Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
3. Results
3.1. Study Selection
3.2. Endoglin-Based Cancer Imaging
3.2.1. Angiogenesis and Tumor(-Associated) Cells
3.2.2. Endoglin-Based Nuclear Imaging of Tumors
3.2.3. Endoglin-Based MR Imaging of Tumors
3.2.4. Endoglin-Based Near-Infrared Fluorescence Imaging of Tumors
3.2.5. Endoglin-Based Ultrasound Imaging of Tumors
Imaging Principle | Specific | Model (h) = Human, (m) = Murine | Imaging Agent | Class |
---|---|---|---|---|
Nuclear imaging (n = 20) | General (n = 2) | Dogs with spontaneous mammary tumors | 125I-MAEND3 [47] a | a. Antibody |
Human renal cell carcinoma patients * (excised human kidneys) | 99mTc-E9 mAb [48] a | |||
SPECT (n = 1) | B16F10 (m) melanoma model | 125I-anti-CD105 mAb [46] a | a. Antibody | |
PET (n = 17) | 4T1 (m) breast cancer mouse model | 64Cu-NOTA-TRC105 and 64Cu-DOTA-TRC105 [49] a 64Cu-TRC105-Fab [50] b 64Cu-TRC105-F(ab’)2 [51] b 66Ga-NOTA-TRC105 [52] a 89Zr-Df-TRC105 [53] a 86Y-DTPA-TRC105 [54] a 64Cu-NOTA-nanographene-TRC105 [57,58] c 66Ga-NOTA-nanographene-TRC105 [57,59] c 64Cu-NOTA-RGO-TRC105 [62] c 64Cu-NOTA-PAMAM-PLA-PEG-TRC105 [66] c 64Cu-NOTA-PHEMA-PLLA-PEG-TRC105 [67] c 64Cu-NOTA-mSiO2-PEG-TRC105 [68] c 89Zr-bMSN-PEG-TRC105 [70] c | a. Antibody b. Fab fragment c. Nanoparticle | |
U87MG (h) glioblastoma (EGFR/CD105+/+) mouse model | 64Cu-NOTA-(anti-CD105 and anti-EGFR Fab) [55] b | |||
BxPC-3 (h) pancreatic tumor mouse model | 64Cu-NOTA-(anti-CD105 and anti-TF Fab) [56] b | |||
B16F10 (m) melanoma mouse model | 89Zr-anti-CD105-AuNP-PPAA [64] c | |||
MRI (n = 9) | 4T1 (m) breast cancer mouse model | Anti-CD105-PVP-SWCNT-SPION [80,81] c, T2 | c. Nanoparticle d. Peptide | |
4T1 (m) lung metastases mouse model (breast cancer) | Anti-CD105-PVP-SWCNT-SPION [82] c, T2 | |||
MDA-MB-231 (h) breast cancer mouse model | Anti-CD105-PEG- (Fe2O3/au nanoparticle) [84] c, T2 | |||
F9 (m) teratoma mouse model | αCD105-PAA-SPION [77] c, T2 | |||
F98 (m) glioma rat model | Anti-CD105-Gd-(PEGylated liposomes) [78] c, T1 | |||
C6 (m) glioma rat model | Anti-CD105-Gd-(paramagnetic liposomes) [79] c, T1 | |||
Tumor vascular endothelial cells (coculture, HUVEC: MDA-MB-231 (h); 1:5) (in vitro) | CL 1555-PEG-MnFe2O4 [83] c,d, dual T1/T2 | |||
H22 (m) hepatocellular carcinoma mouse model | Aptamer-Fe3O4@CMCS [87] c, T2 | |||
NIRF (n = 6) | 4T1 (m) breast cancer mouse model | 800CW-TRC105 [97] a | a. Antibody b. Fab fragment c. Nanoparticle d. Peptide | |
MNNG/HOS (h) osteosarcoma mouse model | FITC-nABP296 [98] d,** | |||
MDA-MB-231 (h) breast cancer and HT1080 (h) fibrosarcoma mouse models | End-IL-Liposomes-DY-676-COOH [100] c Bi-FAP/mEND-IL liposomes-DY-676-COOH [102] c | |||
MDA-MB-231 (h) breast cancer mouse model | Anti-CD105 ILp-liposomes [103] c | |||
U87MG (h) glioblastoma (EGFR/CD105+/+) tumors | ZW800-NOTA-(anti-CD105 and anti-EGFR Fab) [55] b | |||
Ultrasound (n = 7) | bEND.3 endothelial cells (in vitro) | Anti-CD105-avidin-PESDA-Microbubble [119] e | e. Microbubble | |
Pan02 (m) pancreatic cancer mouse model | Anti-CD105-avidin-PESDA-Microbubble [120] e | |||
SKOV3 (h) ovarian adenocarcinoma mouse model | Anti-CD105-streptavidin-Microbubble [123] e | |||
MDA-MB-361 (h) breast adenocarcinoma mouse model | Anti-CD105-streptavidin-Microbubble [123] e | |||
MiaPaCa2 (h) pancreatic adenocarcinoma mouse model | Anti-CD105-streptavidin-Microbubble [123] e | |||
B16-F10 (m) melanoma mouse model | Anti-CD105-streptavidin-Microbubble [124] e | |||
U87MG (h) glioblastoma mouse model | Anti-CD105-avidin-Microbubble [127] e | |||
HepG2 (h) hepatoblastoma mouse model | Anti-CD105-streptavidin-Microbubble [128] e | |||
TFK-1 (h) and EGI-1 (h) cholangiocarcinoma mouse model | Anti-CD105-streptavidin-Microbubble [129] e | |||
Dual imaging (n = 13) | PET/NIRF (n = 11) | 4T1 (m) breast cancer mouse model | 64Cu-NOTA-TRC105-800CW [104] a 89Zr-Df-TRC105-800CW [105] a 64Cu-CuS@MSN-TRC105 [110] c 64Cu-hMSN-TRC105-ZW800 [111] c 64Cu-NOTA-QD@hMSN-PEG-TRC105 [71] c,** UCNP@89Zr-hMSN-PEG-TRC105 [72] c 64Cu-NOTA-ZnO-TRC105 [115] c | a. Antibody b. Fab fragment c. Nanoparticle |
4T1 (m) lung metastatic mouse model (breast cancer) | 89Zr-Df-TRC105-800CW [106,107] a 64Cu-NOTA-TRC105-800CW [108] a | |||
BxPC-3 (h) and PANC-1 (h) pancreatic tumor mouse models | 64CU-NOTA-(anti-CD105 and anti-TF Fab’ immunoconjugate)-ZW800 [112] b | |||
PET/MRI (n = 1) | 4T1 (m) breast cancer mouse model | 64Cu-NOTA- Mn3O4@PEG [73] c | c. Nanoparticle | |
NIRF/MRI (n = 1) | SMMC-7721 (h) hepatic cellular carcinoma mouse model | Gd-DTPA-aptamer-dendrimer-IR783 [113] c | c. Nanoparticle |
3.3. Endoglin-Based Imaging of Cardiovascular Diseases
3.3.1. Imaging of Angiogenesis in Cardiovascular Diseases
3.3.2. Endoglin-Based Nuclear Imaging of Cardiovascular Diseases
4. Discussion
4.1. Summary of Evidence
4.2. Strengths and Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAA | Abdominal aortic aneurysm |
ALK1/5 | Activin receptor-like kinase 1/5 |
AuNP | Gold nanoparticle |
BMP | Bone morphogenetic protein |
bMSN | Biodegradable mesoporous silica nanoparticle |
CEUS | Contrast-enhanced ultrasound |
CMCS | Carboxymethyl chitosan |
CT | Computed tomography |
64Cu | Copper-64 radioisotope |
CuS | Copper sulfide |
dTE | Differential targeted enhancement |
DOTA | 1:4:7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid |
EPR | Enhanced permeability and retention |
18F | Fluorine-18 radioisotope |
FAP | Fibroblast activation protein |
Fe2O3 | Maghemite |
