Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence
Abstract
:1. Introduction
2. Cannabis and the Endocannabinoid System (ECS)
3. Studies of Depression in Rodent Models
4. The Effects of Cannabinoids on ECS Components in Rodents
4.1. CB1r
4.1.1. Pre-Clinical Studies of CB1r Knockout and Antagonism
4.1.2. Pre-Clinical Studies of CB1 Receptor Agonism
4.2. CB2r
4.2.1. Pre-Clinical Studies of CB2 Knockout and Antagonism
4.2.2. Pre-Clinical Studies of CB2 Agonism
4.3. GPR55
4.4. TRPV1
4.5. CBD
5. The ECS in Human Studies of Depression
5.1. Subjects with a Primary Diagnosis That Is Not Depression
5.2. Self-Medication Studies
5.3. ECS Components Altered in Depression
5.3.1. Endogenous Ligands
5.3.2. CB1r
5.4. Genetic Studies
5.4.1. CNR1
5.4.2. CNR2
5.4.3. FAAH
5.4.4. GPR55
5.4.5. Caveats
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization: Depression and Other Common Mental Disorders: Global Health Estimates. Available online: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf (accessed on 29 March 2022).
- Young, M.A.; Fogg, L.F.; Scheftner, W.A.; Keller, M.B.; Fawcett, J.A. Sex differences in the lifetime prevalence of depression: Does varying the diagnostic criteria reduce the female/male ratio? J. Affect. Disord. 1990, 18, 187–192. [Google Scholar] [CrossRef]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Edition, F. Diagnostic and statistical manual of mental disorders. Am. Psychiatric. Assoc. 2013, 21, 591–643. [Google Scholar]
- Machmutow, K.; Meister, R.; Sen, A.; Kriston, L.; Watzke, B.; Härter, M.C.; Liebherz, S. Comparative effectiveness of continuation and maintenance treatments for persistent depressive disorder in adults. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Luo, Y.; Kataoka, Y.; Ostinelli, E.G.; Cipriani, A.; Furukawa, T.A. National prescription patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: A population representative survey based analysis. Front. Psychiatry 2020, 11, 35. [Google Scholar] [CrossRef]
- Henssler, J.; Heinz, A.; Brandt, L.; Bschor, T. Antidepressant withdrawal and rebound phenomena. Dtsch. Ärzteblatt Int. 2019, 116, 355. [Google Scholar] [CrossRef]
- Joshi, A. Selective serotonin re-uptake inhibitors: An overview. Psychiatr. Danub. 2018, 30 (Suppl. 7), 605–609. [Google Scholar]
- Montgomery, S.A.; Nielsen, R.Z.; Poulsen, L.H.; Häggström, L. A randomised, double-blind study in adults with major depressive disorder with an inadequate response to a single course of selective serotonin reuptake inhibitor or serotonin–noradrenaline reuptake inhibitor treatment switched to vortioxetine or agomelatine. Hum. Psychopharmacol. Clin. Exp. 2014, 29, 470–482. [Google Scholar]
- Khan, A.; Faucett, J.; Lichtenberg, P.; Kirsch, I.; Brown, W.A. A systematic review of comparative efficacy of treatments and controls for depression. PLoS ONE 2012, 7, e41778. [Google Scholar] [CrossRef] [Green Version]
- Cascade, E.; Kalali, A.H.; Kennedy, S.H. Real-world data on SSRI antidepressant side effects. Psychiatry (Edgmont) 2009, 6, 16. [Google Scholar]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Focus 2018, 16, 420–429. [Google Scholar] [CrossRef]
- Goethe, J.W.; Woolley, S.B.; Cardoni, A.A.; Woznicki, B.A.; Piez, D.A. Selective serotonin reuptake inhibitor discontinuation: Side effects and other factors that influence medication adherence. J. Clin. Psychopharmacol. 2007, 27, 451–458. [Google Scholar] [CrossRef]
- Gallego-Landin, I.; García-Baos, A.; Castro-Zavala, A.; Valverde, O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front. Pharmacol. 2021, 12, 762738. [Google Scholar] [CrossRef]
- Hill, M.N.; Gorzalka, B.B. Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav. Pharmacol. 2005, 16, 333–352. [Google Scholar] [CrossRef]
- Hill, M.N.; Hillard, C.J.; Bambico, F.R.; Patel, S.; Gorzalka, B.B.; Gobbi, G. The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol. Sci. 2009, 30, 484–493. [Google Scholar] [CrossRef]
- Sarris, J.; Sinclair, J.; Karamacoska, D.; Davidson, M.; Firth, J. Medicinal cannabis for psychiatric disorders: A clinically-focused systematic review. BMC Psychiatry 2020, 20, 24. [Google Scholar] [CrossRef] [Green Version]
- Keyhani, S.; Steigerwald, S.; Ishida, J.; Vali, M.; Cerdá, M.; Hasin, D.; Dollinger, C.; Yoo, S.R.; Cohen, B.E. Risks and benefits of marijuana use: A national survey of US adults. Ann. Intern. Med. 2018, 169, 282–290. [Google Scholar] [CrossRef]
- Feingold, D.; Weiser, M.; Rehm, J.; Lev-Ran, S. The association between cannabis use and mood disorders: A longitudinal study. J. Affect. Disord. 2015, 172, 211–218. [Google Scholar] [CrossRef]
- Feingold, D.; Hoch, E.; Weinstein, A.; Hall, W. Psychological Aspects of Cannabis Use and Cannabis Use Disorder. Front. Psychiatry 2021, 12, 789197. [Google Scholar] [CrossRef]
- Bovasso, G.B. Cannabis abuse as a risk factor for depressive symptoms. Am. J. Psychiatry 2001, 158, 2033–2037. [Google Scholar] [CrossRef]
- Fergusson, D.M.; Horwood, L.J. Early onset cannabis use and psychosocial adjustment in young adults. Addiction 1997, 92, 279–296. [Google Scholar] [CrossRef]
- Brook, D.W.; Brook, J.S.; Zhang, C.; Cohen, P.; Whiteman, M. Drug use and the risk of major depressive disorder, alcohol dependence, and substance use disorders. Arch. Gen. Psychiatry 2002, 59, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, L.; Coffey, C.; Romaniuk, H.; Swift, W.; Carlin, J.B.; Hall, W.D.; Patton, G.C. The persistence of the association between adolescent cannabis use and common mental disorders into young adulthood. Addiction 2013, 108, 124–133. [Google Scholar] [CrossRef]
- Langlois, C.; Potvin, S.; Khullar, A.; Tourjman, S.V. Down and high: Reflections regarding depression and cannabis. Front. Psychiatry 2021, 12, 681. [Google Scholar] [CrossRef]
- Feingold, D.; Weinstein, A. Cannabis and depression. Cannabinoids Neuropsychiatr. Disord. 2021, 1264, 67–80. [Google Scholar]
- Mechoulam, R.; Hanuš, L.O.; Pertwee, R.; Howlett, A.C. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat. Rev. Neurosci. 2014, 15, 757–764. [Google Scholar] [CrossRef]
- Leung, J.; Chan, G.C.; Hides, L.; Hall, W.D. What is the prevalence and risk of cannabis use disorders among people who use cannabis? A systematic review and meta-analysis. Addict. Behav. 2020, 109, 106479. [Google Scholar] [CrossRef]
- Curran, H.V.; Freeman, T.P.; Mokrysz, C.; Lewis, D.A.; Morgan, C.J.; Parsons, L.H. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci. 2016, 17, 93–306. [Google Scholar] [CrossRef]
