The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes
Abstract
:1. Introduction
2. Results
2.1. mRNA and Protein Expression Profile of ABCC3, CPS1, and TRIP6 in Sensitive and Resistant Ovarian Carcinoma Cell Lines
2.2. Effect of Paclitaxel and Novel Stony Brook Taxanes on ABCC3, CPS1, and TRIP6 Expression In Vitro
2.3. Modulation of ABCC3, CPS1, and TRIP6 Expression by Novel Stony Brook Taxanes In Vivo
2.4. EOC Study Population
2.4.1. Patients Characteristics
2.4.2. ABCC3, CPS1, and TRIP6 Expression Profile in EOC Patients
2.4.3. Association of ABCC3, CPS1, and TRIP6 Gene Expression with Clinical Data
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cells and Culture Conditions
4.3. Cell Line Treatment with Paclitaxel and Novel Stony Brook Taxanes
4.4. Xenografts
4.5. In Vivo Treatment with Paclitaxel and Novel Stony Brook Taxanes
4.6. Patients Cohort Study
4.7. Isolation of Nucleic Acids and cDNA Synthesis
4.8. Quantitative Real-Time PCR
4.9. Immunoblotting Analysis of Protein Expression
4.10. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer of the Ovary—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 25 April 2021).
- Bowtell, D.D.; Böhm, S.; Ahmed, A.A.; Aspuria, P.-J.; Bast, R.C.; Beral, V.; Berek, J.S.; Birrer, M.J.; Blagden, S.; Bookman, M.A.; et al. Rethinking Ovarian Cancer II: Reducing Mortality from High-Grade Serous Ovarian Cancer. Nat. Rev. Cancer 2015, 15, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Rojas, V.; Hirshfield, K.M.; Ganesan, S.; Rodriguez-Rodriguez, L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int. J. Mol. Sci. 2016, 17, 2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matz, M.; Coleman, M.P.; Carreira, H.; Salmerón, D.; Chirlaque, M.D.; Allemani, C. CONCORD Working Group Worldwide Comparison of Ovarian Cancer Survival: Histological Group and Stage at Diagnosis (CONCORD-2). Gynecol. Oncol. 2017, 144, 396–404. [Google Scholar] [CrossRef]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Ovarian Cancer Survival Rates | Ovarian Cancer Prognosis. Available online: https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/survival-rates.html (accessed on 25 April 2021).
- Amoroso, M.R.; Matassa, D.S.; Agliarulo, I.; Avolio, R.; Maddalena, F.; Condelli, V.; Landriscina, M.; Esposito, F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. Adv. Protein Chem. Struct. Biol. 2017, 108, 163–198. [Google Scholar] [CrossRef]
- Das, T.; Anand, U.; Pandey, S.K.; Ashby, C.R.; Assaraf, Y.G.; Chen, Z.-S.; Dey, A. Therapeutic Strategies to Overcome Taxane Resistance in Cancer. Drug Resist. Updates 2021, 55, 100754. [Google Scholar] [CrossRef]
- Boyd, L.R.; Muggia, F.M. Carboplatin/Paclitaxel Induction in Ovarian Cancer: The Finer Points. Oncology (Williston Park) 2018, 32, 418–420, 422–424. [Google Scholar] [PubMed]
- Kim, A.; Ueda, Y.; Naka, T.; Enomoto, T. Therapeutic Strategies in Epithelial Ovarian Cancer. J. Exp. Clin. Cancer Res. 2012, 31, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in Ovarian Cancer Therapy. Cancer Chemother. Pharmacol. 2018, 81, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Lisio, M.-A.; Fu, L.; Goyeneche, A.; Gao, Z.-H.; Telleria, C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [Green Version]
- Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial Ovarian Cancer: Evolution of Management in the Era of Precision Medicine. CA Cancer J. Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers 2020, 12, 1607. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Cristea, M.C.; Bruce, J.P.; Garg, S.; Cabanero, M.; Mantia-Smaldone, G.; Olawaiye, A.B.; Ellard, S.L.; Weberpals, J.I.; Wahner Hendrickson, A.E.; et al. Adavosertib plus Gemcitabine for Platinum-Resistant or Platinum-Refractory Recurrent Ovarian Cancer: A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. Lancet 2021, 397, 281–292. [Google Scholar] [CrossRef]
- Ojima, I.; Das, M. Recent Advances in the Chemistry and Biology of New Generation Taxoids. J. Nat. Prod. 2009, 72, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, X.; Sun, Y.; Taouil, A.K.; Yan, S.; Botchkina, G.I.; Ojima, I. Design, Synthesis and SAR Study of 3rd-Generation Taxoids Bearing 3-CH3, 3-CF3O and 3-CHF2O Groups at the C2-Benzoate Position. Bioorg. Chem. 2020, 95, 103523. [Google Scholar] [CrossRef] [PubMed]
- Ehrlichova, M.; Vaclavikova, R.; Ojima, I.; Pepe, A.; Kuznetsova, L.V.; Chen, J.; Truksa, J.; Kovar, J.; Gut, I. Transport and Cytotoxicity of Paclitaxel, Docetaxel, and Novel Taxanes in Human Breast Cancer Cells. Naunyn Schmiedeberg’s Arch. Pharmacol. 2005, 372, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Ehrlichová, M.; Koc, M.; Truksa, J.; Naldová, Z.; Václavíková, R.; Kovárr, J. Cell Death Induced by Taxanes in Breast Cancer Cells: Cytochrome C Is Released in Resistant but Not in Sensitive Cells. Anticancer Res. 2005, 25, 4215–4224. [Google Scholar] [PubMed]
- Vobořilová, J.; Němcová-Fürstová, V.; Neubauerová, J.; Ojima, I.; Zanardi, I.; Gut, I.; Kovář, J. Cell Death Induced by Novel Fluorinated Taxanes in Drug-Sensitive and Drug-Resistant Cancer Cells. Investig. New Drugs 2011, 29, 411–423. [Google Scholar] [CrossRef]
- Němcová-Fürstová, V.; Kopperová, D.; Balušíková, K.; Ehrlichová, M.; Brynychová, V.; Václavíková, R.; Daniel, P.; Souček, P.; Kovář, J. Characterization of Acquired Paclitaxel Resistance of Breast Cancer Cells and Involvement of ABC Transporters. Toxicol. Appl. Pharmacol. 2016, 310, 215–228. [Google Scholar] [CrossRef]
- Oliverius, M.; Flasarova, D.; Mohelnikova-Duchonova, B.; Ehrlichova, M.; Hlavac, V.; Kocik, M.; Strouhal, O.; Dvorak, P.; Ojima, I.; Soucek, P. KRAS Pathway Expression Changes in Pancreatic Cancer Models by Conventional and Experimental Taxanes. Mutagenesis 2019, 34, 403–411. [Google Scholar] [CrossRef]
- Kovár, J.; Ehrlichová, M.; Smejkalová, B.; Zanardi, I.; Ojima, I.; Gut, I. Comparison of Cell Death-Inducing Effect of Novel Taxane SB-T-1216 and Paclitaxel in Breast Cancer Cells. Anticancer Res. 2009, 29, 2951–2960. [Google Scholar] [PubMed]
- Zheng, X.; Wang, C.; Xing, Y.; Chen, S.; Meng, T.; You, H.; Ojima, I.; Dong, Y. SB-T-121205, a next-Generation Taxane, Enhances Apoptosis and Inhibits Migration/Invasion in MCF-7/PTX Cells. Int. J. Oncol. 2017, 50, 893–902. [Google Scholar] [CrossRef] [Green Version]
- Pavlikova, N.; Bartonova, I.; Dincakova, L.; Halada, P.; Kovar, J. Differentially Expressed Proteins in Human Breast Cancer Cells Sensitive and Resistant to Paclitaxel. Int. J. Oncol. 2014, 45, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlíková, N.; Bartoňová, I.; Balušíková, K.; Kopperova, D.; Halada, P.; Kovář, J. Differentially Expressed Proteins in Human MCF-7 Breast Cancer Cells Sensitive and Resistant to Paclitaxel. Exp. Cell Res. 2015, 333, 1–10. [Google Scholar] [CrossRef]