18F-FDG | 18F-Fluorodeoxyglucose |
FITC | Fluorescein-5-isothiocyanate |
66Ga | Gallium-66 radioisotope |
Gd-DTPA | Gadolinium-diethylenetriamine pentaacetic acid |
HHT1 | Hereditary hemorrhagic telangiectasia type 1 |
hMSN | Hollow mesoporous silica nanoparticle |
125I | Iodine-125 radioisotope |
IGS | Image-guided surgery |
iMRI | Intraoperative magnetic resonance imaging |
HUVEC | Human umbilical vein endothelial cell |
LAD | Left anterior descending |
mAb | Monoclonal antibody |
MI | Myocardial infarction |
mEND | Magnetic endoglin aptamer |
Mn3O4 | Manganese oxide |
MR(I) | Magnetic resonance (imaging) |
mSiO2 | Mesoporous silica |
MSN | Mesoporous silica nanoparticle |
MVD | Microvessel density |
NIR(F) | Near-infrared (fluorescence) |
NOTA | 1,4,7-triazacyclononane-1,4,7-triacetic acid |
PAMAM | Poly(amidoamine) |
PEG | Polyethylene glycol |
PESDA | Perfluorocarbon-exposed dextrose albumin |
PET | Positron emission tomography |
PHEMA | Poly(2-hydroxyethyl methacrylate) |
PLA | Poly(l-lactide) |
PPAA | Plasma-polymerized allylamine |
PVP | Polyvinylpyrrolidone |
RGO | Reduced graphene oxide |
R-SMAD | Receptor-regulated SMAD |
QD | Quantum dot |
SPECT | Single photon emission computed tomography |
SPION | Superparamagnetic iron oxide nanoparticle |
SWCNT | Single-walled carbon nanotube |
99mTc | Technetium-99m radioisotope |
TGF-β | Transforming growth factor-β |
TβRI/II | Transforming growth factor-β receptor I/II |
201Tl | Thallium-201 radioisotope |
UCNP | Upconversion nanoparticle |
VEGF(R) | Vascular endothelial growth factor (receptor) |
86/90Y | Yttrium-86/90 radioisotopes |
89Zr | Zirconium-89 radioisotope |
Appendix A. Search Strategy
Appendix A.1. Component 1: Endoglin
Appendix A.2. Component 2: Imaging and Image-Guided Surgery
Appendix A.3. Combined, Final Strategy
References
- Sakurai, T.; Okumura, H.; Matsumoto, M.; Uchikado, Y.; Owaki, T.; Kita, Y.; Setoyama, T.; Omoto, I.; Kijima, Y.; Ishigami, S.; et al. Endoglin (CD105) is a useful marker for evaluating microvessel density and predicting prognosis in esophageal squamous cell carcinoma. Anticancer Res. 2014, 34, 3431–3438. [Google Scholar] [PubMed]
- Saclarides, T.J.; Speziale, N.J.; Drab, E.; Szeluga, D.J.; Rubin, D.B. Tumor angiogenesis and rectal carcinoma. Dis. Colon Rectum 1994, 37, 921–926. [Google Scholar] [CrossRef]
- Barnhill, R.L.; Fandrey, K.; Levy, M.A.; Mihm, M.C., Jr.; Hyman, B. Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab. Investig. 1992, 67, 331–337. [Google Scholar]
- Li, V.W.; Folkerth, R.D.; Watanabe, H.; Yu, C.; Rupnick, M.; Barnes, P.; Scott, R.M.; Black, P.M.; Sallan, S.E.; Folkman, J. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994, 344, 82–86. [Google Scholar] [CrossRef]
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougos, A.; Letarte, M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J. Biol. Chem. 1990, 265, 8361–8364. [Google Scholar] [CrossRef]
- Bellon, T.; Corbi, A.; Lastres, P.; Cales, C.; Cebrian, M.; Vera, S.; Cheifetz, S.; Massague, J.; Letarte, M.; Bernabeu, C. Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur. J. Immunol. 1993, 23, 2340–2345. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Lin, Q.; Ren, W.; Xu, G. Prognostic value of endoglin-assessed microvessel density in cancer patients: A systematic review and meta-analysis. Oncotarget 2018, 9, 7660–7671. [Google Scholar] [CrossRef] [Green Version]
- Barbara, N.P.; Wrana, J.L.; Letarte, M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J. Biol. Chem. 1999, 274, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Castonguay, R.; Werner, E.D.; Matthews, R.G.; Presman, E.; Mulivor, A.W.; Solban, N.; Sako, D.; Pearsall, R.S.; Underwood, K.W.; Seehra, J.; et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J. Biol. Chem. 2011, 286, 30034–30046. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gomez, E.; Del Castillo, G.; Juan Francisco, S.; Lopez-Novoa, J.M.; Bernabeu, C.; Quintanilla, M. The role of the TGF-beta coreceptor endoglin in cancer. Sci. World J. 2010, 10, 2367–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonsatti, E.; Nicolay, H.J.; Altomonte, M.; Covre, A.; Maio, M. Targeting cancer vasculature via endoglin/CD105: A novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc. Res. 2010, 86, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ten Dijke, P.; Goumans, M.J.; Pardali, E. Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008, 11, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Schoonderwoerd, M.J.A.; Goumans, M.T.H.; Hawinkels, L. Endoglin: Beyond the endothelium. Biomolecules 2020, 10, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alt, A.; Miguel-Romero, L.; Donderis, J.; Aristorena, M.; Blanco, F.J.; Round, A.; Rubio, V.; Bernabeu, C.; Marina, A. Structural and functional insights into endoglin ligand recognition and binding. PLoS ONE 2012, 7, e29948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, F.J.; Derbyshire, E.J.; Tazzari, P.L.; Amlot, P.; Gazdar, A.F.; King, S.W.; Letarte, M.; Vitetta, E.S.; Thorpe, P.E. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clin. Cancer Res. 1995, 1, 1623–1634. [Google Scholar]
- Grigg, C.; Anderson, D.; Earnshaw, J. Diagnosis and Treatment of Hereditary Hemorrhagic Telangiectasia. Ochsner. J. 2017, 17, 157–161. [Google Scholar]
- Guilhem, A.; Malcus, C.; Clarivet, B.; Plauchu, H.; Dupuis-Girod, S. Immunological abnormalities associated with hereditary haemorrhagic telangiectasia. J. Intern. Med. 2013, 274, 351–362. [Google Scholar] [CrossRef]