- Le Boisselier, R.; Alexandre, J.; Lelong-Boulouard, V.; Debruyne, D. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 2017, 101, 220–229. [Google Scholar] [CrossRef]
- Papaseit Fontanet, E.; Pérez Mañá, C.; Pérez-Acevedo, A.P.; Hladun, O.; Torres-Moreno, M.C.; Muga, R.; Torrens, M.; Farré Albaladejo, M. Cannabinoids: From pot to lab. Int. J. Med. Sci. 2018, 15, 1286. [Google Scholar] [CrossRef] [Green Version]
- Adams, I.B.; Martin, B.R. Cannabis: Pharmacology and toxicology in animals and humans. Addiction 1996, 91, 1585–1614. [Google Scholar] [CrossRef]
- Hosein Farzaei, M.; Bahramsoltani, R.; Rahimi, R.; Abbasabadi, F.; Abdollahi, M. A systematic review of plant-derived natural compounds for anxiety disorders. Curr. Top. Med. Chem. 2016, 16, 1924–1942. [Google Scholar] [CrossRef]
- Chadwick, V.L.; Rohleder, C.; Koethe, D.; Leweke, F.M. Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr. Opin. Psychiatry 2020, 33, 20–42. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.S.; Navarrete, F.; Gasparyan, A.; Austrich-Olivares, A.; Sala, F.; Manzanares, J. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 2020, 10, 1575. [Google Scholar] [CrossRef]
- Orsolini, L.; Chiappini, S.; Volpe, U.; De Berardis, D.; Latini, R.; Papanti, G.D.; Corkery, J.M. Use of medicinal cannabis and synthetic cannabinoids in post-traumatic stress disorder (PTSD): A systematic review. Medicina 2019, 55, 525. [Google Scholar] [CrossRef] [Green Version]
- Sbarski, B.; Akirav, I. Cannabinoids as therapeutics for PTSD. Pharmacol. Ther. 2020, 211, 107551. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Fride, E.; Sheskin, T.; Tamiri, T.; Rhee, M.H.; Vogel, Z.; Bisogno, T.; De Petrocellis, L.; Di Marzo, V.; Mechoulam, R. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 1998, 353, 23–31. [Google Scholar] [CrossRef]
- Shoval, G.; Shbiro, L.; Hershkovitz, L.; Hazut, N.; Zalsman, G.; Mechoulam, R.; Weller, A. Prohedonic effect of cannabidiol in a rat model of depression. Neuropsychobiology 2016, 73, 123–129. [Google Scholar] [CrossRef]
- Burstein, O.; Shoshan, N.; Doron, R.; Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 129–139. [Google Scholar] [CrossRef]
- Hen-Shoval, D.; Amar, S.; Shbiro, L.; Smoum, R.; Haj, C.G.; Mechoulam, R.; Zalsman, G.; Weller, A.; Shoval, G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav. Brain Res. 2018, 351, 1–3. [Google Scholar] [CrossRef]
- ElBatsh, M.M.; Moklas, M.A.; Marsden, C.A.; Kendall, D.A. Antidepressant-like effects of Δ9-tetrahydrocannabinol and rimonabant in the olfactory bulbectomised rat model of depression. Pharmacol. Biochem. Behav. 2012, 102, 357–365. [Google Scholar] [CrossRef]
- Huestis, M.A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 2007, 4, 1770. [Google Scholar] [CrossRef] [Green Version]
- Degenhardt, L.; Bucello, C.; Calabria, B.; Nelson, P.; Roberts, A.; Hall, W.; Lynskey, M.; Wiessing, L.; GBD Illicit Drug Use Writing Group. What data are available on the extent of illicit drug use and dependence globally? Results of four systematic reviews. Drug Alcohol Depend. 2011, 117, 85–101. [Google Scholar] [CrossRef]
- United Nations: World Drug Report 2012. Available online: https://www.unodc.org/unodc/en/data-and-analysis/WDR-2012.html (accessed on 27 March 2022).
- Rock, E.M.; Parker, L.A. Constituents of cannabis sativa. Cannabinoids Neuropsychiatr. Disord. 2021, 1264, 1–13. [Google Scholar]
- Howlett, A.C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 2002, 68, 619–631. [Google Scholar] [CrossRef]
- Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005, 310, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.A. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol. 2003, 140, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P. The orphan receptor GPR55 is a novel cannabinoid receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef]
- Hiley, C.R.; Kaup, S.S. GPR55 and the vascular receptors for cannabinoids. Br. J. Pharmacol. 2007, 152, 559–561. [Google Scholar] [CrossRef] [Green Version]
- Ibeas Bih, C.; Chen, T.; Nunn, A.V.; Bazelot, M.; Dallas, M.; Whalley, B.J. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics 2015, 12, 699–730. [Google Scholar] [CrossRef] [Green Version]
- Sylantyev, S.; Jensen, T.P.; Ross, R.A.; Rusakov, D.A. Cannabinoid-and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc. Natl. Acad. Sci. USA 2013, 110, 5193–5198. [Google Scholar] [CrossRef] [Green Version]
- Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol–recent advances. Chem. Biodivers. 2007, 4, 1678–1692. [Google Scholar] [CrossRef]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef] [Green Version]
- De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef] [Green Version]
- Stern, C.A.; da Silva, T.R.; Raymundi, A.M.; de Souza, C.P.; Hiroaki-Sato, V.A.; Kato, L.; Guimarães, F.S.; Andreatini, R.; Takahashi, R.N.; Bertoglio, L.J. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 2017, 125, 220–230. [Google Scholar] [CrossRef]
- Pertwee, R. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Devane, W.A.; Dysarz, F.; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar]
- Gururajan, A.; Reif, A.; Cryan, J.F.; Slattery, D.A. The future of rodent models in depression research. Nat. Rev. Neurosci. 2019, 20, 686–701. [Google Scholar] [CrossRef]
- Bale, T.L.; Abel, T.; Akil, H.; Carlezon, W.A., Jr.; Moghaddam, B.; Nestler, E.J.; Ressler, K.J.; Thompson, S.M. The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology 2019, 44, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Harro, J. Animal models of depression: Pros and cons. Cell Tissue Res. 2019, 377, 5–20. [Google Scholar] [CrossRef]
- Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an appropriate animal model of depression. Int. J. Mol. Sci. 2019, 20, 4827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Timberlake, M.A., II; Prall, K.; Dwivedi, Y. The recent progress in animal models of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Micale, V.; Kucerova, J.; Sulcova, A. Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 2013, 354, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology 1997, 134, 319–329. [Google Scholar] [CrossRef]
- Slattery, D.A.; Cryan, J.F. Modelling depression in animals: At the interface of reward and stress pathways. Psychopharmacology 2017, 234, 1451–1465. [Google Scholar] [CrossRef]
