Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future
Abstract
:1. Cardiovascular Diseases: Overview
2. Historic Overview: Early Biomarkers for CVDs
3. Current CVDs Biomarkers in Clinical Practice
3.1. Troponins
Disadvantages of Cardiac Troponins as a CVD Biomarker
3.2. Cardiac Natriuretic Peptides
Disadvantages of Natriuretic Peptides as CVD Biomarkers
4. Future: Prospective Biomarkers for CVDs
4.1. Heart-Type Fatty Acid-Binding Protein (H-FABP)
4.2. Copeptin
4.3. Adrenomedullin (ADM)
4.4. P-Selectin
4.5. Soluble Urokinase -Type Plasminogen Activator Receptor (suPAR) and Plasminogen Activator Inhibitor-1 (PAI-1)
4.6. Extracellular Matrix Remodelling
4.6.1. Galectin-3 (GAL-3)
4.6.2. Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors (TIMPs)
4.7. Inflammatory Markers
4.7.1. Growth Differentiation Factor 15 (GDF-15)
4.7.2. Endothelin-1 (ET-1)
4.7.3. Suppression of Tumorigenicity 2 (ST2)
4.7.4. Lipoprotein-Associated Phospholipase A2 (Lp-PLA2)
4.7.5. Soluble CD40 Ligand
4.8. MicroRNAs
4.9. Other Biomarkers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO) Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 June 2021).
- Behera, S.; Pramanik, K.; Nayak, M. Recent Advancement in the Treatment of Cardiovascular Diseases: Conventional Therapy to Nanotechnology. Curr. Pharm. Des. 2015, 21, 4479–4497. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K.; Ferner, R.E. Biomarkers—A general review. Curr. Protoc. Pharmacol. 2017, 2017, 9.23.1–9.23.17. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Smith, J.J.; Sorensen, A.G.; Thrall, J.H. Biomarkers in imaging: Realizing radiology’s future. Radiology 2003, 227, 633–638. [Google Scholar] [CrossRef]
- Hlatky, M.A.; Greenland, P.; Arnett, D.K.; Ballantyne, C.M.; Criqui, M.H.; Elkind, M.S.V.; Go, A.S.; Harrell, F.E., Jr.; Hong, Y.; Howard, B.V.; et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American heart association. Circulation 2009, 119, 2408–2416. [Google Scholar] [CrossRef] [Green Version]
- Danese, E.; Montagnana, M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann. Transl. Med. 2016, 4, 194. [Google Scholar] [CrossRef] [Green Version]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- McLeish, M.J.; Kenyon, G.L. Relating structure to mechanism in creatine kinase. Crit. Rev. Biochem. Mol. Biol. 2005, 40, 1–20. [Google Scholar] [CrossRef]
- Kemp, M.; Donovan, J.; Higham, H.; Hooper, J. Biochemical markers of myocardial injury. Br. J. Anaesth. 2004, 93, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Kurapati, R.; Soos, M. “CPK-MB”. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Dolci, A.; Panteghini, M. The exciting story of cardiac biomarkers: From retrospective detection to gold diagnostic standard for acute myocardial infarction and more. Clin. Chim. Acta 2006, 369, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.G.; Steg, P.G.; Eagle, K.A.; Fox, K.A.A.; López-Sendón, J.; Montalescot, G.; Budaj, A.; Kennelly, B.M.; Gore, J.M.; Allegrone, J.; et al. The diagnostic and prognostic impact of the redefinition of acute myocardial infarction: Lessons from the Global Registry of Acute Coronary Events (GRACE). Am. Heart J. 2006, 151, 654–660. [Google Scholar] [CrossRef] [PubMed]
- The Joint European Society of Cardiology/ American College of Cardiology Committee. Myocardial infarction redefined—A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee f or the redefinition of myocardial infarction. J. Am. Coll. Cardiol. 2000, 36, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Morrow, D.A.; Cannon, C.P.; Jesse, R.L.; Newby, L.K.; Ravkilde, J.; Storrow, A.B.; Wu, A.H.; Christenson, R.H. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation 2007, 115, 356–375. [Google Scholar]
- Christenson, R.H.; Vaidya, H.; Landt, Y.; Bauer, R.S.; Green, S.F.; Apple, F.A.; Jacob, A.; Magneson, G.R.; Nag, S.; Wu, A.H.; et al. Standardization of Creatine Kinase-MB (CK-MB) Mass Assays: The Use of Recombinant CK-MB as a Reference Material. Clin. Chem. 1999, 45, 1414–1423. [Google Scholar] [CrossRef]
- Lauer, B.; Niederau, C.; Kühl, U.; Schannwell, M.; Pauschinger, M.; Strauer, B.E.; Schultheiss, H.P. Cardiac troponin T in patients with clinically suspected myocarditis. J. Am. Coll. Cardiol. 1997, 30, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Collinson, P.O.; Garrison, L.; Christenson, R.H. Cardiac biomarkers—A short biography. Clin. Biochem. 2015, 48, 197–200. [Google Scholar]
- Singh, G.; Baweja, P.S. Creatine Kinase–MB. Am. J. Clin. Pathol. 2014, 141, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, M.; Van Hee, R. Creatinine-kinase-MB determination in non-cardiac trauma: Its difference with cardiac infarction and its restricted use in trauma situations. Eur. J. Emerg. Med. 2001, 8, 177–179. [Google Scholar] [CrossRef]
- Ladowski, J.S.; Sullivan, M.; Schatzlein, M.H.; Peterson, A.; Underhill, D.J.; Scheeringa, R.H. Cardiac isoenzymes following heart transplantation. Chest 1992, 102, 1520–1521. [Google Scholar] [CrossRef] [PubMed]
- de Iuliis, F.; Salerno, G.; Taglieri, L.; De Biase, L.; Lanza, R.; Cardelli, P.; Scarpa, S. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumor Biol. 2016, 37, 3379–3387. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.S.; Lee, J.; Kim, S.Y.; Kwon, H.J.; Lee, H.K.; Park, D.J.; Kim, Y. Comparison between creatine kinase MB, heart-type fatty acid-binding protein, and cardiac troponin T for detecting myocardial ischemic injury after cardiac surgery. Clin. Chim. Acta 2019, 488, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.E.; Siegel, B.A.; Goldstein, J.A.; Jaffe, A.S. Elevations of CK-MB following pulmonary embolism; A manifestation of occult right ventricular infarction. Chest 1992, 101, 1203–1206. [Google Scholar] [CrossRef]
- Bozbay, M.; Uyarel, H.; Avsar, S.; Oz, A.; Keskin, M.; Tanik, V.O.; Bakhshaliyev, N.; Ugur, M.; Pehlivanoglu, S.; Eren, M. Creatinine kinase isoenzyme-MB: A simple prognostic biomarker in patients with pulmonary embolism treated with thrombolytic therapy. J. Crit. Care 2015, 30, 1179–1183. [Google Scholar] [CrossRef]
- Wang, S.; Qin, L.; Wu, T.; Deng, B.; Sun, Y.; Hu, D.; Mohan, C.; Zhou, X.J.; Peng, A. Elevated cardiac markers in chronic kidney disease as a consequence of hyperphosphatemia-induced cardiac myocyte injury. Med. Sci. Monit. 2014, 20, 2043–2053. [Google Scholar]
- Matsumura, T.; Saito, T.; Fujimura, H.; Shinno, S. Cardiac troponin I for accurate evaluation of cardiac status in myopathic patients. Brain Dev. 2007, 29, 496–501. [Google Scholar] [CrossRef]
- Volochayev, R. Laboratory Test Abnormalities are Common in Polymyositis and Dermatomyositis and Differ Among Clinical and Demographic Groups. Open Rheumatol. J. 2012, 6, 54–63. [Google Scholar] [CrossRef]
- Benoist, J.F.; Cosson, C.; Mimoz, O.; Edouard, A. Serum cardiac troponin I, creatine kinase (CK), and CK-MB in early posttraumatic rhabdomyolysis. Clin.Chem. 1997, 43, 416–417. [Google Scholar] [CrossRef]