- Cirulli, A.; Loria, M.P.; Dambra, P.; Di Serio, F.; Ventura, M.T.; Amati, L.; Jirillo, E.; Sabba, C. Patients with Hereditary Hemorrhagic Telangectasia (HHT) exhibit a deficit of polymorphonuclear cell and monocyte oxidative burst and phagocytosis: A possible correlation with altered adaptive immune responsiveness in HHT. Curr. Pharm. Des. 2006, 12, 1209–1215. [Google Scholar] [CrossRef]
- Droege, F.; Pylaeva, E.; Siakaeva, E.; Bordbari, S.; Spyra, I.; Thangavelu, K.; Lueb, C.; Domnich, M.; Lang, S.; Geisthoff, U.; et al. Impaired release of neutrophil extracellular traps and anemia-associated T cell deficiency in hereditary hemorrhagic telangiectasia. J. Clin. Med. 2020, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Nachtigal, P.; Zemankova Vecerova, L.; Rathouska, J.; Strasky, Z. The role of endoglin in atherosclerosis. Atherosclerosis 2012, 224, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Bernabeu, C. The physiological role of endoglin in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H959–H974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, R.B.M.; Hooijmans, C.R.; Langendam, M.W.; van Luijk, J.; Leenaars, M.; Ritskes-Hoitinga, M.; Wever, K.E. A protocol format for the preparation, registration and publication of systematic reviews of animal intervention studies. Evid. Based Preclin. Med. 2015, 2, e00007. [Google Scholar] [CrossRef]
- Sier, V.Q.; Sier, C.F.M. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review Protocol. Available online: https://doi.org/10.17605/OSF.IO/VCDPR (accessed on 8 April 2021).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, A.W.; Molema, G. Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol. Rev. 2000, 52, 237–268. [Google Scholar] [PubMed]
- Lee, S.; Mandic, J.; Van Vliet, K.J. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc. Natl. Acad. Sci. USA 2007, 104, 9609–9614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yang, Y.; Hong, H.; Cai, W. Multimodality molecular imaging of CD105 (Endoglin) expression. Int. J. Clin. Exp. Med. 2011, 4, 32–42. [Google Scholar] [PubMed]
- Takahashi, N.; Haba, A.; Matsuno, F.; Seon, B.K. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res. 2001, 61, 7846–7854. [Google Scholar]
- Handgraaf, H.J.M.; Boonstra, M.C.; Prevoo, H.; Kuil, J.; Bordo, M.W.; Boogerd, L.S.F.; Sibinga Mulder, B.G.; Sier, C.F.M.; Vinkenburg-van Slooten, M.L.; Valentijn, A.; et al. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 2017, 8, 21054–21066. [Google Scholar] [CrossRef] [Green Version]
- Steinkamp, P.J.; Pranger, B.K.; Li, M.F.; Linssen, M.D.; Voskuil, F.J.; Been, L.B.; van Leeuwen, B.L.; Suurmeijer, A.J.H.; Nagengast, W.B.; Kruijff, S.; et al. Fluorescence-guided visualization of soft-tissue sarcomas by targeting vascular endothelial growth factor a: A Phase 1 single-center clinical trial. J. Nucl. Med. 2021, 62, 342–347. [Google Scholar] [CrossRef]
- Romero, D.; O’Neill, C.; Terzic, A.; Contois, L.; Young, K.; Conley, B.A.; Bergan, R.C.; Brooks, P.C.; Vary, C.P. Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res. 2011, 71, 3482–3493. [Google Scholar] [CrossRef] [Green Version]
- Paauwe, M.; Schoonderwoerd, M.J.A.; Helderman, R.; Harryvan, T.J.; Groenewoud, A.; van Pelt, G.W.; Bor, R.; Hemmer, D.M.; Versteeg, H.H.; Snaar-Jagalska, B.E.; et al. Endoglin expression on cancer-associated fibroblasts regulates invasion and stimulates colorectal cancer metastasis. Clin. Cancer Res. 2018, 24, 6331–6344. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, P.K.; Cygankiewicz, A.I.; Mokrosinski, J.; Nowacka-Zawisza, M.; Semczuk, A.; Rechberger, T.; Krajewska, W.M. Expression of endoglin in primary endometrial cancer. Oncology 2011, 81, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.V.; Fraga, C.A.; Barros, L.O.; Pereira, C.S.; Santos, S.H.; Basile, J.R.; Gomez, R.S.; Guimaraes, A.L.; De-Paula, A.M. High expression of S100A4 and endoglin is associated with metastatic disease in head and neck squamous cell carcinoma. Clin. Exp. Metastasis 2014, 31, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Oxmann, D.; Held-Feindt, J.; Stark, A.M.; Hattermann, K.; Yoneda, T.; Mentlein, R. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 2008, 27, 3567–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Paauwe, M.; Nixon, A.B.; Hawinkels, L. Endoglin targeting: Lessons learned and questions that remain. Int. J. Mol. Sci. 2021, 22, 147. [Google Scholar] [CrossRef]
- Mariani, G.; Bruselli, L.; Kuwert, T.; Kim, E.E.; Flotats, A.; Israel, O.; Dondi, M.; Watanabe, N. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1959–1985. [Google Scholar] [CrossRef]
- Mondal, S.B.; O’Brien, C.M.; Bishop, K.; Fields, R.C.; Margenthaler, J.A.; Achilefu, S. Repurposing molecular imaging and sensing for cancer image-guided surgery. J. Nucl. Med. 2020, 61, 1113–1122. [Google Scholar] [CrossRef]
- Van Oosterom, M.N.; Rietbergen, D.D.D.; Welling, M.M.; Van Der Poel, H.G.; Maurer, T.; Van Leeuwen, F.W.B. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev. Med. Devices 2019, 16, 711–734. [Google Scholar] [CrossRef] [Green Version]
- Wiegmann, A.L.; Broucek, J.R.; Fletcher, R.N.; Luu, M.B.; Deziel, D.J.; Myers, J.A. Image-guided navigation in lymph node biopsy. JSLS 2018, 22. [Google Scholar] [CrossRef] [Green Version]