- Bale, T.L.; Epperson, C.N. Sex as a biological variable: Who, what, when, why, and how. Neuropsychopharmacology 2017, 42, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Tsou, K.; Brown, S.; Sanudo-Pena, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef]
- Hu, S.S.; Mackie, K. Distribution of the endocannabinoid system in the central nervous system. Endocannabinoids 2015, 59–93. [Google Scholar]
- Zhou, D.; Li, Y.; Tian, T.; Quan, W.; Wang, L.; Shao, Q.; Fu, L.Q.; Zhang, X.H.; Wang, X.Y.; Zhang, H.; et al. Role of the endocannabinoid system in the formation and development of depression. Die Pharm. Int. J. Pharm. Sci. 2017, 72, 435–439. [Google Scholar]
- Valverde, O.; Torrens, M. CB1 receptor-deficient mice as a model for depression. Neuroscience 2012, 204, 193–206. [Google Scholar] [CrossRef]
- Martin, M.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology 2002, 159, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.J.; Zheng, D.; Li, K.X.; Yang, J.M.; Pan, H.Q.; Yu, X.D.; Fu, J.Y.; Zhu, Y.; Sun, Q.X.; Tang, M.Y.; et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 2019, 25, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Beyer, C.E.; Dwyer, J.M.; Piesla, M.J.; Platt, B.J.; Shen, R.; Rahman, Z.; Chan, K.; Manners, M.T.; Samad, T.A.; Kennedy, J.D.; et al. Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol. Dis. 2010, 39, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Ghiri, M.; Khakpai, F.; Zarrindast, M.R. URB597 abrogates anxiogenic and depressive behaviors in the methamphetamine-withdrawal mice: Role of the cannabinoid receptor type 1, cannabinoid receptor type 2, and transient receptor potential vanilloid 1 channels. J. Psychopharmacol. 2021, 35, 875–884. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Hill, M.N.; Dang, S.S.; Wainwright, S.R.; Galea, L.A.; Hillard, C.J.; Gorzalka, B. Upregulation of CB1 receptor binding in the ventromedial prefrontal cortex promotes proactive stress-coping strategies following chronic stress exposure. Behav. Brain Res. 2013, 237, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, M.; Nasehi, M.; Vaseghi, S.; Alimohammadzadeh, K.; Vaghar, M.I.; Mohammadi-Mahdiabadi-Hasani, M.H.; Zarrindast, M.R. The interaction effect of sleep deprivation and cannabinoid type 1 receptor in the CA1 hippocampal region on passive avoidance memory, depressive-like behavior and locomotor activity in rats. Behav. Brain Res. 2021, 396, 112901. [Google Scholar] [CrossRef]
- Ostadhadi, S.; Haj-Mirzaian, A.; Nikoui, V.; Kordjazy, N.; Dehpour, A.R. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB 1 receptor inverse agonist AM-251 after physical stress in mice. Clin. Exp. Pharmacol. Physiol. 2016, 43, 203–212. [Google Scholar] [CrossRef]
- Shearman, L.P.; Rosko, K.M.; Fleischer, R.; Wang, J.; Xu, S.; Tong, X.S.; Rocha, B.A. Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav. Pharmacol. 2003, 14, 573–582. [Google Scholar] [CrossRef]
- Maymon, N.; Zer-Aviv, T.M.; Sabban, E.L.; Akirav, I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology 2020, 162, 107804. [Google Scholar] [CrossRef]
- Griebel, G.; Stemmelin, J.; Scatton, B. Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol. Psychiatry 2005, 57, 261–267. [Google Scholar] [CrossRef]
- de Morais, H.; de Souza, C.P.; da Silva, L.M.; Ferreira, D.M.; Baggio, C.H.; Vanvossen, A.C.; de Carvalho, M.C.; da Silva-Santos, J.E.; Bertoglio, L.J.; Cunha, J.M.; et al. Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors. Eur. Neuropsychopharmacol. 2016, 26, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.N.; Wang, L.; Zhang, R.G.; Chen, Y.C.; Liu, L.; Gao, F.; Nie, H.; Hou, W.G.; Peng, Z.W.; Tan, Q. Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: The role of the endocannabinoid system. J. Psychiatr. Res. 2014, 51, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Segev, A.; Rubin, A.S.; Abush, H.; Richter-Levin, G.; Akirav, I. Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression. Neuropsychopharmacology 2014, 39, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Alteba, S.; Zer-Aviv, T.M.; Tenenhaus, A.; David, G.B.; Adelman, J.; Hillard, C.J.; Doron, R.; Akirav, I. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur. Neuropsychopharmacol. 2020, 39, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Chaves, Y.C.; Genaro, K.; Crippa, J.A.; da Cunha, J.M.; Zanoveli, J.M. Cannabidiol induces antidepressant and anxiolytic-like effects in experimental type-1 diabetic animals by multiple sites of action. Metab. Brain Dis. 2021, 36, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Gorzalka, B.B. Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur. Neuropsychopharmacol. 2005, 15, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, P.; Golda, A.; McCreary, A.C.; Filip, M.; Przegaliriski, E. Activation of endocannabinoid transmission induces antidepressant-like effects in rats. Acta Physiol. Pol. 2008, 59, 217. [Google Scholar]
- Xu, X.; Wu, K.; Ma, X.; Wang, W.; Wang, H.; Huang, M.; Luo, L.; Su, C.; Yuan, T.; Shi, H.; et al. mGluR5-Mediated eCB Signaling in the Nucleus Accumbens Controls Vulnerability to Depressive-Like Behaviors and Pain after Chronic Social Defeat Stress. Mol. Neurobiol. 2021, 58, 4944–4958. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Hill, M.N.; Bambico, F.R.; Stuhr, K.L.; Gobbi, G.; Hillard, C.J.; Gorzalka, B.B. Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. Eur. Neuropsychopharmacol. 2012, 22, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Poleszak, E.; Wośko, S.; Sławińska, K.; Wyska, E.; Szopa, A.; Świąder, K.; Wróbel, A.; Doboszewska, U.; Wlaź, P.; Wlaź, A.; et al. Influence of the CB1 and CB2 cannabinoid receptor ligands on the activity of atypical antidepressant drugs in the behavioural tests in mice. Pharmacol. Biochem. Behav. 2020, 188, 172833. [Google Scholar] [CrossRef]
- Baur, R.; Gertsch, J.; Sigel, E. The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABAA receptors. Br. J. Pharmacol. 2012, 165, 2479–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, A.A.; Purrio, M.; Viveros, M.P.; Lutz, B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 2012, 37, 2624–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, E.J.; Rubio-Casillas, A. Biphasic effects of THC in memory and cognition. Eur. J. Clin. Investig. 2018, 48, e12920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulcova, E.; Mechoulam, R.; Fride, E. Biphasic effects of anandamide. Pharmacol. Biochem. Behav. 1998, 59, 347–352. [Google Scholar] [CrossRef]
