinatorial therapy is required [324].

Similarly, HCC, pancreatic, and colon cancer cells rely on OXPHOS to survive [325–327].
Hence, the usage of OXPHOS inhibitors could be a promising strategy to overcome tumor
resistance [326]. As mentioned above, oxidative stress and metabolic remodeling of cancer
cells are strongly associated with cancer chemoresistance, in which mitochondria play
a fundamental role. Combinatory therapeutic approaches aimed at targeting different
metabolic pathways, such as glycolysis, OXPHOS, and even glutaminolysis, could represent a
promising strategy for preventing chemoresistance. In addition, exploiting ROS-modulating
treatment to eliminate cancer cells and CSCs could strengthen the efficacy of traditional
anticancer therapies.

5. Conclusions

Chemoresistance, as a survival strategy engaged by cancer cells upon apoptotic
stimulation, is inevitably connected to mitochondrion-related pathways. Mitochondria are
essential players in cancer cell survival, as they play roles in processes from metabolism
to Ca2+ signaling and from mitochondrial dynamics regulation to oxidative stress. Since
successful therapies are still needed, it is important to obtain a deeper knowledge of the
connections between the players of mitochondria-related pathways.

In fact, current evidence indicates that mitochondria dynamics, which can be both
positive and negative regulators of chemoresistance depending on activation timing, cancer
cell type, and most importantly, tumor microenvironment, can be considered a potent
regulator of cancer drug resistance and thus are potentially crucial targets.

In addition, metabolism-targeted approaches centered on OXPHOS, glutamine
metabolism, or ROS might represent successful strategies for inhibiting both cancer prolif-
eration and drug resistance.

Mitochondrial Ca2+ signaling, which is directly modulated by proteins embedded
either in the OMM or IMM and/or cytosolic proteins associated with mitochondria, might
represent other compelling targets for successful cancer treatment. However, broader
characterization of these proteins and their relationship to tumorigenesis and cancer drug
resistance through mitochondrial Ca2+ homeostasis regulation is still required.

Taken together, the advancements in the characterization of tumorigenesis and chemore-
sistance in the context of mitochondrial functionality are not only interesting but also crucial
to the understanding of cancer mechanisms and for designing optimal therapeutics against
uncontrolled cell survival and resistance to apoptotic stimuli.
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