- Bowles, H.; Sanchez, N.; Tapias, A.; Paredes, P.; Campos, F.; Bluemel, C.; Valdes Olmos, R.A.; Vidal-Sicart, S. Radioguided surgery and the GOSTT concept: From pre-operative image and intraoperative navigation to image-assisted excision. Rev. Esp. Med. Nucl. Imagen. Mol. 2017, 36, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, O.R.; Buckle, T.; Bunschoten, A.; Kuil, J.; Vahrmeijer, A.L.; Wendler, T.; Valdes-Olmos, R.A.; van der Poel, H.G.; van Leeuwen, F.W. Image navigation as a means to expand the boundaries of fluorescence-guided surgery. Phys. Med. Biol. 2012, 57, 3123–3136. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, N.S.; Engelen, T.; Brouwer, O.R.; Matheron, H.M.; Valdes-Olmos, R.A.; Nieweg, O.E.; van Leeuwen, F.W. A pilot study of SPECT/CT-based mixed-reality navigation towards the sentinel node in patients with melanoma or Merkel cell carcinoma of a lower extremity. Nucl. Med. Commun. 2016, 37, 812–817. [Google Scholar] [CrossRef] [Green Version]
- Karmani, L.; Leveque, P.; Bouzin, C.; Bol, A.; Dieu, M.; Walrand, S.; Vander Borght, T.; Feron, O.; Gregoire, V.; Bonifazi, D.; et al. Biodistribution of (125)I-labeled anti-endoglin antibody using SPECT/CT imaging: Impact of in vivo deiodination on tumor accumulation in mice. Nucl. Med. Biol. 2016, 43, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Fonsatti, E.; Jekunen, A.P.; Kairemo, K.J.; Coral, S.; Snellman, M.; Nicotra, M.R.; Natali, P.G.; Altomonte, M.; Maio, M. Endoglin is a suitable target for efficient imaging of solid tumors: In vivo evidence in a canine mammary carcinoma model. Clin. Cancer Res. 2000, 6, 2037–2043. [Google Scholar] [PubMed]
- Costello, B.; Li, C.; Duff, S.; Butterworth, D.; Khan, A.; Perkins, M.; Owens, S.; Al-Mowallad, A.F.; O’Dwyer, S.; Kumar, S. Perfusion of 99Tcm-labeled CD105 Mab into kidneys from patients with renal carcinoma suggests that CD105 is a promising vascular target. Int. J. Cancer 2004, 109, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lowe, D.D.; Chen, E.; Zhang, L.; Watson, K.D.; Mancuso, P.; Lappin, P.; Wickman, G.; Chen, J.H.; Wang, J.; Jiang, X.; et al. Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res. 2011, 71, 1362–1373. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, H.; Orbay, H.; Valdovinos, H.F.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W. PET imaging of CD105/endoglin expression with a (6)(1)/(6)(4)Cu-labeled Fab antibody fragment. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Zhang, Y.; Orbay, H.; Valdovinos, H.F.; Nayak, T.R.; Bean, J.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Positron emission tomography imaging of tumor angiogenesis with a (61/64)Cu-labeled F(ab’)(2) antibody fragment. Mol. Pharm. 2013, 10, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Engle, J.W.; Hong, H.; Zhang, Y.; Valdovinos, H.F.; Myklejord, D.V.; Barnhart, T.E.; Theuer, C.P.; Nickles, R.J.; Cai, W. Positron emission tomography imaging of tumor angiogenesis with a 66Ga-labeled monoclonal antibody. Mol. Pharm. 2012, 9, 1441–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.; Severin, G.W.; Yang, Y.; Engle, J.W.; Zhang, Y.; Barnhart, T.E.; Liu, G.; Leigh, B.R.; Nickles, R.J.; Cai, W. Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Ehlerding, E.B.; Ferreira, C.A.; Aluicio-Sarduy, E.; Jiang, D.; Lee, H.J.; Theuer, C.P.; Engle, J.W.; Cai, W. (86/90)Y-Based theranostics targeting angiogenesis in a murine breast cancer model. Mol. Pharm. 2018, 15, 2606–2613. [Google Scholar] [CrossRef]
- Luo, H.; Hernandez, R.; Hong, H.; Graves, S.A.; Yang, Y.; England, C.G.; Theuer, C.P.; Nickles, R.J.; Cai, W. Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proc. Natl. Acad. Sci. USA 2015, 112, 12806–12811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; England, C.G.; Shi, S.; Graves, S.A.; Hernandez, R.; Liu, B.; Theuer, C.P.; Wong, H.C.; Nickles, R.J.; Cai, W. Dual targeting of tissue factor and CD105 for preclinical PET imaging of pancreatic cancer. Clin. Cancer Res. 2016, 22, 3821–3830. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, K.; Hong, H.; Engle, J.; Feng, L.; Theuer, C.; Barnhart, T.; Liu, Z.; Cai, W. WE-C-217BCD-06: In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nano-graphene. Med. Phys. 2012, 39, 3950. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Yang, K.; Zhang, Y.; Engle, J.W.; Feng, L.; Yang, Y.; Nayak, T.R.; Goel, S.; Bean, J.; Theuer, C.P.; et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012, 6, 2361–2370. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Zhang, Y.; Engle, J.W.; Nayak, T.R.; Theuer, C.P.; Nickles, R.J.; Barnhart, T.E.; Cai, W. In vivo targeting and positron emission tomography imaging of tumor vasculature with (66)Ga-labeled nano-graphene. Biomaterials 2012, 33, 4147–4156. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 2013, 34, 2787–2795. [Google Scholar] [CrossRef]
- Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 2013, 34, 3002–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206–2214. [Google Scholar] [CrossRef]
- Karmani, L.; Bouchat, V.; Bouzin, C.; Leveque, P.; Labar, D.; Bol, A.; Deumer, G.; Marega, R.; Bonifazi, D.; Haufroid, V.; et al. (89)Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: Implications for future cancer therapy. Nanomedicine 2014, 9, 1923–1937. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.C.; Hajfathalian, M.; Maidment, P.S.N.; Hsu, J.C.; Naha, P.C.; Si-Mohamed, S.; Breuilly, M.; Kim, J.; Chhour, P.; Douek, P.; et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep. 2019, 9, 14912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Hong, H.; Chen, G.; Shi, S.; Zheng, Q.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials 2013, 34, 8323–8332. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H.F.; Shi, S.; Kwon, G.S.; Theuer, C.P.; Barnhart, T.E.; Cai, W. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013, 7, 9027–9039. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176. [Google Scholar] [CrossRef]