- Navarrete, F.; García-Gutiérrez, M.S.; Jurado-Barba, R.; Rubio, G.; Gasparyan, A.; Austrich-Olivares, A.; Manzanares, J. Endocannabinoid system components as potential biomarkers in psychiatry. Front. Psychiatry 2020, 315. [Google Scholar] [CrossRef]
- Tejeda-Martínez, A.R.; Viveros-Paredes, J.M.; Hidalgo-Franco, G.V.; Pardo-González, E.; Chaparro-Huerta, V.; González-Castañeda, R.E.; Flores-Soto, M.E. Chronic inhibition of FAAH reduces depressive-like behavior and improves dentate gyrus proliferation after chronic unpredictable stress exposure. Behav. Neurol. 2021, 24, 2021. [Google Scholar] [CrossRef]
- Realini, N.; Vigano, D.; Guidali, C.; Zamberletti, E.; Rubino, T.; Parolaro, D. Chronic URB597 treatment at adulthood reverted most depressive-like symptoms induced by adolescent exposure to THC in female rats. Neuropharmacology 2011, 60, 235–243. [Google Scholar] [CrossRef]
- Bortolato, M.; Mangieri, R.A.; Fu, J.; Kim, J.H.; Arguello, O.; Duranti, A.; Tontini, A.; Mor, M.; Tarzia, G.; Piomelli, D. Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol. Psychiatry 2007, 62, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.X.; Ke, B.W.; Liu, J.; Ma, G.; Hai, K.R.; Gong, D.Y.; Yang, Z.; Zhou, C. Inhibition of fatty acid amide hydrolase improves depressive-like behaviors independent of its peripheral antinociceptive effects in a rat model of neuropathic pain. Anesth. Analg. 2019, 129, 587–597. [Google Scholar] [CrossRef]
- Alteba, S.; Korem, N.; Akirav, I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learn. Mem. 2016, 23, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Alteba, S.; Portugalov, A.; Hillard, C.J.; Akirav, I. Inhibition of fatty acid amide hydrolase (FAAH) during adolescence and exposure to early life stress may exacerbate depression-like behaviors in male and female rats. Neuroscience 2021, 455, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Kruk-Slomka, M.; Michalak, A.; Biala, G. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: Mechanism of action and possible interactions with cholinergic system. Behav. Brain Res. 2015, 284, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Culmer, T.; Dykstra, L. Anandamide (AEA) modifiers indirectly modulate CB1 receptor activity in the forced swim test. FASEB J. 2011, 25, 796. [Google Scholar]
- Gobbi, G.; Bambico, F.R.; Mangieri, R.; Bortolato, M.; Campolongo, P.; Solinas, M.; Cassano, T.; Morgese, M.G.; Debonnel, G.; Duranti, A.; et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc. Natl. Acad. Sci. USA 2005, 102, 18620–18625. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, H.; Liu, S.; Wang, T.; Guan, J.; Jia, J. Role of hypothalamic cannabinoid receptors in post-stroke depression in rats. Brain Res. Bull. 2016, 121, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Umathe, S.N.; Manna, S.S.; Jain, N.S. Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. Behav. Brain Res. 2011, 223, 125–134. [Google Scholar] [CrossRef]
- Sartim, A.G.; Moreira, F.A.; Joca, S.R. Involvement of CB1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior. Neuroscience 2017, 340, 126–134. [Google Scholar] [CrossRef]
- McLaughlin, R.J.; Hill, M.N.; Morrish, A.C.; Gorzalka, B.B. Local enhancement of cannabinoid CB1 receptor signalling in the dorsal hippocampus elicits an antidepressant-like effect. Behav. Pharmacol. 2007, 18, 431–438. [Google Scholar] [CrossRef]
- Piomelli, D. The endocannabinoid system: A drug discovery perspective. Curr. Opin. Investig. Drugs 2005, 6, 672–679. [Google Scholar]
- Neumeister, A.; Normandin, M.D.; Pietrzak, R.H.; Piomelli, D.; Zheng, M.Q.; Gujarro-Anton, A.; Potenza, M.N.; Bailey, C.R.; Lin, S.F.; Najafzadeh, S.; et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: A positron emission tomography study. Mol. Psychiatry 2013, 18, 1034–1040. [Google Scholar] [CrossRef]
- Lunn, C.A.; Reich, E.P.; Bober, L. Targeting the CB2 receptor for immune modulation. Expert Opin. Ther. Targets 2006, 10, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Li, Y. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission. J. Physiol. 2015, 593, 871–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiguro, H.; Horiuchi, Y.; Tabata, K.; Liu, Q.R.; Arinami, T.; Onaivi, E.S. Cannabinoid CB2 receptor gene and environmental interaction in the development of psychiatric disorders. Molecules 2018, 23, 1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quraishi, S.A.; Paladini, C.A. A central move for CB2 receptors. Neuron 2016, 90, 670–671. [Google Scholar] [CrossRef] [Green Version]
- Moulton, C.D.; Pickup, J.C.; Ismail, K. The link between depression and diabetes: The search for shared mechanisms. Lancet Diabetes Endocrinol. 2015, 3, 461–471. [Google Scholar] [CrossRef]
- Poleszak, E.; Wośko, S.; Sławińska, K.; Wyska, E.; Szopa, A.; Sobczyński, J.; Wróbel, A.; Doboszewska, U.; Wlaź, P.; Wlaź, A.; et al. Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice. Behav. Brain Res. 2020, 378, 112297. [Google Scholar] [CrossRef]
- Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav. 2014, 135, 119–124. [Google Scholar] [CrossRef]
- Hwang, E.S.; Kim, H.B.; Lee, S.; Kim, M.J.; Kim, K.J.; Han, G.; Han, S.Y.; Lee, E.A.; Yoon, J.H.; Kim, D.O.; et al. Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression. Behav. Brain Res. 2020, 380, 112439. [Google Scholar] [CrossRef]
- Aguilar-Ávila, D.S.; Flores-Soto, M.E.; Tapia-Vázquez, C.; Pastor-Zarandona, O.A.; López-Roa, R.I.; Viveros-Paredes, J.M. β-Caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J. Med. Food 2019, 22, 460–468. [Google Scholar] [CrossRef]
- Hu, B.; Doods, H.; Treede, R.D.; Ceci, A. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. PAIN 2009, 143, 206–212. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.S.; Pérez-Ortiz, J.M.; Gutiérrez-Adán, A.; Manzanares, J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB2 receptors. Br. J. Pharmacol. 2010, 160, 1773–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.K.; Lynch, K.R.; Nguyen, T.; Im, D.S.; Cheng, R.; Saldivia, V.R.; Liu, Y.; Liu, I.S.; Heng, H.H.; Seeman, P.; et al. Cloning and characterization of additional members of the G protein-coupled receptor family. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2000, 1490, 311–323. [Google Scholar] [CrossRef]