- Osborn, L.A.; Rossum, A.; Standefer, J.; Jackson, J.; Skipper, B.; Beeson, C.; Crawford, M.H. Evaluation of CK and CK-MB in Alcohol Abuse Subjects with Recent Heavy Consumption. Cardiology 1995, 86, 130–134. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, C.T.H. Cardiac amyloidosis mimicking acute coronary syndrome: A case report and literature review. Eur. Heart J. Case Rep. 2020, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Newby, L.K.; Roe, M.T.; Chen, A.Y.; Ohman, E.M.; Christenson, R.H.; Pollack, C.V.; Hoekstra, J.W.; Peacock, W.F.; Harrington, R.A.; Jesse, R.L.; et al. Frequency and clinical implications of discordant creatine kinase-MB and troponin measurements in acute coronary syndromes. J. Am. Coll. Cardiol. 2006, 47, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-García, J. Cardiomyopathies: A Comparative Analysis of Phenotypes and Genotypes. In Post-Genomic Cardiology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 363–426. [Google Scholar]
- Li, M.X.; Hwang, P.M. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 2015, 571, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellow, K.A.; Bhavsar, P.K.; Brand, N.J.; Barton, P.J.R. Identification of novel, cardiac-restricted transcription factors binding to a CACC-box within the human cardiac troponin I promoter. Cardiovasc. Res. 2001, 50, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, P.K.; Dellow, K.A.; Yacoub, M.H.; Brand, N.J.; Barton, P.J.R. Identification of cis-acting DNA elements required for expression of the human cardiac traponin I. gene promoter. J. Mol. Cell. Cardiol. 2000, 32, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.A.W.; Malouf, N.N.; Oakeley, A.E.; Pagani, E.D.; Allen, P.D. Troponin T Isoform Expression in Humans. Circ. Res. 1991, 69, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Karlén, J.; Karlsson, M.; Eliasson, H.; Bonamy, A.K.E.; Halvorsen, C.P. Cardiac Troponin T in Healthy Full-Term Infants. Pediatr. Cardiol. 2019, 40, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Sasse, S.; Brand, N.J.; Kyprianou, P.; Dhoot, G.K.; Wade, R.; Arai, M.; Periasamy, M.; Yacoub, M.H.; Barton, P.J. Troponin I gene expression during human cardiac development and in end—Stage heart failure. Circ. Res. 1993, 72, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.A.W.; Oakeley, A.E. Immunological identification of five troponin T isoforms reveals an elaborate maturational troponin T profile in rabbit myocardium. Circ. Res. 1989, 65, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Mesnard, L.; Logeart, D.; Taviaux, S.; Diriong, S.; Mercadier, J.-J.; Samson, F. Human Cardiac Troponin T: Cloning and Expression of New Isoforms in the Normal and Failing Heart. Circ. Res. 1995, 76, 687–692. [Google Scholar] [CrossRef]
- Barton, P.J.R.; Felkin, L.E.; Koban, M.U.; Cullen, M.E.; Brand, N.J.; Dhoot, G.K. The slow skeletal muscle troponin T gene is expressed in developing and diseased human heart. Mol. Cell. Biochem. 2004, 263, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Samson, F.; Mesnard, L.; Mihovilovic, M.; Potter, T.G.; Mercadier, J.J.; Roses, A.D.; Gilbert, J.R. A New Human Slow Skeletal Troponin T (TnTs) mRNA Isoform Derived from Alternative Splicing of a Single Gene. Biochem. Biophys. Res. Commun. 1994, 199, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012, 60, 1581–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagai, A.; Alexander, K.P.; Berger, J.S.; Senior, R.; Sajeev, C.; Pracon, R.; Mavromatis, K.; Lopez-Sendón, J.L.; Gosselin, G.; Diaz, A.; et al. Use of troponin assay 99th percentile as the decision level for myocardial infarction diagnosis. Am. Heart J. 2017, 190, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Giannitsis, E.; Kurz, K.; Hallermayer, K.; Jarausch, J.; Jaffe, A.S.; Katus, H.A. Analytical validation of a high-sensitivity cardiac troponin T. assay. Clin. Chem. 2010, 56, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Melanson, S.E.F.; Morrow, D.A.; Jarolim, P. Earlier detection of myocardial injury in a preliminary evaluation using a new troponin I assay with improved sensitivity. Am. J. Clin. Pathol. 2007, 128, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.; Twerenbold, R.; Reichlin, T. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. Clin. Chem. 2019, 65, 490–491. [Google Scholar] [CrossRef]
- Keller, T.; Zeller, T.; Peetz, D.; Tzikas, S.; Roth, A.; Czyz, E.; Bickel, C.; Baldus, S.; Warnholtz, A.; Fröhlich, M. Sensitive Troponin I Assay in Early Diagnosis of Acute Myocardial Infarction. N. Engl. J. Med. 2009, 361, 868–877. [Google Scholar] [CrossRef] [Green Version]
- James, S.; Armstrong, P.; Califf, R.; Simoons, M.L.; Venge, P.; Wallentin, L.; Lindahl, B. Troponin T levels and risk of 30-day outcomes in patients with the acute coronary syndrome: Prospective verification in the GUSTO-IV trial. Am. J. Med. 2003, 115, 178–184. [Google Scholar] [CrossRef]
- Venge, P.; Lagerqvist, B.o.; Diderholm, E.; Lindahl, B.; Wallentin, L. Clinical performance of three cardiac troponin assays in patients with unstable coronary artery disease (a FRISC II substudy). Am. J. Cardiol. 2002, 89, 1035–1041. [Google Scholar] [CrossRef]
- Morrow, D.A.; Rifai, N.; Sabatine, M.S.; Ayanian, S.; Murphy, S.A.; De Lemos, J.A.; Braunwald, E.; Cannon, C.P. Evaluation of the AccuTnI cardiac troponin I assay for risk assessment in acute coronary syndromes. Clin. Chem. 2003, 49, 1396–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, D.A.; Cannon, C.P.; Rifai, N.; Frey, M.J.; Vicari, R.; Lakkis, N.; Robertson, D.H.; Hille, D.A.; DeLucca, P.T.; DiBattiste, P.M.; et al. Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: Results from a randomized trial. J. Am. Med. Assoc. 2001, 286, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Doust, J.; Glasziou, P. High-Sensitivity Troponin Highlights the Need for New Methods to Evaluate Diagnostic Tests. Circ. Cardiovasc. Qual. Outcomes 2018, 11, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Aw, T.C.; Huang, W.T.; Le, T.T.; Pua, C.J.; Ang, B.; Phua, S.K.; Yeo, K.K.; Cook, S.A.; Chin, C.W. High-Sensitivitycardiac Troponinsin Cardio-Healthy Subjects: A Cardiovascular Magnetic Resonance Imaging Study. Sci. Rep. 2018, 8, 15409. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A.; Jarolim, P.; Braunwald, E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: Results from TIMI 35. Eur. Heart J. 2009, 30, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Gresslien, T.; Agewall, S. Troponin and exercise. Int. J. Cardiol. 2016, 221, 609–621. [Google Scholar] [CrossRef]
- Thygesen, K.; Mair, J.; Katus, H.; Plebani, M.; Venge, P.; Collinson, P.; Lindahl, B.; Giannitsis, E.; Hasin, Y.; Galvani, M.; et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart J. 2010, 31, 2197–2204. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern. Emerg. Med. 2017, 12, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Park, K.C.; Gaze, D.C.; Collinson, P.O.; Marber, M.S. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc. Res. 2017, 113, 1708–1718. [Google Scholar] [CrossRef]
- Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Matic, M.; Simic, D.; Radovanovic, S.; Simic, T. Novel Biomarkers of Heart Failure, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 79. [Google Scholar]