- Goel, S.; Chen, F.; Luan, S.; Valdovinos, H.F.; Shi, S.; Graves, S.A.; Ai, F.; Barnhart, T.E.; Theuer, C.P.; Cai, W. Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies. Adv. Sci. 2016, 3, 1600122. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Chen, F.; Goel, S.; Graves, S.A.; Luo, H.; Theuer, C.P.; Engle, J.W.; Cai, W. In vivo tumor-targeted dual-modality pet/optical imaging with a yolk/shell-structured silica nanosystem. Nanomicro Lett. 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Goel, S.; Shi, S.; Barnhart, T.E.; Lan, X.; Cai, W. General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res. 2018, 11, 4890–4904. [Google Scholar] [CrossRef]
- Zhan, Y.; Shi, S.; Ehlerding, E.B.; Graves, S.A.; Goel, S.; Engle, J.W.; Liang, J.; Tian, J.; Cai, W. Radiolabeled, antibody-conjugated manganese oxide nanoparticles for tumor vasculature targeted positron emission tomography and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 38304–38312. [Google Scholar] [CrossRef]
- Tegafaw, T.; Xu, W.; Ahmad, M.W.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Kim, T.J.; Lee, G.H. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: Synthesis, characterization, and in vivo application. Nanotechnology 2015, 26, 365102. [Google Scholar] [CrossRef]
- Second Affiliated Hospital, School of Medicine, Zhejiang University. A Phase I Clinical Trial of Neoadjuvant Chemotherapy with/without SPIONs/SMF for Patients with Osteosarcoma. ClinicalTrials.gov Identifier: NCT04316091. 2000. Available online: https://clinicaltrials.gov/ct2/show/NCT04316091 (accessed on 17 January 2021).
- Dulinska-Litewka, J.; Lazarczyk, A.; Halubiec, P.; Szafranski, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials 2019, 12, 617. [Google Scholar] [CrossRef] [Green Version]
- Dassler, K.; Roohi, F.; Lohrke, J.; Ide, A.; Remmele, S.; Hutter, J.; Pietsch, H.; Pison, U.; Schutz, G. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles. Investig. Radiol. 2012, 47, 383–391. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, X.Y.; Henning, T.D.; Wen, L.; Lu, W.Y.; Pan, H.; Wu, X.; Zou, L.G. MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105. Eur. J. Radiol. 2009, 70, 180–189. [Google Scholar] [CrossRef]
- Qiu, L.H.; Zhang, J.W.; Li, S.P.; Xie, C.; Yao, Z.W.; Feng, X.Y. Molecular imaging of angiogenesis to delineate the tumor margins in glioma rat model with endoglin-targeted paramagnetic liposomes using 3T MRI. J. Magn. Reson. Imaging 2015, 41, 1056–1064. [Google Scholar] [CrossRef]
- Al Faraj, A.; Shaik, A.P.; Shaik, A.S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: Noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int. J. Nanomed. 2015, 10, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Al Faraj, A.; Shaik, A.S.; Al Sayed, B. Preferential magnetic targeting of carbon nanotubes to cancer sites: Noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine 2015, 10, 931–948. [Google Scholar] [CrossRef]
- Al Faraj, A.; Shaik, A.S.; Halwani, R.; Alfuraih, A. Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: Noninvasive monitoring using magnetic resonance imaging. Mol. Imaging Biol. 2016, 18, 315–324. [Google Scholar] [CrossRef]
- Gong, M.; Yang, H.; Zhang, S.; Yang, Y.; Zhang, D.; Li, Z.; Zou, L. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Int. J. Nanomed. 2016, 11, 4051–4063. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gong, M.; Zhang, D.; Yang, H.; Gao, F.; Zou, L. Thiol-PEG-carboxyl-stabilized Fe(2)O (3)/Au nanoparticles targeted to CD105: Synthesis, characterization and application in MR imaging of tumor angiogenesis. Eur. J. Radiol. 2014, 83, 1190–1198. [Google Scholar] [CrossRef]
- Melancon, M.; Lu, W.; Li, C. Gold-based magneto/optical nanostructures: Challenges for in vivo applications in cancer diagnostics and therapy. Mater. Res. Bull. 2009, 34, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Zhong, L.; Zou, H.; Huang, Y.; Gong, W.; He, J.; Tan, J.; Lai, Z.; Li, Y.; Zhou, C.; Zhang, G.; et al. Magnetic endoglin aptamer nanoprobe for targeted diagnosis of solid tumor. J. Biomed. Nanotechnol. 2019, 15, 352–362. [Google Scholar] [CrossRef]
- Sier, V.Q.; de Vries, M.R.; van der Vorst, J.R.; Vahrmeijer, A.L.; van Kooten, C.; Cruz, L.J.; de Geus-Oei, L.F.; Ferreira, V.; Sier, C.F.M.; Alves, F.; et al. Cell-based tracers as trojan horses for image-guided surgery. Int. J. Mol. Sci. 2021, 22, 755. [Google Scholar] [CrossRef]
- Handgraaf, H.J.M.; Boogerd, L.S.F.; Hoppener, D.J.; Peloso, A.; Sibinga Mulder, B.G.; Hoogstins, C.E.S.; Hartgrink, H.H.; van de Velde, C.J.H.; Mieog, J.S.D.; Swijnenburg, R.J.; et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: A retrospective multicenter analysis. Eur. J. Surg. Oncol. 2017, 43, 1463–1471. [Google Scholar] [CrossRef]
- Hoogstins, C.E.S.; Boogerd, L.S.F.; Sibinga Mulder, B.G.; Mieog, J.S.D.; Swijnenburg, R.J.; van de Velde, C.J.H.; Farina Sarasqueta, A.; Bonsing, B.A.; Framery, B.; Pelegrin, A.; et al. Image-guided surgery in patients with pancreatic cancer: First results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann. Surg. Oncol. 2018, 25, 3350–3357. [Google Scholar] [CrossRef]