- Elsnerova, K.; Mohelnikova-Duchonova, B.; Cerovska, E.; Ehrlichova, M.; Gut, I.; Rob, L.; Skapa, P.; Hruda, M.; Bartakova, A.; Bouda, J.; et al. Gene Expression of Membrane Transporters: Importance for Prognosis and Progression of Ovarian Carcinoma. Oncol. Rep. 2016, 35, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, J.; Fu, C.; Teng, F.; Liu, S.; Dai, C.; Shen, R.; Jia, X. Multidrug Resistant LncRNA Profile in Chemotherapeutic Sensitive and Resistant Ovarian Cancer Cells. J. Cell Physiol. 2018, 233, 5034–5043. [Google Scholar] [CrossRef] [PubMed]
- Elsnerova, K.; Bartakova, A.; Tihlarik, J.; Bouda, J.; Rob, L.; Skapa, P.; Hruda, M.; Gut, I.; Mohelnikova-Duchonova, B.; Soucek, P.; et al. Gene Expression Profiling Reveals Novel Candidate Markers of Ovarian Carcinoma Intraperitoneal Metastasis. J. Cancer 2017, 8, 3598–3606. [Google Scholar] [CrossRef] [Green Version]
- Seborova, K.; Vaclavikova, R.; Soucek, P.; Elsnerova, K.; Bartakova, A.; Cernaj, P.; Bouda, J.; Rob, L.; Hruda, M.; Dvorak, P. Association of ABC Gene Profiles with Time to Progression and Resistance in Ovarian Cancer Revealed by Bioinformatics Analyses. Cancer Med. 2019, 8, 606–616. [Google Scholar] [CrossRef]
- Balaji, S.A.; Udupa, N.; Chamallamudi, M.R.; Gupta, V.; Rangarajan, A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS ONE 2016, 11, e0155013. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.; Cavet, G.; Pandita, A.; Hu, X.; Haydu, L.; Mohan, S.; Toy, K.; Rivers, C.S.; Modrusan, Z.; Amler, L.C.; et al. Functional Genomics Identifies ABCC3 as a Mediator of Taxane Resistance in HER2-Amplified Breast Cancer. Cancer Res. 2008, 68, 5380–5389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Lu, H.; Yan, A.; Yang, Y.; Meng, Q.; Sun, L.; Pang, H.; Li, C.; Dong, X.; Cai, L. ABCC3 as a Marker for Multidrug Resistance in Non-Small Cell Lung Cancer. Sci. Rep. 2013, 3, 3120. [Google Scholar] [CrossRef]
- Sissung, T.M.; Rajan, A.; Blumenthal, G.M.; Liewehr, D.J.; Steinberg, S.M.; Berman, A.; Giaccone, G.; Figg, W.D. Reproducibility of Pharmacogenetics Findings for Paclitaxel in a Heterogeneous Population of Patients with Lung Cancer. PLoS ONE 2019, 14, e0212097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Cosmes, A.; Reyes-Jiménez, E.; Zertuche-Martínez, C.; Hernández-Hernández, C.A.; García-Román, R.; Romero-Díaz, R.I.; Manuel-Martínez, A.E.; Elizarrarás-Rivas, J.; Vásquez-Garzón, V.R. The Implications of ABCC3 in Cancer Drug Resistance: Can We Use It as a Therapeutic Target. Am. J. Cancer Res. 2021, 11, 4127–4140. [Google Scholar] [PubMed]
- Fernie, A.R.; Carrari, F.; Sweetlove, L.J. Respiratory Metabolism: Glycolysis, the TCA Cycle and Mitochondrial Electron Transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Tait, S.W.G.; Green, D.R. Mitochondria and Cell Signalling. J. Cell Sci. 2012, 125, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Tait, S.; Green, D. Mitochondrial Regulation of Cell Death. Cold Spring Harb. Perspect. Biol. 2013, 5, a008706. [Google Scholar] [CrossRef] [Green Version]
- Palmfeldt, J.; Bross, P. Proteomics of Human Mitochondria. Mitochondrion 2017, 33, 2–14. [Google Scholar] [CrossRef]
- Daniel, P.; Halada, P.; Jelínek, M.; Balušíková, K.; Kovář, J. Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel. Int. J. Mol. Sci. 2019, 20, 2986. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.L.; Li, C.F.; Lin, C.Y.; Lee, S.W.; Sheu, M.J.; Lin, L.C.; Chen, T.J.; Wu, T.F.; Hsing, C.H. Overexpression of CPS1 Is an Independent Negative Prognosticator in Rectal Cancers Receiving Concurrent Chemoradiotherapy. Tumour Biol. 2014, 35, 11097–11105. [Google Scholar] [CrossRef]