- Katus, H.A.; Remppis, A.; Scheffold, T.; Diederich, K.W.; Kuebler, W. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am. J. Cardiol. 1991, 67, 1360–1367. [Google Scholar] [CrossRef]
- Hallén, J. Troponin for the estimation of infarct size: What have we learned? Cardiology 2012, 121, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Giannitsis, E.; Steen, H.; Kurz, K.; Ivandic, B.; Simon, A.C.; Futterer, S.; Schild, C.; Isfort, P.; Jaffe, A.S.; Katus, H.A. Cardiac Magnetic Resonance Imaging Study for Quantification of Infarct Size Comparing Directly Serial VS. Single Time-Point Measurements of Cardiac Troponin T. J. Am. Coll. Cardiol. 2008, 51, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, A.; Broadley, S.A. Review article: Elevated troponin: Diagnostic gold or fool’s gold? EMA Emerg. Med. Australas. 2014, 26, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hickman, P.E.; Potter, J.M.; Aroney, C.; Koerbin, G.; Southcott, E.; Wu, A.H.B.; Roberts, M.S. Cardiac troponin may be released by ischemia alone, without necrosis. Clin. Chim. Acta 2010, 411, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Ramaraj, R.; Sorrell, V.L.; Movahed, M.R. Levels of troponin release can aid in the early exclusion of stress-induced (takotsubo) cardiomyopathy. Exp. Clin. Cardiol. 2009, 14, 6–8. [Google Scholar]
- Novo, G.; Giambanco, S.; Bonomo, V.; Sutera, M.R.; Giambanco, F.; Rotolo, A.; Evola, S.; Assennato, P.; Novo, S. Troponin I/ejection fraction ratio: A new index to differentiate Takotsubo cardiomyopathy from myocardial infarction. Int. J. Cardiol. 2015, 180, 255–257. [Google Scholar] [CrossRef]
- Randhawa, M.S.; Dhillon, A.S.; Taylor, H.C.; Sun, Z.; Desai, M.Y. Diagnostic utility of cardiac biomarkers in discriminating takotsubo cardiomyopathy from acute myocardial infarction. J. Card. Fail. 2014, 20, 2–8. [Google Scholar] [CrossRef]
- Burgdorf, C.; Schubert, A.; Schunkert, H.; Kurowski, V.; Radke, P.W. Release patterns of copeptin and troponin in Tako-Tsubo cardiomyopathy. Peptides 2012, 34, 389–394. [Google Scholar] [CrossRef]
- Sharkey, S.W.; Lesser, J.R.; Menon, M.; Parpart, M.; Maron, M.S.; Maron, B.J. Spectrum and Significance of Electrocardiographic Patterns, Troponin Levels, and Thrombolysis in Myocardial Infarction Frame Count in Patients with Stress (Tako-tsubo) Cardiomyopathy and Comparison to Those in Patients with ST-Elevation Anterior Wall Myoc. Am. J. Cardiol. 2008, 101, 1723–1728. [Google Scholar] [CrossRef]
- Nef, H.M.; Möllmann, H.; Kostin, S.; Troidl, C.; Voss, S.; Weber, M.; Dill, T.; Rolf, A.; Brandt, R.; Hamm, C.W.; et al. Tako-Tsubo cardiomyopathy: Intraindividual structural analysis in the acute phase and after functional recovery. Eur. Heart J. 2007, 28, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- Looi, J.L.; Wong, C.W.; Khan, A.; Webster, M.; Kerr, A.J. Clinical Characteristics and Outcome of Apical Ballooning Syndrome in Auckland, New Zealand. Heart Lung Circ. 2012, 21, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Schaus, B.J.; Fallavollita, J.A.; Lee, T.-C.; Canty, J.M. Preload Induces Troponin I Degradation Independently of Myocardial Ischemia. Circulation 2001, 103, 2035–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parissis, J.T.; Ikonomidis, I.; Rafouli-Stergiou, P.; Mebazaa, A.; Delgado, J.; Farmakis, D.; Vilas-Boas, F.; Paraskevaidis, I.; Anastasiou-Nana, M.; Follath, F. Clinical characteristics and predictors of in-hospital mortality in acute heart failure with preserved left ventricular ejection fraction. Am. J. Cardiol. 2011, 107, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Santhanakrishnan, R.; Chong, J.P.C.; Ng, T.P.; Ling, L.H.; Sim, D.; Toh GLeong, K.; Shuan, D.; Yeo, P.; Ong, H.Y. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2012, 14, 1338–1347. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Pang, P.S.; Gheorghiade, M.; Fonarow, G.C.; O’Connor, C.M.; Felker, G.M. Troponin elevation in heart failure: Prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 2010, 56, 1071–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, W.F.; De Marco, T.; Fonarow, G.C.; Diercks, D.; Wynne, J.; Apple, F.S.; Wu, A.H. Cardiac Troponin and Outcome in Acute Heart Failure. N. Engl. J. Med. 2008, 358, 2117–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007, 116, 1242–1249. [Google Scholar] [CrossRef] [Green Version]
- Nunes, J.P.L. Elevated troponin and aortic valve disease. J. Am. Coll. Cardiol. 2013, 61, 1467. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Malhotra, A.; Sullivan, B.; Ramakrishna, H. Troponin elevations in patients with chronic cardiovascular disease: An analysis of current evidence and significance. Ann. Card. Anaesth. 2016, 19, 321–327. [Google Scholar]
- Brandt, R.R.; Filzmaier, K.; Hanrath, P. Circulating cardiac troponin I in acute pericarditiss. Am. J. Cardiol. 2001, 87, 1326–1328. [Google Scholar] [CrossRef]
- Imazio, M. Pericarditis with troponin elevation: Is it true pericarditis and a reason for concern? J. Cardiovasc. Med. 2014, 15, 73–77. [Google Scholar] [CrossRef] [PubMed]
- McNamara, N.; Ibrahim, A.; Satti, Z.; Ibrahim, M.; Kiernan, T.J. Acute pericarditis: A review of current diagnostic and management guidelines. Future Cardiol. 2019, 15, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, R.; Aronow, W.S.; Rajdev, A.; Sukhija, R.; Amin, H.; D’aquila, K.; Sangha, A. Relation of Cardiac Troponin I Levels with In-Hospital Mortality in Patients with Ischemic Stroke, Intracerebral Hemorrhage, and Subarachnoid Hemorrhage. Am. J. Cardiol. 2008, 102, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Kerr, G.; Ray, G.; Wu, O.; Stott, D.J.; Langhorne, P. Elevated troponin after stroke: A systematic review. Cerebrovasc. Dis. 2009, 28, 220–226. [Google Scholar] [CrossRef]
- Jespersen, C.M.; Hansen, J.F. Myocardial stress in patients with acute cerebrovascular events. Cardiology 2008, 110, 123–128. [Google Scholar] [CrossRef]
- Coma-canella, I.; Gamallo, C.; Onsurbe, P.M.; Lopez-sendon, J. Acute right ventricular infarction secondary to massive pulmonary embolism. Eur. Heart J. 1988, 9, 534–540. [Google Scholar] [CrossRef]
- Giannitsis, E.; Katus, H.A. Biomarkers for clinical decision-making in the management of pulmonary embolism. Clin. Chem. 2017, 63, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Müller-Bardorff, M.; Weidtmann, B.; Giannitsis, E.; Kurowski, V.; Katus, H.A. Release kinetics of cardiac troponin T in survivors of confirmed severe pulmonary embolism. Clin. Chem. 2002, 48, 673–675. [Google Scholar] [CrossRef] [Green Version]
- de Lemos, J.A.; Drazner, M.H.; Omland, T.; Ayers, C.R.; Khera, A.; Rohatgi, A.; Hashim, I.; Berry, J.D.; Das, S.R.; Morrow, D.A.; et al. Association of Troponin T Detected with a Highly Sensitive Assay and Cardiac Structure and Mortality Risk in the General Population. JAMA 2010, 304, 2503. [Google Scholar] [CrossRef]
- Beatty, A.L.; Ku, I.A.; Christenson, R.H.; DeFilippi, C.R.; Schiller, N.B.; Whooley, M.A. High-Sensitivity Cardiac Troponin T Levels and Secondary Events in Outpatients with Coronary Heart Disease From the Heart and Soul Study. JAMA Intern. Med. 2013, 173, 763. [Google Scholar] [CrossRef]
