Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. ADCYAP1, BPIFA1, and PRDX2 Transcripts Are Differentially Expressed in Nasal Mucosa and Scale with Radiologically Assessed Disease Severity and IgE-Positivity in CRSwNP Patients
2.3. Sinonasal Transcriptome Is Co-Modified by Smoking in CRSwNP
2.4. Surgical and Postoperative Corticosteroid (CS) Therapy Improves Endoscopic Appearance of the Mucosa, but Variably Reverses Target Gene Expression Patterns in Nasal Cavity of CRSwNP Patients
2.5. Transcriptional Cross-Correlations Vary across Nasal Tissues and with Regard to Case–Control Status in CRSwNP
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Subjects
4.3. Quantitative Real-Time Polymerase Chain Reaction
4.4. Clinical Assessment of Disease Severity and Life Quality
4.4.1. CT Lund–Mackey Score
4.4.2. Malm Classification
4.4.3. SNOT 20 Questionnaire
4.5. Nasal Smear
4.6. Nasal and Sinus Swabs
4.7. Statistical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachert, C.; Gevaert, P.; Holtappels, G.; Johansson, S.G.O.; van Cauwenberge, P. Total and Specific IgE in Nasal Polyps Is Related to Local Eosinophilic Inflammation. J. Allergy Clin. Immunol. 2001, 107, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Tomassen, P.; Vandeplas, G.; Van Zele, T.; Cardell, L.-O.; Arebro, J.; Olze, H.; Förster-Ruhrmann, U.; Kowalski, M.L.; Olszewska-Ziąber, A.; Holtappels, G.; et al. Inflammatory Endotypes of Chronic Rhinosinusitis Based on Cluster Analysis of Biomarkers. J. Allergy Clin. Immunol. 2016, 137, 1449–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, N.; Bo, M.; Holtappels, G.; Zheng, M.; Lou, H.; Wang, H.; Zhang, L.; Bachert, C. Diversity of T H Cytokine Profiles in Patients with Chronic Rhinosinusitis: A Multicenter Study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016, 138, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Bachert, C.; Gevaert, P.; Holtappels, G.; Cuvelier, C.; Van Cauwenberge, P. Nasal Polyposis: From Cytokines to Growth. Am. J. Rhinol. 2000, 14, 279–290. [Google Scholar] [CrossRef]
- Derycke, L.; Eyerich, S.; Van Crombruggen, K.; Pérez-Novo, C.; Holtappels, G.; Deruyck, N.; Gevaert, P.; Bachert, C. Mixed T Helper Cell Signatures In Chronic Rhinosinusitis with and without Polyps. PLoS ONE 2014, 9, e97581. [Google Scholar] [CrossRef] [Green Version]
- Miljkovic, D.; Bassiouni, A.; Cooksley, C.; Ou, J.; Hauben, E.; Wormald, P.-J.; Vreugde, S. Association between Group 2 Innate Lymphoid Cells Enrichment, Nasal Polyps and Allergy in Chronic Rhinosinusitis. Allergy 2014, 69, 1154–1161. [Google Scholar] [CrossRef]
- Cao, P.-P.; Li, H.-B.; Wang, B.-F.; Wang, S.-B.; You, X.-J.; Cui, Y.-H.; Wang, D.-Y.; Desrosiers, M.; Liu, Z. Distinct Immunopathologic Characteristics of Various Types of Chronic Rhinosinusitis in Adult Chinese. J. Allergy Clin. Immunol. 2009, 124, 478–484. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.-Y.; Jiang, W.-X.; Liao, B.; Zhai, G.-T.; Wang, N.; Zhen, Z.; Ruan, J.; Long, X.-B.; Wang, H.; et al. The Activation and Function of IL-36γ in Neutrophilic Inflammation in Chronic Rhinosinusitis. J. Allergy Clin. Immunol. 2018, 141, 1646–1658. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Van Zele, T.; Perez-Novo, C.; Van Bruaene, N.; Holtappels, G.; DeRuyck, N.; Van Cauwenberge, P.; Bachert, C. Different Types of T-Effector Cells Orchestrate Mucosal Inflammation in Chronic Sinus Disease. J. Allergy Clin. Immunol. 2008, 122, 961–968. [Google Scholar] [CrossRef]