- Lee, H.J.; Ehlerding, E.B.; Jiang, D.; Barnhart, T.E.; Cao, T.; Wei, W.; Ferreira, C.A.; Huang, P.; Engle, J.W.; Cai, W. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. Am. J. Cancer Res. 2019, 9, 1454–1468. [Google Scholar]
- Hu, Z.; Fang, C.; Li, B.; Zhang, Z.; Cao, C.; Cai, M.; Su, S.; Sun, X.; Shi, X.; Li, C.; et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271. [Google Scholar] [CrossRef]
- Hong, G.; Lee, J.C.; Robinson, J.T.; Raaz, U.; Xie, L.; Huang, N.F.; Cooke, J.P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846. [Google Scholar] [CrossRef]
- Yu, Z.; Eich, C.; Cruz, L.J. Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front. Chem. 2020, 8, 496. [Google Scholar] [CrossRef] [PubMed]
- Achterberg, F.B.; Deken, M.M.; Meijer, R.P.J.; Mieog, J.S.D.; Burggraaf, J.; van de Velde, C.J.H.; Swijnenburg, R.J.; Vahrmeijer, A.L. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 332–339. [Google Scholar] [CrossRef]
- Vag, T.; Schramm, T.; Kaiser, W.A.; Hilger, I. Proliferating and quiescent human umbilical vein endothelial cells (HUVECs): A potential in vitro model to evaluate contrast agents for molecular imaging of angiogenesis. Contrast Media Mol. Imaging 2009, 4, 192–198. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Hong, H.; Liu, G.; Leigh, B.R.; Cai, W. In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2066–2076. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, X.; Zhang, J.; Huang, H.; Zhao, L.; Yu, M.; Zhang, Y.; Wang, H. A novel peptide targets CD105 for tumour imaging in vivo. Oncol. Rep. 2018, 40, 2935–2943. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yang, Y.P.; Dikici, E.; Deo, S.K.; Daunert, S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annu. Rev. Anal. Chem. 2017, 10, 293–320. [Google Scholar] [CrossRef] [Green Version]
- Tansi, F.L.; Rüger, R.; Kollmeier, A.M.; Rabenhold, M.; Steiniger, F.; Kontermann, R.E.; Teichgraeber, U.K.; Fahr, A.; Hilger, I. Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1389–1400. [Google Scholar] [CrossRef]
- Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018, 23, 907. [Google Scholar] [CrossRef] [Green Version]
- Tansi, F.L.; Rüger, R.; Kollmeier, A.M.; Rabenhold, M.; Steiniger, F.; Kontermann, R.E.; Teichgräber, U.K.; Fahr, A.; Hilger, I. Targeting the tumor microenvironment with fluorescence-activatable bispecific endoglin/fibroblast activation protein targeting liposomes. Pharmaceutics 2020, 12, 370. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, H.; Zheng, B.; Liu, J.; Huang, Y.; Wang, H.; Zheng, D.; Mao, N.; Meng, J.; Zhou, S.; Zhong, L.; et al. Efficient targeted tumor imaging and secreted endostatin gene delivery by anti-CD105 immunoliposomes. J. Exp. Clin. Cancer Res. CR 2018, 37, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, H.; Engle, J.W.; Yang, Y.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol. Pharm. 2012, 9, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, H.; Severin, G.W.; Engle, J.W.; Yang, Y.; Goel, S.; Nathanson, A.J.; Liu, G.; Nickles, R.J.; Leigh, B.R.; et al. ImmunoPET and near-infrared fluorescence imaging of CD105 expression using a monoclonal antibody dual-labeled with (89)Zr and IRDye 800CW. Am. J. Transl. Res. 2012, 4, 333–346. [Google Scholar]
- Zhang, Y.; Hong, H.; Yang, Y.; Severin, G.; Engle, J.; Niu, G.; Chen, X.; Leigh, B.; Barnhart, T.; Cai, W. WE-C-217BCD-04: multimodality imaging of breast cancer experimental lung metastasis. Med. Phys. 2012, 39, 3950. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, Y.; Severin, G.W.; Yang, Y.; Engle, J.W.; Niu, G.; Nickles, R.J.; Chen, X.; Leigh, B.R.; Barnhart, T.E.; et al. Multimodality imaging of breast cancer experimental lung metastasis with bioluminescence and a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW. Mol. Pharm. 2012, 9, 2339–2349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hong, H.; Nayak, T.R.; Valdovinos, H.F.; Myklejord, D.V.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence. Angiogenesis 2013, 16, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; England, C.G.; Goel, S.; Graves, S.A.; Ai, F.; Liu, B.; Theuer, C.P.; Wong, H.C.; Nickles, R.J.; Cai, W. ImmunoPET and near-infrared fluorescence imaging of pancreatic cancer with a dual-labeled bispecific antibody fragment. Mol. Pharm. 2017, 14, 1646–1655. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Hong, H.; Goel, S.; Graves, S.A.; Orbay, H.; Ehlerding, E.B.; Shi, S.; Theuer, C.P.; Nickles, R.J.; Cai, W. In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano 2015, 9, 3926–3934. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Hong, H.; Shi, S.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep. 2014, 4, 5080. [Google Scholar] [CrossRef]
- Hong, H.; Wang, F.; Zhang, Y.; Graves, S.A.; Eddine, S.B.; Yang, Y.; Theuer, C.P.; Nickles, R.J.; Wang, X.; Cai, W. Red fluorescent zinc oxide nanoparticle: A novel platform for cancer targeting. ACS Appl. Mater. Interfaces 2015, 7, 3373–3381. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Gao, X.; Zhang, Y.; Chang, W.; Li, J.; Li, X.; Du, Q.; Li, C. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe. ACS Appl. Mater. Interfaces 2018, 10, 17047–17057. [Google Scholar] [CrossRef]