- Sato, Y.; Yamamoto, E.; Sawa, T.; Toda, K.; Hara, T.; Iwasaki, T.; Fujiwara, H.; Takatsu, Y. High-sensitivity cardiac troponin T in essential hypertension. J. Cardiol. 2011, 58, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uçar, H.; Gür, M.; Kivrak, A.; Koyunsever, N.Y.; Şeker, T.; Akilli, R.E.; Türkoğlu, C.; Kaypakli, O.; Şahin, D.Y.; Elbasan, Z.; et al. High-sensitivity cardiac troponin T levels in newly diagnosed hypertensive patients with different left ventricle geometry. Blood Press. 2014, 23, 240–247. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; Chen, Y.; Nambi, V.; Ballantyne, C.M.; Sharrett, A.R.; Appel, L.J.; Post, W.S.; Blumenthal, R.S.; Matsushita, K.; Selvin, E. High-sensitivity cardiac Troponin T and risk of hypertension. Circulation 2015, 132, 825–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannitsis, E.; Katus, H.A. Cardiac troponin level elevations not related to acute coronary syndromes. Nat. Rev. Cardiol. 2013, 10, 623–634. [Google Scholar] [CrossRef]
- Agewall, S.; Giannitsis, E.; Jernberg, T.; Katus, H. Troponin elevation in coronary vs. non-coronary disease. Eur. Heart J. 2011, 32, 404–411. [Google Scholar] [CrossRef]
- Klinkenberg, L.J.J. High-sensitivity cardiac troponins in health and disease. Ned. Tijdschr. Voor Klin. Chemie Lab. 2016, 41, 235–241. [Google Scholar]
- Bais, R. The Effect of Sample Hemolysis on Cardiac Troponin, I. and T. Assays. Clin. Chem. 2010, 56, 1357–1359. [Google Scholar] [CrossRef] [Green Version]
- Florkowski, C.; Wallace, J.; Walmsley, T.; George, P. The Effect of Hemolysis on Current Troponin Assays—A Confounding Preanalytical Variable? Clin. Chem. 2010, 56, 1195–1197. [Google Scholar] [CrossRef] [Green Version]
- Panteghini, M. Assay-related issues in the measurement of cardiac troponins. Clin. Chim. Acta 2009, 402, 88–93. [Google Scholar] [CrossRef]
- Göser, S.; Andrassy, M.; Buss, S.J.; Leuschner, F.; Volz, C.H.; Öttl, R.; Zittrich, S.; Blaudeck, N.; Hardt, S.E.; Pfitzer, G.; et al. Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation 2006, 114, 1693–1702. [Google Scholar] [CrossRef] [Green Version]
- Daniels, L.B.; Maisel, A.S. Natriuretic Peptides. J. Am. Coll. Cardiol. 2007, 50, 2357–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.K.; Wang, T.J. Natriuretic Peptides and Cardiometabolic Health. Circ. J. 2015, 79, 1647–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemberton, C.J.; Charles, C.J.; Richards, A.M. Cardiac Natriuretic Peptides. In Endocrinology of the Heart in Health and Disease: Integrated, Cellular, and Molecular Endocrinology of the Heart; Schisler, J.C., Lang, C.H., Willis, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–354. [Google Scholar]
- del Ry, S.; Cabiati, M.; Clerico, A. Natriuretic peptide system and the heart. Cardiovasc. Issues Endocrinol. 2014, 43, 134–143. [Google Scholar]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 2009, 191, 341–366. [Google Scholar]
- LaPointe, M.C. Molecular regulation of the brain natriuretic peptide gene. Peptides 2005, 26, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Houweling, A.C.; van Borren, M.M.; Moorman, A.F.M.; Christoffels, V.M. Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. Cardiovasc. Res. 2005, 67, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Kalra, P.R.; Clague, J.R.; Bolger, A.P.; Anker, S.D.; Poole-Wilson, P.A.; Struthers, A.D.; Coats, A.J. Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 2003, 107, 571–573. [Google Scholar] [CrossRef] [PubMed]
- Hama, N.; Itoh, H.; Shirakami, G.; Nakagawa, O.; Suga, S.; Ogawa, Y.; Masuda, I.; Nakanishi, K.; Yoshimasa, T.; Hashimoto, Y. Rapid Ventricular Induction of Brain Natriuretic Peptide Gene Expression in Experimental Acute Myocardial Infarction. Circulation 1995, 92, 1558–1564. [Google Scholar] [CrossRef]
- Nakagawa, O.; Ogawa, Y.; Itoh, H.; Suga, S.I.; Komatsu, Y.; Kishimoto, I.; Nishino, K.; Yoshimasa, T.; Nakao, K. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy: Evidence for brain natriuretic peptide as an ‘emergency’ cardiac hormone against ventricular overload. J. Clin. Investig. 1995, 96, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Oparil, S.; Feng, J.A.; Li, P.; Perry, G.; Chen, L.B.; Dai, M.; John, S.W.; Chen, Y.F. Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 2003, 42, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int. J. Mol. Sci. 2019, 20, 1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Thomas, B.; Bergmann, A. Immunoluminometric Assay for the Midregion of Pro-Atrial Natriuretic Peptide in Human Plasma. Clin. Chem. 2004, 50, 234–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenthaler, N.G.; Struck, J.; Christ-Crain, M.; Bergmann, A.; Müller, B. Pro-atrial natriuretic peptide is a prognostic marker in sepsis, similar to the APACHE II score: An observational study. Crit. Care 2004, 9, R37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesely, D.L. Atrial natriuretic peptide prohormone gene expression: Hormones and diseases that upregulate its expression. IUBMB Life 2002, 53, 153–159. [Google Scholar] [CrossRef]
- Lee, C.S.; Tkacs, N.C. Current concepts of neurohormonal activation in heart failure: Mediators and mechanisms. AACN Adv. Crit. Care 2008, 19, 364–385. [Google Scholar] [CrossRef]
- Kerkelä, R.; Ulvila, J.; Magga, J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J. Am. Heart Assoc. 2015, 4, e002423. [Google Scholar] [CrossRef] [Green Version]
- de Lemos, J.A.; McGuire, D.K.; Drazner, M.H. B-type natriuretic peptide in cardiovascular disease. Lancet 2003, 362, 316–322. [Google Scholar] [CrossRef]
- Yamanouchi, S.; Kudo, D.; Endo, T.; Kitano, Y.; Shinozawa, Y. Blood N-terminal proBNP as a potential indicator of cardiac preload in patients with high volume load. Tohoku J. Exp. Med. 2010, 221, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Vanderheyden, M.; Bartunek, J.; Goethals, M. Brain and other natriuretic peptides: Molecular aspects. Eur. J. Heart Fail. 2004, 6, 261–268. [Google Scholar] [CrossRef]
- Nawarskas, J.; Rajan, V.; Frishman, W.H. Vasopeptidase inhibitors, neutral endopeptidase inhibitors, and dual inhibitors of angiotensin-converting enzyme and neutral endopeptidase. Heart Dis. 2001, 3, 378–385. [Google Scholar] [CrossRef]
- Conen, D.; Zeller, A.; Pfisterer, M.; Martina, B. Usefulness of B-Type Natriuretic Peptide and C-Reactive Protein in Predicting the Presence or Absence of Left Ventricular Hypertrophy in Patients with Systemic Hypertension. Am. J. Cardiol. 2006, 97, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Yandle, T.G.; Richards, A.M.; Nicholls, M.G.; Cuneo, R.; Espiner, E.A.; Livesey, J.H. Metabolic clearance rate and plasma half life of alpha-human atrial natriuretic peptide in man. Life Sci. 1986, 38, 1827–1833. [Google Scholar] [CrossRef]
- Buckley, M.G.; Marcus, N.J.; Yacoub, M.H. Cardiac peptide stability, aprotinin and room temperature: Importance for assessing cardiac function in clinical practice. Clin. Sci. 1999, 97, 689–695. [Google Scholar] [CrossRef]
- Seidler, T.; Pemberton, C.; Yandle, T.; Espiner, E.; Nicholls, G.; Richards, M. The amino terminal regions of proBNP and proANP oligomerise through leucine zipper-like coiled-coil motifs. Biochem. Biophys. Res. Commun. 1999, 255, 495–501. [Google Scholar] [CrossRef]