- Wróbel, A.; Serefko, A.; Szopa, A.; Ulrich, D.; Poleszak, E.; Rechberger, T. O-1602, an agonist of atypical Cannabinoid receptors GPR55, reverses the symptoms of depression and detrusor overactivity in rats subjected to corticosterone treatment. Front. Pharmacol. 2020, 11, 1002. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Yu, R.; Li, W.; Liang, L.F.; Han, Q.; Huang, H.; Li, B.; Xu, S.; Wu, G.; Zhang, Y.Q.; et al. The Protective Effects of GPR55 against Hippocampal Neuroinflammation and Neurogenic Damage in CSDS Mice; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Huang, W.; Ke, Y.; Chen, R. Region-specific dysregulation of endocannabinoid system in learned helplessness model of depression. Neuroreport 2021, 32, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, M.; Szallasi, A. Targeting TRPV1: Challenges and issues in pain management. Open Drug Discov. J. 2014, 2, 37–49. [Google Scholar] [CrossRef]
- Li, J.X. Pain and depression comorbidity: A preclinical perspective. Behav. Brain Res. 2015, 276, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, R.E.; Kovács, K.J.; Nunez, M.G.; Larson, A.A. Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol. Res. 2014, 79, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Navarria, A.; Tamburella, A.; Iannotti, F.A.; Micale, V.; Camillieri, G.; Gozzo, L.; Verde, R.; Imperatore, R.; Leggio, G.M.; Drago, F.; et al. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. Pharmacol. Res. 2014, 87, 151–159. [Google Scholar] [CrossRef]
- Kirkedal, C.; Wegener, G.; Moreira, F.; Joca, S.R.; Liebenberg, N. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats. Acta Neuropsychiatr. 2017, 29, 324–329. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; Khan, I.; ElSohly, M.; Ross, S. Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010, 95, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Abame, M.A.; He, Y.; Wu, S.; Xie, Z.; Zhang, J.; Gong, X.; Wu, C.; Shen, J. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus. Neurosci. Lett. 2021, 744, 135594. [Google Scholar] [CrossRef] [PubMed]
- Bis-Humbert, C.; García-Cabrerizo, R.; García-Fuster, M.J. Decreased sensitivity in adolescent versus adult rats to the antidepressant-like effects of cannabidiol. Psychopharmacology 2020, 237, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- de Morais, H.; Chaves, Y.C.; Waltrick, A.P.; Jesus, C.H.; Genaro, K.; Crippa, J.A.; da Cunha, J.M.; Zanoveli, J.M. Sub-chronic treatment with cannabidiol but not with URB597 induced a mild antidepressant-like effect in diabetic rats. Neurosci. Lett. 2018, 682, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Gáll, Z.; Farkas, S.; Albert, Á.; Ferencz, E.; Vancea, S.; Urkon, M.; Kolcsár, M. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression. Biomolecules 2020, 10, 801. [Google Scholar] [CrossRef]
- Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav. 2019, 201, 59–63. [Google Scholar] [CrossRef]
- Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Sales, A.J.; Fogaça, M.V.; Sartim, A.G.; Pereira, V.S.; Wegener, G.; Guimarães, F.S.; Joca, S.R. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol. Neurobiol. 2019, 56, 1070–1081. [Google Scholar] [CrossRef]
- Sales, A.J.; Guimarães, F.S.; Joca, S.R. CBD modulates DNA methylation in the prefrontal cortex and hippocampus of mice exposed to forced swim. Behav. Brain Res. 2020, 388, 112627. [Google Scholar] [CrossRef]
- Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Luft, T.; Abelaira, H.M.; Fries, G.R.; Aguiar, B.W.; Kapczinski, F.; Hallak, J.E.; Zuardi, A.W.; et al. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr. 2011, 23, 241–248. [Google Scholar] [CrossRef]
- Xu, C.; Chang, T.; Du, Y.; Yu, C.; Tan, X.; Li, X. Pharmacokinetics of oral and intravenous cannabidiol and its antidepressant-like effects in chronic mild stress mouse model. Environ. Toxicol. Pharmacol. 2019, 70, 103202. [Google Scholar] [CrossRef]
- Malvestio, R.B.; Medeiros, P.; Negrini-Ferrari, S.E.; Oliveira-Silva, M.; Medeiros, A.C.; Padovan, C.M.; Luongo, L.; Maione, S.; Coimbra, N.C.; de Freitas, R.L. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT1A and CB1 receptors. Brain Res. Bull. 2021, 174, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 2010, 159, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linge, R.; Jiménez-Sánchez, L.; Campa, L.; Pilar-Cuéllar, F.; Vidal, R.; Pazos, A.; Adell, A.; Díaz, Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: Role of 5-HT1A receptors. Neuropharmacology 2016, 103, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartim, A.G.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—Possible involvement of 5-HT1A and CB1 receptors. Behav. Brain Res. 2016, 303, 218–227. [Google Scholar] [CrossRef]
- Fogaça, M.V.; Campos, A.C.; Coelho, L.D.; Duman, R.S.; Guimarães, F.S. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology 2018, 135, 22–33. [Google Scholar] [CrossRef]
- Poleszak, E.; Wośko, S.; Sławińska, K.; Szopa, A.; Wróbel, A.; Serefko, A. Cannabinoids in depressive disorders. Life Sci. 2018, 213, 18–24. [Google Scholar] [CrossRef]
- Black, N.; Stockings, E.; Campbell, G.; Tran, L.T.; Zagic, D.; Hall, W.D.; Farrell, M.; Degenhardt, L. Cannabinoids for the treatment of mental disorders and symptoms of mental disorders: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 995–1010. [Google Scholar] [CrossRef]
- McLaughlin, P.J. Reports of the death of CB1 antagonists have been greatly exaggerated: Recent preclinical findings predict improved safety in the treatment of obesity. Behav. Pharmacol. 2012, 23, 537–550. [Google Scholar] [CrossRef]
- Kruger, J.S.; Blavos, A.; Castor, T.S.; Wotring, A.J.; Wagner-Greene, V.R.; Glassman, T.; Kruger, D.J. Manipulation checking the munchies: Validating self-reported dietary behaviors during cannabis intoxication. Hum. Ethol. 2019, 34, 10–16. [Google Scholar] [CrossRef]
- Christensen, R.; Kristensen, P.K.; Bartels, E.M.; Bliddal, H.; Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: A meta-analysis of randomised trials. Lancet 2007, 370, 1706–1713. [Google Scholar] [CrossRef]
- Soyka, M. Rimonabant and depression. Pharmacopsychiatry 2008, 41, 204–205. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Naunton, M.; Kosari, S.; Peterson, G.; Thomas, J.; Christenson, J.K. Treatment guidelines for PTSD: A systematic review. J. Clin. Med. 2021, 10, 4175. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Onesti, E.; Tomassini, V.; Conte, A.; Gupta, S.; Gilio, F.; Pantano, P.; Pozzilli, C.; Inghilleri, M. Psychopathological and cognitive effects of therapeutic cannabinoids in multiple sclerosis: A double-blind, placebo controlled, crossover study. Clin. Neuropharmacol. 2009, 32, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Alessandria, G.; Meli, R.; Infante, M.T.; Vestito, L.; Capello, E.; Bandini, F. Long-term assessment of the cognitive effects of nabiximols in patients with multiple sclerosis: A pilot study. Clin. Neurol. Neurosurg. 2020, 196, 105990. [Google Scholar] [CrossRef]