- Zhang, Y.; Gevaert, E.; Lou, H.; Wang, X.; Zhang, L.; Bachert, C.; Zhang, N. Chronic Rhinosinusitis in Asia. J. Allergy Clin. Immunol. 2017, 140, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Caballero, A.; Rasmussen, J.E.; Gaillard, E.; Watson, M.J.; Olsen, J.C.; Donaldson, S.H.; Stutts, M.J.; Tarran, R. SPLUNC1 Regulates Airway Surface Liquid Volume by Protecting ENaC from Proteolytic Cleavage. Proc. Natl. Acad. Sci. USA 2009, 106, 11412–11417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, J.A.; Hicks, B.J.; Schlomann, J.M.; Ramachandran, S.; Nauseef, W.M.; McCray, P.B. PLUNC Is a Secreted Product of Neutrophil Granules. J. Leukoc. Biol. 2008, 83, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, S.; Nistico, L.; St Croix, C.; Di, Y.P. Multifunctional Role of Human SPLUNC1 in Pseudomonas Aeruginosa Infection. Infect. Immun. 2013, 81, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Seshadri, S.; Lin, D.C.; Rosati, M.; Carter, R.G.; Norton, J.E.; Suh, L.; Kato, A.; Chandra, R.K.; Harris, K.E.; Chu, H.W.; et al. Reduced Expression of Antimicrobial PLUNC Proteins in Nasal Polyp Tissues of Patients with Chronic Rhinosinusitis. Allergy 2012, 67, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Tsou, Y.-A.; Peng, M.-T.; Wu, Y.-F.; Lai, C.-H.; Lin, C.-D.; Tai, C.-J.; Tsai, M.-H.; Chen, C.-M.; Chen, H.-C. Decreased PLUNC Expression in Nasal Polyps Is Associated with Multibacterial Colonization in Chronic Rhinosinusitis Patients. Eur. Arch. Otorhinolaryngol. 2014, 271, 299–304. [Google Scholar] [CrossRef]
- Tsou, Y.-A.; Tung, Y.-T.; Wu, T.-F.; Chang, G.R.-L.; Chen, H.-C.; Lin, C.-D.; Lai, C.-H.; Chen, H.-L.; Chen, C.-M. Lactoferrin Interacts with SPLUNC1 to Attenuate Lipopolysaccharide-Induced Inflammation of Human Nasal Epithelial Cells via down-Regulated MEK1/2-MAPK Signaling. Biochem. Cell Biol. 2017, 95, 394–399. [Google Scholar] [CrossRef]
- Baun, M.; Pedersen, M.H.F.; Olesen, J.; Jansen-Olesen, I. Dural Mast Cell Degranulation Is a Putative Mechanism for Headache Induced by PACAP-38. Cephalalgia 2012, 32, 337–345. [Google Scholar] [CrossRef]
- Jansen-Olesen, I.; Hougaard Pedersen, S. PACAP and Its Receptors in Cranial Arteries and Mast Cells. J. Headache Pain 2018, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Shi, X.; Li, X.; Zou, J.; Zhou, C.; Liu, W.; Shao, H.; Chen, H.; Shi, L. Neurotransmitter and Neuropeptide Regulation of Mast Cell Function: A Systematic Review. J. Neuroinflamm. 2020, 17, 356. [Google Scholar] [CrossRef]
- Fabian, E.; Reglodi, D.; Mester, L.; Szabo, A.; Szabadfi, K.; Tamas, A.; Toth, G.; Kovacs, K. Effects of PACAP on Intracellular Signaling Pathways in Human Retinal Pigment Epithelial Cells Exposed to Oxidative Stress. J. Mol. Neurosci. 2012, 48, 493–500. [Google Scholar] [CrossRef]