- Xu, J.; Lai, Y.-J.; Lin, W.-C.; Lin, F.-T. TRIP6 Enhances Lysophosphatidic Acid-Induced Cell Migration by Interacting with the Lysophosphatidic Acid 2 Receptor. J. Biol. Chem. 2004, 279, 10459–10468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, F.-T.; Lai, Y.-J.; Makarova, N.; Tigyi, G.; Lin, W.-C. The Lysophosphatidic Acid 2 Receptor Mediates Down-Regulation of Siva-1 to Promote Cell Survival. J. Biol. Chem. 2007, 282, 37759–37769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuyu, E.; Lai, Y.-J.; Tsukahara, R.; Chen, C.-S.; Fujiwara, Y.; Yue, J.; Yu, J.-H.; Guo, H.; Kihara, A.; Tigyi, G.; et al. Lysophosphatidic Acid 2 Receptor-Mediated Supramolecular Complex Formation Regulates Its Antiapoptotic Effect. J. Biol. Chem. 2009, 284, 14558–14571. [Google Scholar] [CrossRef] [Green Version]
- Ehrlichová, M.; Ojima, I.; Chen, J.; Václavíková, R.; Němcová-Fürstová, V.; Vobořilová, J.; Simek, P.; Horský, S.; Souček, P.; Kovář, J.; et al. Transport, Metabolism, Cytotoxicity and Effects of Novel Taxanes on the Cell Cycle in MDA-MB-435 and NCI/ADR-RES Cells. Naunyn Schmiedebergs Arch Pharm. 2012, 385, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Markman, M.; Rothman, R.; Hakes, T.; Reichman, B.; Hoskins, W.; Rubin, S.; Jones, W.; Almadrones, L.; Lewis, J.L. Second-Line Platinum Therapy in Patients with Ovarian Cancer Previously Treated with Cisplatin. J. Clin. Oncol. 1991, 9, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Kaye, S.B. Management of Partially Platinum-Sensitive Relapsed Ovarian Cancer. Eur. J. Cancer Suppl. 2008, 6, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Litviakov, N.V.; Cherdyntseva, N.V.; Tsyganov, M.M.; Denisov, E.V.; Garbukov, E.Y.; Merzliakova, M.K.; Volkomorov, V.V.; Vtorushin, S.V.; Zavyalova, M.V.; Slonimskaya, E.M.; et al. Changing the Expression Vector of Multidrug Resistance Genes Is Related to Neoadjuvant Chemotherapy Response. Cancer Chemother. Pharmacol. 2013, 71, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.N.; Westergaard, D.; Thomsen, M.B.H.; Vistesen, M.; Do, K.N.; Fogh, L.; Belling, K.C.; Wang, J.; Yang, H.; Gupta, R.; et al. Acquisition of Docetaxel Resistance in Breast Cancer Cells Reveals Upregulation of ABCB1 Expression as a Key Mediator of Resistance Accompanied by Discrete Upregulation of Other Specific Genes and Pathways. Tumour Biol. 2015, 36, 4327–4338. [Google Scholar] [CrossRef] [PubMed]
- Jelínek, M.; Balušíková, K.; Daniel, P.; Němcová-Fürstová, V.; Kirubakaran, P.; Jaček, M.; Wei, L.; Wang, X.; Vondrášek, J.; Ojima, I.; et al. Substituents at the C3′ and C3′N Positions Are Critical for Taxanes to Overcome Acquired Resistance of Cancer Cells to Paclitaxel. Toxicol Appl. Pharmacol. 2018, 347, 79–91. [Google Scholar] [CrossRef]
- van der Schoor, L.W.E.; Verkade, H.J.; Kuipers, F.; Jonker, J.W. New Insights in the Biology of ABC Transporters ABCC2 and ABCC3: Impact on Drug Disposition. Expert Opin. Drug Metab. Toxicol. 2015, 11, 273–293. [Google Scholar] [CrossRef]
- Adamska, A.; Ferro, R.; Lattanzio, R.; Capone, E.; Domenichini, A.; Damiani, V.; Chiorino, G.; Akkaya, B.G.; Linton, K.J.; De Laurenzi, V.; et al. ABCC3 Is a Novel Target for the Treatment of Pancreatic Cancer. Adv. Biol. Regul. 2019, 73, 100634. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Domenichini, A.; Capone, E.; Damiani, V.; Akkaya, B.G.; Linton, K.J.; Di Sebastiano, P.; Chen, X.; Keeton, A.B.; Ramirez-Alcantara, V.; et al. Pharmacological Inhibition of ABCC3 Slows Tumour Progression in Animal Models of Pancreatic Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 312. [Google Scholar] [CrossRef]