- Baertschi, A.J.; Monnier, D.; Schmidt, U.; Levitan, E.S.; Fakan, S.; Roatti, A. Acid prohormone sequence determines size, shape, and docking of secretory vesicles in atrial myocytes. Circ. Res. 2001, 89, e23–e29. [Google Scholar] [CrossRef] [Green Version]
- Cappellin, E.; Gatti, R.; Spinella, P.; De Palo, C.B.; Woloszczuk, W.; Maragno, I. Plasma atrial natriuretic peptide (ANP) fragments proANP (1–30) and proANP (31–67) measurements in chronic heart failure: A useful index for heart trasplantation? Clin. Chim. Acta 2001, 310, 49–52. [Google Scholar] [CrossRef]
- Fu, S.; Ping, P.; Wang, F.; Luo, L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Potter, L.R. Natriuretic peptide metabolism, clearance and degradation. FEBS J. 2011, 278, 1808–1817. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, R.; Bailey, S. A review on B-type natriuretic peptide monitoring: Assays and biosensors. Heart Fail. Rev. 2016, 21, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.M.G.; Spada, R.; Pooya, S.; Jeannesson, E.; Moreno Garcia, M.A.; Anello, G. Homocysteine predicts increased NT-pro-BNP through impaired fatty acid oxidation. Int. J. Cardiol. 2013, 167, 768–775. [Google Scholar] [CrossRef]
- Khanam, S.S.; Son, J.W.; Lee, J.W.; Youn, Y.J.; Yoon, J.; Lee, S.H.; Kim, J.Y.; Ahn, S.G.; Ahn, M.S.; Yoo, B.S. Prognostic value of short-term follow-up BNP in hospitalized patients with heart failure. BMC Cardiovasc. Disord. 2017, 17, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, S.J.; Wu, A.H.B.; Christenson, R.; Krishnaswamy, P.; Gottlieb, S.; Rosano, T. A rapid B-type natriuretic peptide assay accurately diagnoses left ventricular dysfunction and heart failure: A multicenter evaluation. Am. Heart J. 2002, 144, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Tapanainen, J.M.; Lindgren, K.S.; Mäkikallio, T.H.; Vuolteenaho, O.; Leppäluoto, J.; Huikuri, H.V. Natriuretic peptides as predictors of non-sudden and sudden cardiac death after acute myocardial infarction in the beta-blocking era. J. Am. Coll. Cardiol. 2004, 43, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A. 2016 Esc guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC): Developed with the special contribution. Russ. J. Cardiol. 2017, 141, 7–81. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Huang, C.; Li, Z.; Yang, H.; Feng, Q. Effects of glutamine and valsartan on the brain natriuretic peptide and N-terminal pro-B-type natriuretic peptide of patients with chronic heart failure. Pakistan J. Med. Sci. 2014, 31, 82. [Google Scholar] [CrossRef]
- Sun, Y.P.; Wei, C.P.; Ma, S.C.; Zhang, Y.F.; Qiao, L.Y.; Li, D.H. Effect of carvedilol on serum heart-type fatty acid-binding protein, brain natriuretic peptide, and cardiac function in patients with chronic heart failure. J. Cardiovasc. Pharmacol. 2015, 65, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Levy, D.; Benjamin, E.J.; Leip, E.P.; Omland, T.; Wolf, P.A.; Vasan, R.S. Plasma Natriuretic Peptide Levels and the Risk of Cardiovascular Events and Death. N. Engl. J. Med. 2004, 350, 655–663. [Google Scholar] [CrossRef]
- Kistorp, C.; Faber, J. Levels as Predictors of Mortality and Cardiovascular Events in Older Adults. JAMA 2005, 293, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Mukoyama, M.; Nakao, K.; Hosoda, K.; Suga, S.I.; Saito, Y.; Ogawa, Y.; Shirakami, G.; Jougasaki, M.; Obata, K.; Yasue, H.; et al. Brain natriuretic peptide as a novel cardiac hormone in humans: Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Investig. 1991, 87, 1402–1412. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/american heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoda, K.; Nakao, K.; Mukoyama, M.; Saito, Y.; Jougasaki, M.; Shirakami, G.; Suga, S.I.; Ogawa, Y.; Yasue, H.; Imura, H. Expression of brain natriuretic peptide gene in human heart: Production in the ventricle. Hypertension 1991, 17 (Suppl. S2), 1152–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukoyama, M.; Nakao, K.; Saito, Y.; Ogawa, Y.; Hosoda, K.; Suga, S.; Shirakami, G.; Jougasaki, M.; Imura, H. Increased Human Brain Natriuretic Peptide in Congestive Heart Failure. N. Engl. J. Med. 1990, 323, 757–758. [Google Scholar] [PubMed]
- Januzzi, J.L. Natriuretic peptides as biomarkers in heart failure. J. Investig. Med. 2013, 61, 950–955. [Google Scholar] [CrossRef]
- Cui, K.; Huang, W.; Fan, J.; Lei, H. Midregional pro-atrial natriuretic peptide is a superior biomarker to N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure patients with preserved ejection fraction. Medicine 2018, 97, e12277. [Google Scholar] [CrossRef]
- Morita, E.; Yasue, H.; Yoshimura, M.; Ogawa, H.; Jougasaki, M.; Matsumura, T.; Mukoyama, M.; Nakao, K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 1993, 88, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Min, J.K.; Rao, S.V.; Patel, M.R.; Simonetti, O.P.; Ambrosio, G.; Raman, S.V. Non-ST-segment elevation acute coronary syndromes targeted imaging to refine upstream risk stratification. Circ. Cardiovasc. Imaging 2012, 5, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Gill, D.; Seidler, T.; Troughton, R.W.; Yandle, T.G.; Frampton, C.M.; Richards, M.; Lainchbury, J.G.; Nicholls, G. Vigorous response in plasma N-terminal pro-brain natriuretic peptide (NT-BNP) to acute myocardial infarction. Clin. Sci. 2004, 106, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.W.; Hsu, J.C.; Toomu, A.; Fox, S.; Maisel, A.S. Clinical Applications of Biomarkers in Atrial Fibrillation. Am. J. Med. 2017, 130, 1351–1357. [Google Scholar] [CrossRef]
- Ellinor, P.T.; Low, A.F.; Patton, K.K.; Shea, M.A.; MacRae, C.A. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. J. Am. Coll. Cardiol. 2005, 45, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, C.W.; Omland, T.; Clopton, P.; Westheim, A.; Wu, A.H.B.; Duc, P.; McCord, J.; Nowak, R.M.; Hollander, J.E.; Storrow, A.B.; et al. Impact of atrial fibrillation on the diagnostic performance of B-type natriuretic peptide concentration in dyspneic patients: An analysis from the breathing not properly multinational study. J. Am. Coll. Cardiol. 2005, 46, 838–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocak, T.; Erdem, A.; Duran, A.; Tekelioǧlu, Ü.Y.; Öztürk, S.; Ayhan, S.S.; Özlü, M.F.; Tosun, M.; Koçoǧlu, H.; Yazici, M. The diagnostic significance of NT-proBNP and troponin I in emergency department patients presenting with palpitations. Clinics 2013, 68, 543–547. [Google Scholar] [CrossRef]
- Qi, W.; Kjekshus, H.; Klinge, R.; Kjekshus, J.K.; Hall, C. Cardiac natriuretic peptides and continuously monitored atrial pressures during chronic rapid pacing in pigs. Acta Physiol. Scand. 2000, 169, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Detaint, D.; Detaint, D.; Messika-Zeitoun, D.; Avierinos, J.F.; Scott, C.; Chen, H.; Burnett, J.C.; Enriquez-Sarano, M. B-type natriuretic peptide in organic mitral regurgitation: Determinants and impact on outcome. Circulation 2005, 111, 2391–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, T.M.; Stewart, R.A.H.; Gerber, I.L.; West, T.M.; Richards, A.M.; Yandle, T.G.; Kerr, A.J. Plasma natriuretic peptide levels increase with symptoms and severity of mitral regurgitation. J. Am. Coll. Cardiol. 2003, 41, 2280–2287. [Google Scholar] [CrossRef] [Green Version]