- Kinhult, J.; Adner, M.; Uddman, R.; Cardell, L.O. Pituitary Adenylate Cyclase-Activating Polypeptide, Effects in the Human Nose: PACAP in the Human Nose. Clin. Exp. Allergy 2003, 33, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Chen, T.; Xiong, W.; Huang, C.J.; Shi, Z.Q.; Pu, H.J. The role of PACAP protein in chronic sinusitis with or without nasal polyps. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2016, 30, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- Sauler, M.; McDonough, J.E.; Adams, T.S.; Kothapalli, N.; Barnthaler, T.; Werder, R.B.; Schupp, J.C.; Nouws, J.; Robertson, M.J.; Coarfa, C.; et al. Characterization of the COPD Alveolar Niche Using Single-Cell RNA Sequencing. Nat. Commun. 2022, 13, 494. [Google Scholar] [CrossRef] [PubMed]
- Vieira Braga, F.A.; Kar, G.; Berg, M.; Carpaij, O.A.; Polanski, K.; Simon, L.M.; Brouwer, S.; Gomes, T.; Hesse, L.; Jiang, J.; et al. A Cellular Census of Human Lungs Identifies Novel Cell States in Health and in Asthma. Nat. Med. 2019, 25, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Madissoon, E.; Oliver, A.J.; Kleshchevnikov, V.; Wilbrey-Clark, A.; Polanski, K.; Orsi, A.R.; Mamanova, L.; Bolt, L.; Richoz, N.; Elmentaite, R.; et al. A Spatial Multi-Omics Atlas of the Human Lung Reveals a Novel Immune Cell Survival Niche. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ardini-Poleske, M.E.; Clark, R.F.; Ansong, C.; Carson, J.P.; Corley, R.A.; Deutsch, G.H.; Hagood, J.S.; Kaminski, N.; Mariani, T.J.; Potter, S.S.; et al. LungMAP: The Molecular Atlas of Lung Development Program. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L733–L740. [Google Scholar] [CrossRef] [Green Version]
- Ordovas-Montanes, J.; Dwyer, D.F.; Nyquist, S.K.; Buchheit, K.M.; Vukovic, M.; Deb, C.; Wadsworth, M.H.; Hughes, T.K.; Kazer, S.W.; Yoshimoto, E.; et al. Allergic Inflammatory Memory in Human Respiratory Epithelial Progenitor Cells. Nature 2018, 560, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Dobzanski, A.; Khalil, S.M.; Lane, A.P. Nasal Polyp Fibroblasts Modulate Epithelial Characteristics Via Wnt Signaling. Int. Forum Allergy Rhinol. 2018, 8, 1412–1420. [Google Scholar] [CrossRef]
- Jackson, N.D.; Everman, J.L.; Chioccioli, M.; Feriani, L.; Goldfarbmuren, K.C.; Sajuthi, S.P.; Rios, C.L.; Powell, R.; Armstrong, M.; Gomez, J.; et al. Single-Cell and Population Transcriptomics Reveal Pan-Epithelial Remodeling in Type 2-High Asthma. Cell Rep. 2020, 32, 107872. [Google Scholar] [CrossRef]
- Goldfarbmuren, K.C.; Jackson, N.D.; Sajuthi, S.P.; Dyjack, N.; Li, K.S.; Rios, C.L.; Plender, E.G.; Montgomery, M.T.; Everman, J.L.; Bratcher, P.E.; et al. Dissecting the Cellular Specificity of Smoking Effects and Reconstructing Lineages in the Human Airway Epithelium. Nat. Commun. 2020, 11, 2485. [Google Scholar] [CrossRef]
- Huff, R.D.; Carlsten, C.; Hirota, J.A. An Update on Immunologic Mechanisms in the Respiratory Mucosa in Response to Air Pollutants. J. Allergy Clin. Immunol. 2019, 143, 1989–2001. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.L.; Colgan, S.P. Control and Dysregulation of Redox Signalling in the Gastrointestinal Tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.R.; Gao, D.; Pararasa, C. Redox Regulation in Metabolic Programming and Inflammation. Redox Biol. 2017, 12, 50–57. [Google Scholar] [CrossRef]
- Sadanandan, N.; Cozene, B.; Park, Y.J.; Farooq, J.; Kingsbury, C.; Wang, Z.-J.; Moscatello, A.; Saft, M.; Cho, J.; Gonzales-Portillo, B.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide: A Potent Therapeutic Agent in Oxidative Stress. Antioxidants 2021, 10, 354. [Google Scholar] [CrossRef] [PubMed]