- Auner, V.; Sehouli, J.; Oskay-Oezcelik, G.; Horvat, R.; Speiser, P.; Zeillinger, R. ABC Transporter Gene Expression in Benign and Malignant Ovarian Tissue. Gynecol. Oncol. 2010, 117, 198–201. [Google Scholar] [CrossRef]
- Liu, N.; Zeng, J.; Zhang, X.; Yang, Q.; Liao, D.; Chen, G.; Wang, Y. Involvement of miR-200a in chemosensitivity regulation of ovarian cancer. Zhonghua Yi Xue Za Zhi 2014, 94, 2148–2151. [Google Scholar]
- Shen, Y.; Yan, Z. Systematic Prediction of Drug Resistance Caused by Transporter Genes in Cancer Cells. Sci. Rep. 2021, 11, 7400. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, W.; Shi, J.; Zetter, B.R. Prohibitin 1 Regulates Tumor Cell Apoptosis via the Interaction with X-Linked Inhibitor of Apoptosis Protein. J. Mol. Cell Biol. 2016, 8, 282–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridder, D.A.; Schindeldecker, M.; Weinmann, A.; Berndt, K.; Urbansky, L.; Witzel, H.R.; Heinrich, S.; Roth, W.; Straub, B.K. Key Enzymes in Pyrimidine Synthesis, CAD and CPS1, Predict Prognosis in Hepatocellular Carcinoma. Cancers 2021, 13, 744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, S.; Wang, J.; Jiang, Y. Blockade of AMPK-Mediated CAMP-PKA-CREB/ATF1 Signaling Synergizes with Aspirin to Inhibit Hepatocellular Carcinoma. Cancers 2021, 13, 1738. [Google Scholar] [CrossRef] [PubMed]
- Pham-Danis, C.; Gehrke, S.; Danis, E.; Rozhok, A.I.; Daniels, M.W.; Gao, D.; Collins, C.; Paola, J.T.D.; D’Alessandro, A.; DeGregori, J. Urea Cycle Sustains Cellular Energetics upon EGFR Inhibition in EGFR-Mutant NSCLC. Mol. Cancer Res. 2019, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Cima, S.; Polo, L.M.; Díez-Fernández, C.; Martínez, A.I.; Cervera, J.; Fita, I.; Rubio, V. Structure of Human Carbamoyl Phosphate Synthetase: Deciphering the on/off Switch of Human Ureagenesis. Sci. Rep. 2015, 5, 16950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Hu, Z.; Cai, L.; Li, K.; Choi, E.; Faubert, B.; Bezwada, D.; Rodriguez-Canales, J.; Villalobos, P.; Lin, Y.-F.; et al. CPS1 Maintains Pyrimidine Pools and DNA Synthesis in KRAS/LKB1-Mutant Lung Cancer Cells. Nature 2017, 546, 168–172. [Google Scholar] [CrossRef]
- Çeliktas, M.; Tanaka, I.; Tripathi, S.C.; Fahrmann, J.F.; Aguilar-Bonavides, C.; Villalobos, P.; Delgado, O.; Dhillon, D.; Dennison, J.B.; Ostrin, E.J.; et al. Role of CPS1 in Cell Growth, Metabolism and Prognosis in LKB1-Inactivated Lung Adenocarcinoma. J. Natl. Cancer Inst. 2017, 109, djw231. [Google Scholar] [CrossRef] [Green Version]
- Willier, S.; Butt, E.; Richter, G.H.S.; Burdach, S.; Grunewald, T.G.P. Defining the Role of TRIP6 in Cell Physiology and Cancer. Biol. Cell 2011, 103, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Xu, X.; Wu, Y.; Zhu, X.; Chen, X.; Li, C.; Lu, X.; Chen, Y.; Liu, Y.; Huang, J.; et al. Overexpression of TRIP6 Promotes Tumor Proliferation and Reverses Cell Adhesion-Mediated Drug Resistance (CAM-DR) via Regulating Nuclear P27(Kip1) Expression in Non-Hodgkin’s Lymphoma. Tumour Biol. 2016, 37, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Liang, J.Q.; Zhang, L.; Chen, H.; Zhang, Y.; Li, R.; Wang, X.; Ji, J.; Tong, J.H.; To, K.-F.; et al. TTPAL Promotes Colorectal Tumorigenesis by Stabilizing TRIP6 to Activate Wnt/β-Catenin Signaling. Cancer Res. 2019, 79, 3332–3346. [Google Scholar] [CrossRef] [Green Version]