- Wanhainen, A.; Verzini, F.; Van Herzeele, I.; Allaire, E.; Bown, M.; Cohnert, T.; Dick, F.; van Herwaarden, J.; Karkos, C.; Koelemay, M.; et al. Editor’s choice—European society for vascular surgery (ESVS) 2019 Clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur. J. Vasc. Endovasc. Surg. 2019, 57, 8–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. Editor’s choice—2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European society for vascular surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 305–368. [Google Scholar] [CrossRef] [Green Version]
- Querleu, D.; Planchamp, F.; Chiva, L.; Fotopoulou, C.; Barton, D.; Cibula, D.; Aletti, G.; Carinelli, S.; Creutzberg, C.; Davidson, B.; et al. European society of gynaecological oncology (ESGO) guidelines for ovarian cancer surgery. Int. J. Gynecol. Cancer 2017, 27, 1534–1542. [Google Scholar] [CrossRef]
- Sirsi, S.; Borden, M. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 2009, 1, 3–17. [Google Scholar] [CrossRef]
- Yin, T.; Wang, P.; Zheng, R.; Zheng, B.; Cheng, D.; Zhang, X.; Shuai, X. Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomed. 2012, 7, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Korpanty, G.; Grayburn, P.A.; Shohet, R.V.; Brekken, R.A. Targeting vascular endothelium with avidin microbubbles. Ultrasound Med. Biol. 2005, 31, 1279–1283. [Google Scholar] [CrossRef]
- Korpanty, G.; Carbon, J.G.; Grayburn, P.A.; Fleming, J.B.; Brekken, R.A. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin. Cancer Res. 2007, 13, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Willmann, J.K.; Paulmurugan, R.; Chen, K.; Gheysens, O.; Rodriguez-Porcel, M.; Lutz, A.M.; Chen, I.Y.; Chen, X.; Gambhir, S.S. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008, 246, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Weller, G.E.; Wong, M.K.; Modzelewski, R.A.; Lu, E.; Klibanov, A.L.; Wagner, W.R.; Villanueva, F.S. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res. 2005, 65, 533–539. [Google Scholar]
- Deshpande, N.; Ren, Y.; Foygel, K.; Rosenberg, J.; Willmann, J.K. Tumor angiogenic marker expression levels during tumor growth: Longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 2011, 258, 804–811. [Google Scholar] [CrossRef]
- Leguerney, I.; Scoazec, J.Y.; Gadot, N.; Robin, N.; Penault-Llorca, F.; Victorin, S.; Lassau, N. Molecular ultrasound imaging using contrast agents targeting endoglin, vascular endothelial growth factor receptor 2 and integrin. Ultrasound Med. Biol. 2015, 41, 197–207. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [Green Version]
- Jilaveanu, L.; Zito, C.; Lee, S.J.; Nathanson, K.L.; Camp, R.L.; Rimm, D.L.; Flaherty, K.T.; Kluger, H.M. Expression of sorafenib targets in melanoma patients treated with carboplatin, paclitaxel and sorafenib. Clin. Cancer Res. 2009, 15, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yan, F.; Xu, Y.; Zheng, H.; Sun, L. In vivo molecular ultrasound assessment of glioblastoma neovasculature with endoglin-targeted microbubbles. Contrast Media Mol. Imaging 2018, 2018, 8425495. [Google Scholar] [CrossRef]
- Shan, R.; Wang, B.; Wang, A.; Sun, Z.; Dong, F.; Liu, J.; Sun, H. Endoglin-targeted contrast-enhanced ultrasound imaging in hepatoblastoma xenografts. Oncol. Lett. 2018, 16, 3784–3790. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; Ingram, N.; Verghese, E.T.; Wijetunga, I.; Markham, A.F.; Wyatt, J.; Prasad, K.R.; Coletta, P.L. CD105 is a prognostic marker and valid endothelial target for microbubble platforms in cholangiocarcinoma. Cell. Oncol. 2020, 43, 835–845. [Google Scholar] [CrossRef]
- Denbeigh, J.M.; Nixon, B.A.; Lee, J.J.; Jerkic, M.; Marsden, P.A.; Letarte, M.; Puri, M.C.; Foster, F.S. Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos. Angiogenesis 2015, 18, 69–81. [Google Scholar] [CrossRef]
- Denbeigh, J.M.; Nixon, B.A.; Puri, M.C.; Foster, F.S. Contrast imaging in mouse embryos using high-frequency ultrasound. J. Vis. Exp. 2015, e52520. [Google Scholar] [CrossRef] [Green Version]
- Jeong, I.H.; Bae, W.Y.; Choi, J.S.; Jeong, J.W. Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model. Cell Death Dis. 2020, 11, 624. [Google Scholar] [CrossRef]
- Kessler, K.; Borges, L.F.; Ho-Tin-Noe, B.; Jondeau, G.; Michel, J.B.; Vranckx, R. Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovasc. Res. 2014, 104, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Parma, L.; Baganha, F.; Quax, P.H.A.; de Vries, M.R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol. 2017, 816, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Sasaki, T.; Hirakawa, S.; Sakabe, J.; Ogawa, M.; Baba, S.; Zaima, N.; Tanaka, H.; Inuzuka, K.; Yamamoto, N.; et al. Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS ONE 2014, 9, e89830. [Google Scholar] [CrossRef]
- Seghers, L.; de Vries, M.R.; Pardali, E.; Hoefer, I.E.; Hierck, B.P.; ten Dijke, P.; Goumans, M.J.; Quax, P.H. Shear induced collateral artery growth modulated by endoglin but not by ALK1. J. Cell Mol. Med. 2012, 16, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; van der Meer, J.J.; van der Loos, C.M.; Ploegmakers, H.J.; de Boer, O.J.; de Winter, R.J.; van der Wal, A.C. Microvascular endoglin (CD105) expression correlates with tissue markers for atherosclerotic plaque vulnerability in an ageing population with multivessel coronary artery disease. Histopathology 2012, 61, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Fukumitsu, R.; Takagi, Y.; Yoshida, K.; Miyamoto, S. Endoglin (CD105) is a more appropriate marker than CD31 for detecting microvessels in carotid artery plaques. Surg. Neurol. Int. 2013, 4, 132. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, L.; Zhang, R.; Su, H. The roles of endoglin gene in cerebrovascular diseases. Neuroimmunol. Neuroinflamm. 2017, 4, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, M.; Tokunaga, O. Significant expression of endoglin (CD105), TGFbeta-1 and TGFbeta R-2 in the atherosclerotic aorta: An immunohistological study. J. Atheroscler. Thromb. 2006, 13, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Willems, S.; Vink, A.; Bot, I.; Quax, P.H.; de Borst, G.J.; de Vries, J.P.; van de Weg, S.M.; Moll, F.L.; Kuiper, J.; Kovanen, P.T.; et al. Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur. Heart J. 2013, 34, 3699–3706. [Google Scholar] [CrossRef] [Green Version]