- Bingle, L.; Barnes, F.A.; Cross, S.S.; Rassl, D.; Wallace, W.A.; Campos, M.A.; Bingle, C.D. Differential Epithelial Expression of the Putative Innate Immune Molecule SPLUNC1 in Cystic Fibrosis. Respir. Res. 2007, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.W.; Thaikoottathil, J.; Rino, J.G.; Zhang, G.; Wu, Q.; Moss, T.; Refaeli, Y.; Bowler, R.; Wenzel, S.E.; Chen, Z.; et al. Function and Regulation of SPLUNC1 Protein in Mycoplasma Infection and Allergic Inflammation. J. Immunol. 2007, 179, 3995–4002. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bartlett, J.A.; Di, M.E.; Bomberger, J.M.; Chan, Y.R.; Gakhar, L.; Mallampalli, R.K.; McCray, P.B.; Di, Y.P. SPLUNC1/BPIFA1 Contributes to Pulmonary Host Defense against Klebsiella Pneumoniae Respiratory Infection. Am. J. Pathol. 2013, 182, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.-D.; Li, G.-Y.; Yang, Y.-X.; Li, X.-L.; Sheng, S.-R.; Zhang, W.-L.; Zhao, J. Intracellular Co-Localization of SPLUNC1 Protein with Nanobacteria in Nasopharyngeal Carcinoma Epithelia HNE1 Cells Depended on the Bactericidal Permeability Increasing Protein Domain. Mol. Immunol. 2006, 43, 1864–1871. [Google Scholar] [CrossRef]
- Yeh, T.-H.; Lee, S.-Y.; Hsu, W.-C. Expression of SPLUNC1 Protein in Nasal Polyp Epithelial Cells in Air-Liquid Interface Culture Treated with IL-13. Am. J. Rhinol. Allergy 2010, 24, 17–20. [Google Scholar] [CrossRef]
- Min-man, W.; Hong, S.; Zhi-qiang, X.; Xue-ping, F.; Chang-qi, L.; Dan, L. Differential Proteomic Analysis of Nasal Polyps, Chronic Sinusitis, and Normal Nasal Mucosa Tissues. Otolaryngol. Head Neck Surg. 2009, 141, 364–368. [Google Scholar] [CrossRef]
- Matsuwaki, Y.; Ookushi, T.; Asaka, D.; Mori, E.; Nakajima, T.; Yoshida, T.; Kojima, J.; Chiba, S.; Ootori, N.; Moriyama, H. Chronic Rhinosinusitis: Risk Factors for the Recurrence of Chronic Rhinosinusitis Based on 5-Year Follow-up after Endoscopic Sinus Surgery. Int. Arch. Allergy Immunol. 2008, 146 (Suppl. 1), 77–81. [Google Scholar] [CrossRef] [PubMed]
- Soler, Z.M.; Sauer, D.A.; Mace, J.; Smith, T.L. Relationship between Clinical Measures and Histopathologic Findings in Chronic Rhinosinusitis. Otolaryngol. Head Neck Surg. 2009, 141, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szucs, E.; Ravandi, S.; Goossens, A.; Beel, M.; Clement, P.A.R. Eosinophilia in the Ethmoid Mucosa and Its Relationship to the Severity of Inflammation in Chronic Rhinosinusitis. Am. J. Rhinol. 2002, 16, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Elekes, K.; Sandor, K.; Moricz, A.; Kereskai, L.; Kemeny, A.; Szoke, E.; Perkecz, A.; Reglodi, D.; Hashimoto, H.; Pinter, E.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide Plays an Anti-Inflammatory Role in Endotoxin-Induced Airway Inflammation: In Vivo Study with Gene-Deleted Mice. Peptides 2011, 32, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bu, X.; Luan, G.; Lin, L.; Wang, Y.; Jin, J.; Zhang, L.; Wang, C. Distinct Type 2-High Inflammation Associated Molecular Signatures of Chronic Rhinosinusitis with Nasal Polyps with Comorbid Asthma. Clin. Transl. Allergy 2020, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Kassim, S.K.; Elbeigermy, M.; Nasr, G.F.; Khalil, R.; Nassar, M. The Role of Interleukin-12, and Tissue Antioxidants in Chronic Sinusitis. Clin. Biochem. 2002, 35, 369–375. [Google Scholar] [CrossRef]