- Tharaux, P.L.; Dussaule, J.C.; Hubert-Brierre, J.; Vahanian, A.; Acar, J.; Ardaillou, R. Plasma atrial and brain natriuretic peptides in mitral stenosis treated by valvulotomy. Clin. Sci. 1994, 87, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Nessmith, M.G.; Fukuta, H.; Brucks, S.; Little, W.C. Usefulness of an elevated B-type natriuretic peptide in predicting survival in patients with aortic stenosis treated without surgery. Am. J. Cardiol. 2005, 96, 1445–1448. [Google Scholar] [CrossRef]
- Bergler-Klein, J.; Klaar, U.; Heger, M.; Rosenhek, R.; Mundigler, G.; Gabriel, H.; Binder, T.; Pacher, R.; Maurer, G.; Baumgartner, H. Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis. Circulation 2004, 109, 2302–2308. [Google Scholar] [CrossRef] [Green Version]
- Arat-Özkan, A.; Kaya, A.; Yiǧit, Z.; Balci, H.; Ökçün, B.; Yazicioǧlu, N.; Küçükoǧlu, S. Serum N-terminal pro-BNP levels correlate with symptoms and echocardiographic findings in patients with mitral stenosis. Echocardiography 2005, 22, 473–478. [Google Scholar] [CrossRef]
- Gerber, I.L.; Stewart, R.A.H.; Legget, M.E.; West, T.M.; French, R.L.; Sutton, T.M.; Yandle, T.G.; French, J.K.; Richards, A.M.; White, H.D. Increased plasma natriuretic peptide levels reflect symptom onset in aortic stenosis. Circulation 2003, 107, 1884–1890. [Google Scholar] [CrossRef] [Green Version]
- Kucher, N.; Printzen, G.; Goldhaber, S.Z. Prognostic role of brain natriuretic peptide in acute pulmonary embolism. Circulation 2003, 107, 2545–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucher, N.; Printzen, G.; Doernhoefer, T.; Windecker, S.; Meier, B.; Hess, O.M. Low pro-brain natriuretic peptide levels predict benign clinical outcome in acute pulmonary embolism. Circulation 2003, 107, 1576–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, L.K.; Harrison, A.; Krishnaswamy, P.; Kazanegra, R.; Clopton, P.; Maisel, A. Utility of a rapid B-natriuretic peptide assay in differentiating congestive heart failure from lung disease in patients presenting with dyspnea. J. Am. Coll. Cardiol. 2002, 39, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Klinger, J.R.; Arnal, F.; Warburton, R.; Ou, L.C.; Hill, N.S. Downregulation of pulmonary atrial natriuretic peptide receptors in rats exposed to chronic hypoxia. J. Appl. Physiol. 1994, 77, 1309–1316. [Google Scholar] [CrossRef]
- Bando; Ishii, Y.; Sugiyama, Y.; Kitamura, S. Elevated plasma brain natriuretic peptide levels in chronic respiratory failure with cor pulmonale. Respir. Med. 1999, 93, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, N.; Nishikimi, T.; Uematsu, M.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Kakishita, M.; Fukushima, K.; Okano, Y.; Nakanishi, N.; et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000, 102, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, N.; Nishikimi, T.; Okano, Y.; Uematsu, M.; Satoh, T.; Kyotani, S.; Kuribayashi, S.; Hamada, S.; Kakishita, M.; Nakanishi, N.; et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 1998, 31, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Rubattu, S.; Volpe, M. Natriuretic peptides in the cardiovascular system: Multifaceted roles in physiology, pathology and therapeutics. Int. J. Mol. Sci. 2019, 20, 3991. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Gegenhuber, A.; Dieplinger, B.; Poelz, W.; Haltmayer, M. Capability of B-type natriuretic peptide (BNP) and amino-terminal proBNP as indicators of cardiac structural disease in asymptomatic patients with systemic arterial hypertension. Clin. Chem. 2005, 51, 2245–2251. [Google Scholar] [CrossRef] [Green Version]
- de Vito, P. Atrial natriuretic peptide: An old hormone or a new cytokine? Peptides 2014, 58, 108–116. [Google Scholar] [CrossRef]
- Gerbes, A.L.; Dagnino, L.; Nguyen, T.; Nemer, M. Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues. J. Clin. Endocrinol. Metab. 1994, 78, 1307–1311. [Google Scholar] [PubMed] [Green Version]
- Szabó, G. Biology of the B-Type Natriuretic Peptide: Structure, Synthesis and Processing. Biochem. Anal. Biochem. 2012, 1, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Safley, D.M.; Wad, A.; Sullivan, R.A.; Sandberg, K.R.; Mourad, I.; Boulware, M.; Merhi, W.; McCullough, P.A. Changes in B-type natriuretic peptide levels in hemodialysis and the effect of depressed left ventricular function. Adv. Chronic Kidney Dis. 2005, 12, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Khalifeh, N.; Haider, D.; Hörl, W.H. Natriuretic peptides in chronic kidney disease and during renal replacement therapy: An update. J. Investig. Med. 2009, 57, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, R.; Yildirim, B.; Karincaoglu, M.; Harputluoglu, M.; Hilmioglu, F. Brain natriuretic peptide and severity of disease in non-alcoholic cirrhotic patients. J. Gastroenterol. Hepatol. 2005, 20, 1115–1120. [Google Scholar] [CrossRef]
- Henriksen, J.H. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: Relation to cardiovascular dysfunction and severity of disease. Gut 2003, 52, 1511–1517. [Google Scholar] [CrossRef]
- Lok, B.Y.; Mukerjee, D.; Timms, P.M.; Ashrafian, H.; Coghlan, J.G. Natriuretic peptides, respiratory disease, and the right heart. Chest 2004, 126, 1330–1336. [Google Scholar]
- Kato, J.; Etoh, T.; Kitamura, K.; Eto, T. Atrial and brain natriuretic peptides as markers of cardiac load and volume retention in primary aldosteronism. Am. J. Hypertens. 2005, 18, 354–357. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Lin, S.R.; Shin, S.J.; Lai, Y.H.; Lin, Y.T.; Tsai, J.H. Brain natriuretic peptide is synthesized in the human adrenal medulla and its messenger ribonucleic acid expression along with that of atrial natriuretic peptide are enhanced in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 1994, 79, 1476–1482. [Google Scholar]
- Totsune, K.; Takahashi, K.; Murakami, O.; Satoh, F.; Sone, M.; Ohneda, M.; Miura, Y.; Mouri, T. Immunoreactive brain natriuretic peptide in human adrenal glands and adrenal tumors. Eur. J. Endocrinol. 1996, 135, 352–356. [Google Scholar] [CrossRef]
- Schultz, M.; Faber, J.; Kistorp, C.; Jarløv, A.; Pedersen, F.; Wiinberg, N.; Hildebrandt, P. N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) in different thyroid function states. Clin. Endocrinol. 2004, 60, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Zeng, C.; Tian, Y.; Chen, Q.; Wang, L. B-type natriuretic peptide in patients with clinical hyperthyroidism. J. Endocrinol. Investig. 2005, 28, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Redfield, M.M.; Rodeheffer, R.J.; Jacobsen, S.J.; Mahoney, D.W.; Bailey, K.R.; Burnett, J.C. Plasma brain natriuretic peptide concentration: Impact of age and gender. J. Am. Coll. Cardiol. 2002, 40, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Larson, M.G.; Levy, D.; Leip, E.P.; Benjamin, E.J.; Wilson, P.W.F.; Sutherland, P.; Omland, T.; Vasan, R.S. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am. J. Cardiol. 2002, 90, 254–258. [Google Scholar] [CrossRef]