- Portenoy, R.K.; Ganae-Motan, E.D.; Allende, S.; Yanagihara, R.; Shaiova, L.; Weinstein, S.; McQuade, R.; Wright, S.; Fallon, M.T. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: A randomized, placebo-controlled, graded-dose trial. J. Pain 2012, 13, 438–449. [Google Scholar] [CrossRef]
- Ware, M.A.; Wang, T.; Shapiro, S.; Robinson, A.; Ducruet, T.; Huynh, T.; Gamsa, A.; Bennett, G.J.; Collet, J.P. Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. CMAJ 2010, 182, E694–E701. [Google Scholar] [CrossRef] [Green Version]
- Skrabek, R.Q.; Galimova, L.; Ethans, K.; Perry, D. Nabilone for the treatment of pain in fibromyalgia. J. Pain 2008, 9, 164–173. [Google Scholar] [CrossRef]
- Frank, B.; Serpell, M.G.; Hughes, J.; Matthews, J.N.; Kapur, D. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: Randomised, crossover, double blind study. BMJ 2008, 336, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Narang, S.; Gibson, D.; Wasan, A.D.; Ross, E.L.; Michna, E.; Nedeljkovic, S.S.; Jamison, R.N. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J. Pain 2008, 9, 254–264. [Google Scholar] [CrossRef]
- Deckman, T.; DeWall, C.N.; Way, B.; Gilman, R.; Richman, S. Can marijuana reduce social pain? Soc. Psychol. Personal. Sci. 2014, 5, 131–139. [Google Scholar] [CrossRef]
- Solowij, N.; Broyd, S.J.; Beale, C.; Prick, J.A.; Greenwood, L.M.; Van Hell, H.; Suo, C.; Galettis, P.; Pai, N.; Fu, S.; et al. Therapeutic effects of prolonged cannabidiol treatment on psychological symptoms and cognitive function in regular cannabis users: A pragmatic open-label clinical trial. Cannabis Cannabinoid Res. 2018, 3, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsop, D.J.; Copeland, J.; Lintzeris, N.; Dunlop, A.J.; Montebello, M.; Sadler, C.; Rivas, G.R.; Holland, R.M.; Muhleisen, P.; Norberg, M.M.; et al. Nabiximols as an agonist replacement therapy during cannabis withdrawal: A randomized clinical trial. JAMA Psychiatry 2014, 71, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babson, K.A.; Boden, M.T.; Bonn-Miller, M.O. Sleep quality moderates the relation between depression symptoms and problematic cannabis use among medical cannabis users. Am. J. Drug Alcohol Abus. 2013, 39, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Denson, T.F.; Earleywine, M. Decreased depression in marijuana users. Addict. Behav. 2006, 31, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Walsh, Z.; Gonzalez, R.; Crosby, K.; Thiessen, M.S.; Carroll, C.; Bonn-Miller, M.O. Medical cannabis and mental health: A guided systematic review. Clin. Psychol. Rev. 2017, 51, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Bahorik, A.L.; Sterling, S.A.; Campbell, C.I.; Weisner, C.; Ramo, D.; Satre, D.D. Medical and non-medical marijuana use in depression: Longitudinal associations with suicidal ideation, everyday functioning, and psychiatry service utilization. J. Affect. Disord. 2018, 241, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Schlienz, N.J.; Scalsky, R.; Martin, E.L.; Jackson, H.; Munson, J.; Strickland, J.C.; Bonn-Miller, M.O.; Loflin, M.; Vandrey, R. A cross-sectional and prospective comparison of medicinal cannabis users and controls on self-reported health. Cannabis Cannabinoid Res. 2021, 6, 548–558. [Google Scholar] [CrossRef]
- Rana, T.; Behl, T.; Sehgal, A.; Mehta, V.; Singh, S.; Kumar, R.; Bungau, S. Integrating endocannabinoid signalling in depression. J. Mol. Neurosci. 2021, 71, 2022–2034. [Google Scholar] [CrossRef]
- Hill, M.N.; Miller, G.E.; Carrier, E.J.; Gorzalka, B.B.; Hillard, C.J. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009, 34, 1257–1262. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Miller, G.E.; Ho, W.S.; Gorzalka, B.B.; Hillard, C.J. Serum endocannabinoid content is altered in females with depressive disorders: A preliminary report. Pharmacopsychiatry 2008, 41, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Romero-Sanchiz, P.; Nogueira-Arjona, R.; Pastor, A.; Araos, P.; Serrano, A.; Boronat, A.; Garcia-Marchena, N.; Mayoral, F.; Bordallo, A.; Alen, F.; et al. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019, 149, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Heyman, E.; Gamelin, F.X.; Goekint, M.; Piscitelli, F.; Roelands, B.; Leclair, E.; Di Marzo, V.; Meeusen, R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology 2012, 37, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.D.; Crombie, K.M.; Cook, D.B.; Hillard, C.J.; Koltyn, K.F. Serum endocannabinoid and mood changes after exercise in major depressive disorder. Med. Sci. Sports Exerc. 2019, 51, 1909. [Google Scholar] [CrossRef] [Green Version]
- Kranaster, L.; Hoyer, C.; Aksay, S.S.; Bumb, J.M.; Leweke, F.M.; Ke, C.; Thiel, M.; Lutz, B.; Bindila, L.; Sartorius, A. Electroconvulsive therapy enhances endocannabinoids in the cerebrospinal fluid of patients with major depression: A preliminary prospective study. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Le, T.; McGuire, J.; Xing, G.; Zhang, L.; Li, H.; Parker, C.C.; Johnson, L.R.; Ursano, R.J. Expression pattern of the cannabinoid receptor genes in the frontal cortex of mood disorder patients and mice selectively bred for high and low fear. J. Psychiatr. Res. 2012, 46, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Hungund, B.L.; Vinod, K.Y.; Kassir, S.A.; Basavarajappa, B.S.; Yalamanchili, R.; Cooper, T.B.; Mann, J.J.; Arango, V. Upregulation of CB1 receptors and agonist-stimulated [35S] GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol. Psychiatry 2004, 9, 184–190. [Google Scholar] [CrossRef]
- Koethe, D.; Llenos, I.C.; Dulay, J.R.; Hoyer, C.; Torrey, E.F.; Leweke, F.M.; Weis, S. Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J. Neural Transm. 2007, 114, 1055–1063. [Google Scholar] [CrossRef]
- Leweke, F.M.; Koethe, D. Cannabis and psychiatric disorders: It is not only addiction. Addict. Biol. 2008, 13, 264–275. [Google Scholar] [CrossRef]