- Kusunoki, T.; Ono, N.; Ikeda, K. Correlations between Cu, Zn- Superoxide Dismutase and Macrophages or MUC5AC in Human Eosinophilic Chronic Rhinosinusitis. J. Otol. Rhinol. 2015, 2015. [Google Scholar] [CrossRef]
- Cekin, E.; Ipcioglu, O.M.; Erkul, B.E.; Kapucu, B.; Ozcan, O.; Cincik, H.; Gungor, A. The Association of Oxidative Stress and Nasal Polyposis. J. Int. Med. Res. 2009, 37, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Sagit, M.; Erdamar, H.; Saka, C.; Yalcin, S.; Akin, I. Effect of Antioxidants on the Clinical Outcome of Patients with Nasal Polyposis. J. Laryngol. Otol. 2011, 125, 811–815. [Google Scholar] [CrossRef]
- Suojalehto, H.; Lindström, I.; Wolff, H.; Puustinen, A. Nasal Protein Profiles in Work-Related Asthma Caused by Different Exposures. Allergy 2018, 73, 653–663. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Mullol, J.; Bachert, C.; Alobid, I.; Baroody, F.; Cohen, N.; Cervin, A.; Douglas, R.; Gevaert, P.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol. Suppl. 2012, 23, 1–298. [Google Scholar] [PubMed]
- McGraw, K.O.; Wong, S.P. Forming Inferences about Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
Characteristics | CRSwNP (n = 25) | Control (n = 24) | p |
---|---|---|---|
Age (yrs, min-max) * | 53 (51–62) | 31 (26–48) | 1 × 10−6 |
Sex (m/f) ** | 15/10 | 13/11 | 0.776 |
Smoking (yes/no) ** | 3/25 | 11/23 | 0.012 |
SNOT-20 * | 32 (15–64) | 34 (19–52) | 0.936 |
Malm score | 5 (3–6) | NA | - |
Lund–Mackay CT score | 12 (9–15) | NA | - |
Allergic disease (yes/no) ** | 6/19 | 1/23 | 0.074 |
Gene | Sequence 5′-3′ | Optimized PCR Condition (Annealing Temp/MgCl2) | |
---|---|---|---|
ADCYAP1 | For | GAATTGGATTTGCATTCCCAGGCG | 64 °C/3.5 mM |
Rev | AGGCATAGACCGAATGCCTCTGTT | ||
PRDX2 | For | CCTTCCSGTACACAGACGAGCA | 60 °C/3.0 mM |
Rev | CTCACTATCCGTTAGCCAGCCT | ||
SOD1 | For | CTCACTCTCAGGAGACCATTGC | 60 °C/3.0 mM |
Rev | CCACAAGCCAAACGACTTCCAG | ||
PLUNC | For | GGTTCTCAGAGGCTTGGACATC | 65 °C/3.5 mM |
Rev | CCTTCCTGGAAGGCTTAGACCT | ||
18S rRNA | For | GTAACCCGTTGAACCCCATT | 59 °C/3 mM |
Rev | CCATCCAATCGGTAGTAGCG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihalj, H.; Butković, J.; Tokić, S.; Štefanić, M.; Kizivat, T.; Bujak, M.; Baus Lončar, M.; Mihalj, M. Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis. Int. J. Mol. Sci. 2022, 23, 5521. https://doi.org/10.3390/ijms23105521
Mihalj H, Butković J, Tokić S, Štefanić M, Kizivat T, Bujak M, Baus Lončar M, Mihalj M. Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis. International Journal of Molecular Sciences. 2022; 23(10):5521. https://doi.org/10.3390/ijms23105521
Chicago/Turabian StyleMihalj, Hrvoje, Josip Butković, Stana Tokić, Mario Štefanić, Tomislav Kizivat, Maro Bujak, Mirela Baus Lončar, and Martina Mihalj. 2022. "Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis" International Journal of Molecular Sciences 23, no. 10: 5521. https://doi.org/10.3390/ijms23105521
APA StyleMihalj, H., Butković, J., Tokić, S., Štefanić, M., Kizivat, T., Bujak, M., Baus Lončar, M., & Mihalj, M. (2022). Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis. International Journal of Molecular Sciences, 23(10), 5521. https://doi.org/10.3390/ijms23105521