- Soucek, P.; Anzenbacher, P.; Skoumalová, I.; Dvorák, M. Expression of Cytochrome P450 Genes in CD34+ Hematopoietic Stem and Progenitor Cells. Stem Cells 2005, 23, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Özcan, Ö.; Belli, A.K.; Sakallı Çetin, E.; Kara, M.; Çelik, Ö.İ.; Kaplan, M.; Kayılıoğlu, S.I.; Dönmez, C.; Polat, M. Upregulation of SIRT1 Gene in Gastric Adenocarcinoma. Turk. J. Gastroenterol. 2019, 30, 326–330. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative Expression Software Tool (REST©) for Group-Wise Comparison and Statistical Analysis of Relative Expression Results in Real-Time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Society. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
Characteristics | EOC Set |
---|---|
n (%) * | |
Mean age at diagnosis, years | 59.8 ± 10.8 |
FIGO Stage | |
I | 8 (7.1) |
II | 11 (9.7) |
III | 83 (73.4) |
IV | 9 (8.0) |
Not available | 2 (1.8) |
EOC type | |
HGSC | 90 (79.6) |
Others | 21 (18.6) |
Not available | 2 (1.8) |
Histological grade | |
G1 | 7 (6.2) |
G2 | 18 (15.9) |
G3 | 87 (77.0) |
Not available | 1 (0.9) |
Progression | |
Present | 69 (61.0) |
Absent | 43 (38.1) |
Not available | 1 (0.9) |
Death | |
Present | 43 (38.1) |
Absent | 70 (61.9) |
Response | |
Fully platinum-sensitive | 70 (61.9) |
Platinum–resistant | 23 (20.4) |
Partially platinum-sensitive | 15 (13.3) |
Not available | 5 (4.4) |
Time to progression | |
Median ± SD (months) | 22.0 ± 18.9 |
Number of evaluated patients | 109 (96.5) |
Treatment | |
Pretreatment group | 89 (78.8) |
Posttreatment group | 24 (21.2) |
Therapeutic regimens | |
Adjuvant Therapy of Pretreatment group | |
Paclitaxel and platinum derivatives | 80 (89.9) |
Platinum derivatives | 3 (3.4) |
Unknown | 6 (6.7) |
Posttreatment group | |
Neoadjuvant Therapy of Posttreatment Group | |
Paclitaxel + platinum derivatives | 23 (95.8) |
Cisplatin + etoposide | 1 (4.2) |
Adjuvant Therapy of Posttreatment Group | |
Paclitaxel + Platinum derivatives | 21 (87.5) |
Cisplatin + Etoposide | 2 (8.3) |
Platinum derivatives | 1 (4.2) |
Gene | EOC Pretreated Tumors vs. Control Ovarian Tissue | EOC Posttreated Tumors vs. Control Ovarian Tissue |
---|---|---|
ABCC3 | up * | NS |
CPS1 | down *** | down *** |
TRIP6 | down *** | down *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seborova, K.; Kloudova-Spalenkova, A.; Koucka, K.; Holy, P.; Ehrlichova, M.; Wang, C.; Ojima, I.; Voleska, I.; Daniel, P.; Balusikova, K.; et al. The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int. J. Mol. Sci. 2022, 23, 73. https://doi.org/10.3390/ijms23010073
Seborova K, Kloudova-Spalenkova A, Koucka K, Holy P, Ehrlichova M, Wang C, Ojima I, Voleska I, Daniel P, Balusikova K, et al. The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. International Journal of Molecular Sciences. 2022; 23(1):73. https://doi.org/10.3390/ijms23010073
Chicago/Turabian StyleSeborova, Karolina, Alzbeta Kloudova-Spalenkova, Kamila Koucka, Petr Holy, Marie Ehrlichova, Changwei Wang, Iwao Ojima, Iveta Voleska, Petr Daniel, Kamila Balusikova, and et al. 2022. "The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes" International Journal of Molecular Sciences 23, no. 1: 73. https://doi.org/10.3390/ijms23010073
APA StyleSeborova, K., Kloudova-Spalenkova, A., Koucka, K., Holy, P., Ehrlichova, M., Wang, C., Ojima, I., Voleska, I., Daniel, P., Balusikova, K., Jelinek, M., Kovar, J., Rob, L., Hruda, M., Mrhalova, M., Soucek, P., & Vaclavikova, R. (2022). The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. International Journal of Molecular Sciences, 23(1), 73. https://doi.org/10.3390/ijms23010073