- Kawai, K.; Hata, K.; Tanaka, K.; Kubota, Y.; Inoue, R.; Masuda, E.; Miyazaki, T.; Yokoyama, M. Attenuation of biologic compensatory action of cardiac natriuretic peptide system with aging. Am. J. Cardiol. 2004, 93, 719–723. [Google Scholar] [CrossRef]
- Costello-Boerrigter, L.C.; Boerrigter, G.; Redfield, M.M.; Rodeheffer, R.J.; Urban, L.H.; Mahoney, D.W.; Jacobsen, S.J.; Heublein, D.M.; Burnett, J.C. Amino-Terminal Pro-B-Type Natriuretic Peptide and B-Type Natriuretic Peptide in the General Community. J Am Coll Cardiol. 2006, 47, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Das, U.N. Heart-type fatty acid-binding protein (H-FABP) and coronary heart disease. Indian Heart J. 2016, 68, 16–18. [Google Scholar] [CrossRef] [Green Version]
- van der Vusse, G.J.; Glatz, J.F.C.; Stam, H.C.G.; Reneman, R.S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol. Rev. 1992, 72, 881–940. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Andreyev, O.; Hoyt, R.F.; Singh, A.; Hunt, T.; Horvath, K.A. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia. Exp. Cell Res. 2014, 323, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Hu, D.L.; Liu, Y.Q.; Zhang, Q.J.; Chen, F.K.; Kong, X.Q.; Cao, K.J.; Zhang, J.S.; Qian, L.M. Fabp3 Inhibits Proliferation and Promotes Apoptosis of Embryonic Myocardial Cells. Cell Biochem. Biophys. 2011, 60, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Song, G.; Liu, Y.; Zhou, L.; Liu, H.; Kong, X.; Sheng, Y.; Cao, K.; Qian, L. Silencing of FABP3 Inhibits Proliferation and Promotes Apoptosis in Embryonic Carcinoma Cells. Cell Biochem. Biophys. 2013, 66, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Binas, B.; Erol, E. FABPs as determinants of myocellular and hepatic fuel metabolism. Mol. Cell. Biochem. 2007, 299, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Chmurzyńska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Liebetrau, C.; Nef, H.M.; Dörr, O.; Gaede, L.; Hoffmann, J.; Hahnel, A.; Rolf, A.; Troidl, C.; Lackner, K.J.; Keller, T.; et al. Release kinetics of early ischaemic biomarkers in a clinical model of acute myocardial infarction. Heart 2014, 100, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Yamazaki, M.; Honjo, H.; Kodama, I.; Kamiya, K. Predictive value of heart-type fatty acid-binding protein for left ventricular remodelling and clinical outcome of hypertensive patients with mild-to-moderate aortic valve diseases. J. Hum. Hypertens. 2007, 21, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, T.A.; McNeil, P.L.; Khakee, R.; Finn, P.; Kelly, R.A.; Pfeffer, M.A.; Pfeffer, J.M. Cardiac Myocyte Membrane Wounding in the Abruptly Pressure-Overloaded Rat Heart Under High Wall Stress. Hypertension 1997, 30, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Josa, M.; Pomar, J.L.; Mestres, C.A.; Gherli, T. Heart fatty acid binding protein in the diagnosis of myocardial infarction: Where do we stand today? Cardiology 2007, 108, 4–10. [Google Scholar] [CrossRef]
- Kleine, A.H.; Glatz, J.F.C.; van Nieuwenhoven, F.A.; van der Vusse, G.J. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol. Cell. Biochem. 1992, 116, 155–162. [Google Scholar] [CrossRef]
- Cappellini, F.; Da Molin, S.; Signorini, S.; Avanzini, F.; Saltafossi, D.; Falbo, R.; Brambilla, P. Heart-type fatty acid-binding protein may exclude acute myocardial infarction on admission to emergency department for chest pain. Acute Card. Care 2013, 15, 83–87. [Google Scholar] [CrossRef]
- Garcia-Valdecasas, S.; Ruiz-Alvarez, M.J.; Garcia De Tena, J.; De Pablo, R.; Huerta, I.; Barrionuevo, M.; Coca, C.; Arribas, I. Diagnostic and prognostic value of heart-type fatty acid-binding protein in the early hours of acute myocardial infarction. Acta Cardiol. 2011, 66, 315–321. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Cristol, J.P.; Kuster, N.; Reynier, R.; Lefebvre, S.; Badiou, S.; Jreige, R.; Sebbane, M. Performances of the heart fatty acid protein assay for the rapid diagnosis of acute myocardial infarction in ED patients. Am. J. Emerg. Med. 2015, 33, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, F.; Sohmiya, K.; Ohkaru, Y.; Kawamura, K.; Asayama, K.; Kimura, H.; Nishimura, S.; Ishii, H.; Sunahara, N.; Tanaka, T. Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB. Clin. Chem. Lab. Med. 2000, 38, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Q.; Yang, Y.M.; Tong, H.; Xu, C.F. Early Diagnostic Performance of Heart-Type Fatty Acid Binding Protein in Suspected Acute Myocardial Infarction: Evidence From a Meta-Analysis of Contemporary Studies. Heart Lung Circ. 2018, 27, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Schoenenberger, A.W.; Stallone, F.; Walz, B.; Bergner, M.; Twerenbold, R.; Reichlin, T.; Zogg, B.; Jaeger, C.; Erne, P.; Mueller, C. Incremental value of heart-type fatty acid-binding protein in suspected acute myocardial infarction early after symptom onset. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 185–192. [Google Scholar] [CrossRef]
- Bivona, G.; Agnello, L.; Bellia, C.; Sasso, B.L.; Ciaccio, M. Diagnostic and prognostic value of H-FABP in acute coronary syndrome: Still evidence to bring. Clin. Biochem. 2018, 58, 1–4. [Google Scholar] [CrossRef]
- Ho, S.K.; Wu, Y.W.; Tseng, W.K.; Leu, H.B.; Yin, W.H.; Lin, T.H.; Chang, K.C.; Wang, J.H.; Yeh, H.I.; Wu, C.C.; et al. The prognostic significance of heart-type fatty acid binding protein in patients with stable coronary heart disease. Sci. Rep. 2018, 8, 14410. [Google Scholar] [CrossRef]
- Ishino, M.; Shishido, T.; Arimoto, T.; Takahashi, H.; Miyashita, T.; Miyamoto, T.; Nitobe, J.; Watanabe, T.; Kubota, I. Heart-Type Fatty Acid Binding Protein (H-FABP) in Acute Decompensated Heart Failure. J. Card. Fail. 2010, 16, S166. [Google Scholar] [CrossRef]
- Hoffmann, U.; Espeter, F.; Weiß, C.; Ahmad-Nejad, P.; Lang, S.; Brueckmann, M.; Akin, I.; Neumaier, M.; Borggrefe, M.; Behnes, M. Ischemic biomarker heart-type fatty acid binding protein (hFABP) in acute heart failure—Diagnostic and prognostic insights compared to NT-proBNP and troponin I. BMC Cardiovasc. Disord. 2015, 15, 50. [Google Scholar] [CrossRef] [Green Version]
- Niizeki, T.; Takeishi, Y.; Arimoto, T.; Nozaki, N.; Hirono, O.; Watanabe, T.; Nitobe, J.; Miyashita, T.; Miyamoto, T.; Koyama, Y.; et al. Persistently increased serum concentration of heart-type fatty acid-binding protein predicts adverse clinical outcomes in patients with chronic heart failure. Circ. J. 2008, 72, 109–114. [Google Scholar] [CrossRef]
- Niizeki, T.; Takeishi, Y.; Arimoto, T.; Takahashi, T.; Okuyama, H.; Takabatake, N.; Nozaki, N.; Hirono, O.; Tsunoda, Y.; Shishido, T.; et al. Combination of heart-type fatty acid binding protein and brain natriuretic peptide can reliably risk stratify patients hospitalized for chronic heart failure. Circ. J. 2005, 69, 922–927. [Google Scholar] [CrossRef] [Green Version]