- de Vries, M.R.; Quax, P.H. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 2016, 27, 499–506. [Google Scholar] [CrossRef]
- de Vries, M.R.; Parma, L.; Peters, H.A.B.; Schepers, A.; Hamming, J.F.; Jukema, J.W.; Goumans, M.; Guo, L.; Finn, A.V.; Virmani, R.; et al. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J. Intern. Med. 2019, 285, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Di Carli, M.F.; Jerosch-Herold, M.; Sukhova, G.K.; Murthy, V.L.; Folco, E.J.; Kwong, R.Y.; Ozaki, C.K.; Belkin, M.; Nahrendorf, M.; et al. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ. Cardiovasc. Imaging 2014, 7, 920–929. [Google Scholar] [CrossRef] [Green Version]
- Ouma, G.O.; Zafrir, B.; Mohler, E.R., 3rd; Flugelman, M.Y. Therapeutic angiogenesis in critical limb ischemia. Angiology 2013, 64, 466–480. [Google Scholar] [CrossRef]
- Johnson, T.; Zhao, L.; Manuel, G.; Taylor, H.; Liu, D. Approaches to therapeutic angiogenesis for ischemic heart disease. J. Mol. Med. 2019, 97, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Barc, P.; Antkiewicz, M.; Sliwa, B.; Fraczkowska, K.; Guzinski, M.; Dawiskiba, T.; Malodobra-Mazur, M.; Witkiewicz, W.; Kupczynska, D.; Strzelec, B.; et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. J. Cardiovasc. Transl. Res. 2020. [Google Scholar] [CrossRef]
- Vijaynagar, B.; Bown, M.J.; Sayers, R.D.; Choke, E. Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. Eur. J. Clin. Investig. 2013, 43, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.M.; Jones, L.; Nasim, A.; Sayers, R.D.; Bell, P.R. Angiogenesis in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Orbay, H.; Zhang, Y.; Hong, H.; Hacker, T.A.; Valdovinos, H.F.; Zagzebski, J.A.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with 64Cu-labeled TRC105. Mol. Pharm. 2013, 10, 2749–2756. [Google Scholar] [CrossRef] [Green Version]
- Orbay, H.; Hong, H.; Koch, J.M.; Valdovinos, H.F.; Hacker, T.A.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: A positron emission tomography imaging study with (64)Cu-NOTA-TRC105. Am. J. Transl. Res. 2013, 6, 54–63. [Google Scholar] [PubMed]
- Orbay, H.; Zhang, Y.; Valdovinos, H.F.; Song, G.; Hernandez, R.; Theuer, C.P.; Hacker, T.A.; Nickles, R.J.; Cai, W. Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with (64)Cu-NOTA-TRC105. Am. J. Nucl. Med. Mol. Imaging 2013, 4, 1–9. [Google Scholar]
- Shi, S.; Orbay, H.; Yang, Y.; Graves, S.A.; Nayak, T.R.; Hong, H.; Hernandez, R.; Luo, H.; Goel, S.; Theuer, C.P.; et al. PET imaging of abdominal aortic aneurysm with 64Cu-Labeled Anti-CD105 antibody fab fragment. J. Nucl. Med. 2015, 56, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TRACON Pharmaceuticals. TRACON Pharmaceuticals Announces Termination Of Phase 3 TAPPAS Trial Based on the Recommendation of The Independent Data Monitoring Committee. Available online: https://traconpharma.gcs-web.com/news-releases/news-release-details/tracon-pharmaceuticals-announces-termination-phase-3-tappas (accessed on 17 January 2021).
- ClinicalTrials.gov. Search of: trc105—List Results—ClinicalTrials.gov. 2021. Available online: https://clinicaltrials.gov/ct2/results?term=trc105&draw=3&rank=21#rowId20 (accessed on 17 January 2021).
Imaging Principle | Specific | Model | Tracer | Class |
---|---|---|---|---|
Nuclear imaging (n = 4) | PET (n = 4) | Murine hindlimb ischemia | 64Cu-NOTA-TRC105 [150,151] a | a. Antibody b. Fab fragment |
Rat myocardial infarction (LAD ligation) | 64Cu-NOTA-TRC105 [152] a | |||
Abdominal aortic aneurysm mouse model (calcium phosphate-induced) | 64Cu-NOTA-TRC105-Fab [153] b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sier, V.Q.; van der Vorst, J.R.; Quax, P.H.A.; de Vries, M.R.; Zonoobi, E.; Vahrmeijer, A.L.; Dekkers, I.A.; de Geus-Oei, L.-F.; Smits, A.M.; Cai, W.; et al. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 4804. https://doi.org/10.3390/ijms22094804
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei L-F, Smits AM, Cai W, et al. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. International Journal of Molecular Sciences. 2021; 22(9):4804. https://doi.org/10.3390/ijms22094804
Chicago/Turabian StyleSier, Vincent Q., Joost R. van der Vorst, Paul H. A. Quax, Margreet R. de Vries, Elham Zonoobi, Alexander L. Vahrmeijer, Ilona A. Dekkers, Lioe-Fee de Geus-Oei, Anke M. Smits, Weibo Cai, and et al. 2021. "Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review" International Journal of Molecular Sciences 22, no. 9: 4804. https://doi.org/10.3390/ijms22094804
APA StyleSier, V. Q., van der Vorst, J. R., Quax, P. H. A., de Vries, M. R., Zonoobi, E., Vahrmeijer, A. L., Dekkers, I. A., de Geus-Oei, L. -F., Smits, A. M., Cai, W., Sier, C. F. M., Goumans, M. J. T. H., & Hawinkels, L. J. A. C. (2021). Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. International Journal of Molecular Sciences, 22(9), 4804. https://doi.org/10.3390/ijms22094804