- Hirvonen, J.; Goodwin, R.S.; Li, C.T.; Terry, G.E.; Zoghbi, S.S.; Morse, C.; Pike, V.W.; Volkow, N.D.; Huestis, M.A.; Innis, R. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol. Psychiatry 2012, 17, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Klugmann, M.; Klippenstein, V.; Leweke, F.M.; Spanagel, R.; Schneider, M. Cannabinoid exposure in pubertal rats increases spontaneous ethanol consumption and NMDA receptor associated protein levels. Int. J. Neuropsychopharmacol. 2011, 14, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Miao, Q.; Lu, X.; Zhang, Z.; Chen, M.; Zhang, J.; Zhai, J. The association of endocannabinoid receptor genes (CNR1 and CNR2) polymorphisms with depression: A meta-analysis. Medicine 2019, 98. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, Y.; Zhao, J.; Ma, Y.; Su, K.; Yuan, W.; Ma, J.Z.; Payne, T.J.; Li, M.D. Detection of significant association between variants in cannabinoid receptor 1 Gene (CNR1) and personality in African–American population. Front. Genet. 2018, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Icick, R.; Peoc’h, K.; Karsinti, E.; Ksouda, K.; Hajj, A.; Bloch, V.; Prince, N.; Mouly, S.; Bellivier, F.; Lépine, J.P.; et al. A cannabinoid receptor 1 polymorphism is protective against major depressive disorder in methadone-maintained outpatients. Am. J. Addict. 2015, 24, 613–620. [Google Scholar] [CrossRef]
- Tsai, S.J.; Wang, Y.C.; Hong, C.J. Association study between cannabinoid receptor gene (CNR1) and pathogenesis and psychotic symptoms of mood disorders. Am. J. Med. Genet. 2001, 105, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Mitjans, M.; Serretti, A.; Fabbri, C.; Gastó, C.; Catalán, R.; Fañanás, L.; Arias, B. Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology 2013, 227, 509–519. [Google Scholar] [CrossRef]
- Monteleone, P.; Bifulco, M.; Maina, G.; Tortorella, A.; Gazzerro, P.; Proto, M.C.; Di Filippo, C.; Monteleone, F.; Canestrelli, B.; Buonerba, G.; et al. Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol. Res. 2010, 61, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Lazary, J.; Eszlari, N.; Juhasz, G.; Bagdy, G. A functional variant of CB2 receptor gene interacts with childhood trauma and FAAH gene on anxious and depressive phenotypes. J. Affect. Disord. 2019, 257, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Onaivi, E.S.; Ishiguro, H.; Gong, J.P.; Patel, S.; Meozzi, P.A.; Myers, L.; Perchuk, A.; Mora, Z.; Tagliaferro, P.A.; Gardner, E.; et al. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: From mice to human subjects. PLoS ONE 2008, 3, e1640. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, H.; Iwasaki, S.; Teasenfitz, L.; Higuchi, S.; Horiuchi, Y.; Saito, T.; Arinami, T.; Onaivi, E.S. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharm. J. 2007, 7, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Petrakis, I.L.; Gonzalez, G.; Rosenheck, R.; Krystal, J.H. Comorbidity of alcoholism and psychiatric disorders: An overview. Alcohol Res. Health 2002, 26, 81. [Google Scholar]
- Minocci, D.A.; Massei, J.; Martino, A.; Milianti, M.; Piz, L.; Di Bello, D.; Sbrana, A.; Martinotti, E.; Rossi, A.M.; Nieri, P. Genetic association between bipolar disorder and 524A > C (Leu133Ile) polymorphism of CNR2 gene, encoding for CB2 cannabinoid receptor. J. Affect. Disord. 2011, 134, 427–430. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, M.S.; Navarrete, F.; Navarro, G.; Reyes-Resina, I.; Franco, R.; Lanciego, J.L.; Giner, S.; Manzanares, J. Alterations in gene and protein expression of cannabinoid CB2 and GPR55 receptors in the dorsolateral prefrontal cortex of suicide victims. Neurotherapeutics 2018, 15, 796–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazary, J.; Eszlari, N.; Juhasz, G.; Bagdy, G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur. Neuropsychopharmacol. 2016, 26, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Maple, K.E.; McDaniel, K.A.; Shollenbarger, S.G.; Lisdahl, K.M. Dose-dependent cannabis use, depressive symptoms, and FAAH genotype predict sleep quality in emerging adults: A pilot study. Am. J. Drug Alcohol Abus. 2016, 42, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Turecki, G. Dissecting the suicide phenotype: The role of impulsive–aggressive behaviours: 2003 CCNP Young Investigator Award Paper. J. Psychiatry Neurosci. 2005, 30, 398–408. [Google Scholar]
- Mammen, G.; Rueda, S.; Roerecke, M.; Bonato, S.; Lev-Ran, S.; Rehm, J. Association of cannabis with long-term clinical symptoms in anxiety and mood disorders: A systematic review of prospective studies. J. Clin. Psychiatry 2018, 79, 2248. [Google Scholar] [CrossRef]
- Cuttler, C.; Spradlin, A.; McLaughlin, R.J. A naturalistic examination of the perceived effects of cannabis on negative affect. J. Affect. Disord. 2018, 235, 198–205. [Google Scholar] [CrossRef]
- Henquet, C.; Rosa, A.; Krabbendam, L.; Papiol, S.; Faňanás, L.; Drukker, M.; Ramaekers, J.G.; van Os, J. An experimental study of catechol-O-methyltransferase Val158Met moderation of Δ-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 2006, 31, 2748–2757. [Google Scholar] [CrossRef]
- World Health Organization: The Health and Social Effects of Nonmedical Cannabis Use: World Health Organization. Available online: https://apps.who.int/iris/handle/10665/251056 (accessed on 29 March 2022).
Drug | Administration | Animals | Stress | Model | Effect | Reference |
---|---|---|---|---|---|---|
AM251 (CB1 antagonist) | Acute, 1 μg, i.c.v. | Male NMRI mice | - | FST | Elevated immobility | [76] |
Acute, 0.28 ng, PFC microinjection | Male SD rats | CUS | FST | Elevated immobility | [77] | |
Acute, 0.01 ng, HIPP microinjection | Male Wistar rats | Sleep deprivation | FST | Elevated immobility | [78] | |
Acute, 0.3, 0.5 mg/kg, i.p. | Male NMRI mice | Foot shock | FST | Decreased immobility | [79] | |
Acute, 0.3, 0.5 mg/kg, i.p. | Male NMRI mice | Foot shock | TST | Decreased immobility | [79] | |
Acute, 0.3, 0.5, 1, 10 mg/kg, i.p. | C57BL/6 male mice | - | FST | Decreased immobility | [80] | |
Acute, 0.3, 0.5, 1 mg/kg, i.p. | C57BL/6 male mice | - | TST | Decreased immobility | [80] | |
Acute, 0.01 μg, BLA microinjection | Male SD rats | - | FST | Decreased immobility | [81] | |
Rimonabant (CB1 antagonist) | Chronic (21 days), 10 mg/kg, i.p. | Male SD rats | - | FST | Elevated immobility | [75] |
- | SPT | Decreased sucrose preference | [75] | |||
Acute (2 times), 3 mg/kg, 10 mg/kg, oral | Male SD and Wistar rats | - | FST | Decreased immobility | [82] | |
Chronic (35 days), 10 mg/kg, oral | OF1 mice | CMS | FST | Decreased immobility | [82] |
Drug | Administration | Animals | Stress | Treatment | Model | Effect | Reference |
---|---|---|---|---|---|---|---|
AM251 (CB1 antagonist) | Acute, 1 mg/kg, i.p. | Male Wistar rats | Streptozotocin (diabetic) | AEA | FST | Elevated immobility | [83] |
7 days, 1 mg/kg, i.p. | Male SD rat | CUMS | rTMS | FST | Elevated immobility | [84] | |
3 days, 0.3 mg/kg, i.p. | Male SD rats | CMS | WIN55,212-2 | FST | Elevated immobility | [85] | |
14 days, 0.3 mg/kg, i.p. Acute, 1 mg/kg, i.p. | Male and female SD rats | ELS | JZL184 or URB597 | FST | Elevated immobility | [86] | |
Male Wistar rats | Streptozotocin (diabetic) | CBD | FST | Elevated immobility | [87] | ||
Acute, 5 mg/kg, i.p. | Male Long-Evans rats | - | AM404 | FST | Elevated immobility | [88] | |
Acute, 0.8 μg, NAc microinjection | Male C57BL/6J mice | Social defeat | CHPG | TST | Elevated immobility | [90] | |
Acute, 0.28 ng, PFC microinjection | Male SD rats | - | URB597 | FST | Elevated immobility | [91] | |
Acute, 0.25 mg/kg, i.p | Male Albino Swiss mice | - | Tianeptine | FST | Decreasedimmobility | [92] | |
Rimonabant (CB1 antagonist) | Acute, 3 mg/kg, i.p. | Male Wistar rats | - | URB597, AM404, CP55,940 | FST | Elevated immobility | [89] |
Drug | Administration | Animals | Stress | Model | Effect | Reference |
---|---|---|---|---|---|---|
URB597 (FAAH Inhibitor | Chronic, 0.2 mg/kg, i.p. | C57BL/6J mice | CUS | FST | Decreased immobility | [98] |
Chronic, 0.3 mg/kg, i.p. | Female SD rats | Adolescent THC | FST | Decreased immobility | [99] | |
Chronic, 0.3 mg/kg, i.p. | Female SD rats | Adolescent THC | SPT | Elevated sucrose preference | [99] | |
Chronic, 0.3 mg/kg, i.p. | Male Wistar rats | CMS | SPT | Elevated sucrose preference | [100] | |
Chronic, 5.8 mg/kg, i.p. 14 days (during mid-adolescence), 0.4 mg/kg, i.p. | Male Wistar rats | CCI injury (NP) | FST | Decreased immobility | [101] | |
Male and female SD rats | ELS | FST | Decreased immobility | [86] | ||
14 days (during late-adolescence), 0.4 mg/kg, i.p. | Male and female SD rats | ELS | FST | Elevated immobility | [103] | |
Acute, 0.3 mg/kg, i.p. | Male SD rats | Severe shock | FST | Decreased immobility | [40] | |
Acute, 0.3 mg/kg, i.p. | Male SD rats | Severe shock | SaPT | Elevated saccharine preference | [40] | |
Acute, 0.03, 0.1, 0.3 mg/kg, i.p. | Male Wistar rats | - | FST | Decreased immobility | [89] | |
Acute, 0.1 mg/kg, i.p. | Male C57BL/6 mice | - | FST | Decreased immobility | [106] | |
Acute, 0.1 mg/kg, i.p. | Male C57BL/6 mice | - | TST | Decreased immobility | [106] | |
Acute, 1, 3.2 mg/kg, i.p. | Male SD rats | - | FST | Decreased immobility | [105] | |
Acute, 5, 10 ng, i.c.v. | NMRI mice | Methamphetamine | FST | Decreased immobility | [76] | |
Acute, 0.05, 0.1, 1, 5, 10 μg, i.c.v. | Male Swiss mice | - | FST | Decreased immobility | [108] | |
Acute, 0.01, 0.1, 1 nmol, vmPFC microinjection | Male Wistar rats | - | FST | Decreased immobility | [109] | |
Acute, 0.01 μg, PFC microinjection | Male Wistar rats | - | FST | Decreased immobility | [91] | |
HU-210 (CB1/CB2 agonist) | Acute, 0.5, 1 μg, dentate gyrus microinjection | Male Wistar rats | - | FST | Decreased immobility | [110] |
AM404 (AEA reuptake inhibitor) | Acute, 5 mg/kg, i.p. | Male Long-Evans rats Rats | - | FST | Decreased immobility | [88] |
Acute, 0.1, 0.3, 1, 3 mg/kg, i.p. | - | FST | Decreased immobility | [89] | ||
Acute, 1 mg/kg, i.p. | Male SD rats | - | FST | Decreased immobility | [105] | |
Acute, 0.1, 1, 5, 10 μg, i.c.v. | Male Swiss mice | - | FST | Decreased immobility | [108] | |
CP55,940 (CB1/CB2 agonist) | Acute, 0.03, 0.1, 0.3 mg/kg, i.p. | Male Wistar rats | - | FST | Decreased immobility | [89] |
Oleamide | Acute, 10, 20 mg/kg, i.p. | Male Swiss mice | - | FST | Decreased immobility | [104] |
CBD Administration | Animals | Stress | Model | Effect | Reference |
---|---|---|---|---|---|
Acute, 200 mg/kg, i.p. | Male Swiss Webster mice | - | FST | Decreased immobility | [133] |
7-day, 100 mg/kg, i.p. | Male C57BL/6J mice | - | FST | Decreased immobility | [134] |
7-day, 10, 30 mg/kg, i.p. | Male SD rats | - | FST | Decreased immobility | [135] |
Sub-chronic, 30 mg/kg, i.p. | Male Wistar rats | Streptozotocin (diabetic) | FST | Decreased immobility | [136] |
Chronic, 10 mg/kg, i.p. | Male Wistar rats | CUMS | SPT | Elevated sucrose preference | [137] |
Acute, 30 mg/kg, oral | Male and female WKY rats | WKY (genetic model) | SaPT | Elevated saccharine preference | [138] |
Acute, 30 mg/kg, oral | Male and female WKY and male FSL rats | WKY or FSL (genetic models) | FST | Decreased immobility | [138] |
Acute, 30 mg/kg, oral | Male WKY rats | WKY (genetic model) | SaPT | Elevated saccharine preference | [39] |
Acute, 10 mg/kg, i.p. | Male Swiss mice | - | FST | Decreased immobility | [139] |
Acute, 7 mg/kg, i.p. (co-administered with fluoxetine) | Male Swiss mice | - | FST | Decreased immobility | [139] |
Acute, 10 mg/kg, i.p. | Male Swiss mice | - | FST | Decreased immobility | [141] |
Acute, 7 mg/kg, i.p. (co-administered with AzaD or RG108) | Male Swiss mice | - | FST | Decreased immobility | [141] |
Acute, 10 mg/kg, i.p. | Male Swiss mice | - | FST | Decreased immobility | [140] |
Chronic, 30 mg/kg, i.p. | Male Wistar rats | - | FST | Decreased immobility | [142] |
Acute, 30 mg/kg, i.p. | Male Wistar rats | - | FST | Decreased immobility | [142] |
Acute, 10 mg/kg, i.v. | Male ICR mice | CMS | FST | Decreased immobility | [143] |
Acute, 100 mg/kg, oral | Male ICR mice | CMS | FST | Decreased immobility | [143] |
Acute, 15, 30, 60 nmol, mPFC microinjection | Male Wistar rats | CCI injury (NP) | FST | Decreased immobility | [144] |
Acute, 30 mg/kg, i.p. | Male Swiss mice | - | FST | Decreased immobility | [145] |
7 day, 50 mg/kg, i.p. | Male C57BL6 mice | OBX | SPT | Elevated sucrose preference | [146] |
Acute, 10, 30, 45, 60 nmol, vmPFC microinjection | Male Wistar rats | - | FST | Decreased immobility | [147] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bright, U.; Akirav, I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int. J. Mol. Sci. 2022, 23, 5526. https://doi.org/10.3390/ijms23105526
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. International Journal of Molecular Sciences. 2022; 23(10):5526. https://doi.org/10.3390/ijms23105526
Chicago/Turabian StyleBright, Uri, and Irit Akirav. 2022. "Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence" International Journal of Molecular Sciences 23, no. 10: 5526. https://doi.org/10.3390/ijms23105526
APA StyleBright, U., & Akirav, I. (2022). Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. International Journal of Molecular Sciences, 23(10), 5526. https://doi.org/10.3390/ijms23105526