- Otaki, Y.; Arimoto, T.; Takahashi, H.; Kadowaki, S.; Ishigaki, D.; Narumi, T.; Honda, Y.; Iwayama, T.; Nishiyama, S.; Shishido, T.; et al. Prognostic value of myocardial damage markers in patients with chronic heart failure with atrial fibrillation. Intern. Med. 2014, 53, 661–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirna, M.; Wernly, B.; Paar, V.; Jung, C.; Jirak, P.; Figulla, H.R.; Kretzschmar, D.; Franz, M.; Hoppe, U.C.; Lichtenauer, M.; et al. Multi-biomarker analysis in patients after transcatheter aortic valve implantation (TAVI). Biomarkers 2018, 23, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.Y.; Huang, J.; Yang, Y.J.; Yang, Y.M.; Li, Z.Z.; Zhang, J.M. Heart-type Fatty Acid Binding Protein in the Assessment of Acute Pulmonary Embolism. Am. J. Med. Sci. 2016, 352, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Dellas, C.; Lobo, J.L.; Rivas, A.; Ballaz, A.; Portillo, A.K.; Nieto, R.; del Rey, J.M.; Zamorano, J.L.; Lankeit, M.; Jiménez, D. Risk stratification of acute pulmonary embolism based on clinical parameters, H-FABP and multidetector CT. Int. J. Cardiol. 2018, 265, 223–228. [Google Scholar] [CrossRef]
- Bajaj, A.; Rathor, P.; Sehgal, V.; Shetty, A.; Kabak, B.; Hosur, S. Risk stratification in acute pulmonary embolism with heart-type fatty acid-binding protein: A. meta-analysis. J. Crit. Care 2015, 30, 1151.e1–1151.e7. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Konstantinides, S.V.; Meyer, G.; Bueno, H.; Galié, N.; Gibbs, J.S.R.; Ageno, W.; Agewall, S.; Almeida, A.G.; Andreotti, F.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Acher, R.; Chauvet, J.; Rouille, Y. Dynamic processing of neuropeptides: Sequential conformation shaping of neurohypophysial preprohormones during intraneuronal secretory transport. J. Mol. Neurosci. 2002, 18, 223–228. [Google Scholar] [CrossRef]
- Christ-Crain, M. Vasopressin and Copeptin in health and disease. Rev. Endocr. Metab. Disord. 2019, 20, 283–294. [Google Scholar] [CrossRef]
- Dietzen, D.J. Amino Acids, Peptides, and Proteins. In Principles and Applications of Molecular Diagnostics; Rifai, N., Horvath, A.R., Wittwer, C.T., Park, J.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 345–380. [Google Scholar]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.Q.; Dhillon, O.S.; O’Brien, R.J.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester acute myocardial infarction peptide (LAMP) study. Circulation 2007, 115, 2103–2110. [Google Scholar] [CrossRef] [Green Version]
- Reichlin, T.; Hochholzer, W.; Stelzig, C.; Laule, K.; Freidank, H.; Morgenthaler, N.G.; Bergmann, A.; Potocki, M.; Noveanu, M.; Breidthardt, T.; et al. Incremental Value of Copeptin for Rapid Rule Out of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2009, 54, 60–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotze, U.; Lemm, H.; Heyer, A.; Müller, K. Combined determination of highly sensitive troponin T and copeptin for early exclusion of acute myocardial infarction: First experience in an emergency department of a general hospital. Vasc. Health Risk Manag. 2011, 7, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, H.; Dhillon, O.S.; Quinn, P.A.; Struck, J.; Squire, I.B.; Davies, J.E.; NG, L.L. C-terminal provasopressin (copeptin) as a prognostic marker after acute non-ST elevation myocardial infarction: Leicester acute myocardial infarction peptide II (LAMP II) study. Clin. Sci. 2011, 121, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balmelli, C.; Meune, C.; Twerenbold, R.; Reichlin, T.; Rieder, S.; Drexler, B.; Rubini, M.G.; Mosimann, T.; Reiter, M.; Haaf, P.; et al. Comparison of the performances of cardiac troponins, including sensitive assays, and copeptin in the diagnostic of acute myocardial infarction and long-term prognosis between women and men. Am. Heart J. 2013, 166, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Squire, I.B.; Khan, S.Q.; Quinn, P.; Struck, J.; Morgenthaler, N.G.; Davies, J.E.; NG, L.L. C-Terminal Provasopressin (Copeptin) is Associated with Left Ventricular Dysfunction, Remodeling, and Clinical Heart Failure in Survivors of Myocardial Infarction. J. Card. Fail. 2008, 14, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.; Tzikas, S.; Zeller, T.; Czyz, E.; Lillpopp, L.; Ojeda, F.M.; Roth, A.; Bickel, C.; Baldus, S.; Sinning, C.R.; et al. Copeptin Improves Early Diagnosis of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2010, 55, 2096–2106. [Google Scholar] [CrossRef] [Green Version]
- Schrier, R.W.; Abraham, W.T. Mechanisms of disease: Hormones and hemodynamics in heart failure. N. Engl. J. Med. 1999, 8, 577–585. [Google Scholar] [CrossRef]
- Thibonnier, M. Vasopressin receptor antagonists in heart failure. Curr. Opin. Pharmacol. 2003, 3, 683–687. [Google Scholar] [CrossRef]
- Goldsmith, S.R. Congestive heart failure: Potential role of arginine vasopressin antagonists in the therapy of heart failure. Congest. Heart Fail. 2002, 8, 251–256. [Google Scholar] [CrossRef]
- Gegenhuber, A.; Struck, J.; Dieplinger, B.; Poelz, W.; Pacher, R.; Morgenthaler, N.G.; Bergmann, A.; Haltmayer, M.; Mueller, T. Comparative Evaluation of B-Type Natriuretic Peptide, Mid-Regional Pro-A-type Natriuretic Peptide, Mid-Regional Pro-Adrenomedullin, and Copeptin to Predict 1-Year Mortality in Patients with Acute Destabilized Heart Failure. J. Card. Fail. 2007, 13, 42–49. [Google Scholar] [CrossRef]
- Neuhold, S.; Huelsmann, M.; Strunk, G.; Struck, J.; Adlbrecht, C.; Gouya, G.; Elhenicky, M.; Pacher, R. Prognostic value of emerging neurohormones in chronic heart failure during optimization of heart failure-specific therapy. Clin. Chem. 2010, 56, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Neuhold, S.; Huelsmann, M.; Strunk, G.; Stoiser, B.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Moertl, D.; Berger, R.; Pacher, R. Comparison of Copeptin, B-Type Natriuretic Peptide, and Amino-Terminal Pro-B-Type Natriuretic Peptide in Patients with Chronic Heart Failure. Prediction of Death at Different Stages of the Disease. J. Am. Coll. Cardiol. 2008, 52, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoiser, B.; Mörtl, D.; Hülsmann, M.; Berger, R.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Pacher, R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Investig. 2006, 36, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Dahlström, U.; Rehfeld, J.F.; Goetze, J.P. Association of copeptin and N-terminal proBNP concentrations with risk of cardiovascular death in older patients with symptoms of heart failure. JAMA J. Am. Med. Assoc. 2011, 305, 2088–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, S.; Latini, R.; Carbonieri, E.; Moretti, L.; Rossi, M.G.; Ciricugno, S.; Milani, V.; Marchioli, R.; Struck, J.; Bergmann, A.; et al. The predictive value of stable precursor fragments of vasoactive peptides in patients with chronic heart failure: Data from the GISSI-heart failure (GISSI-HF) trial. Eur. J. Heart Fail. 2010, 12, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Tentzeris, I.; Jarai, R.; Farhan, S.; Perkmann, T.; Schwarz, M.A.; Jakl, G.; Wojta, J.; Huber, K. Complementary role of copeptin and high-sensitivity troponin in predicting outcome in patients with stable chronic heart failure. Eur. J. Heart Fail. 2011, 13, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozsonyi, Z.; Förhécz, Z.; Gombos, T.; Karádi, I.; Jánoskuti, L.; Prohászka, Z. Copeptin (C-terminal pro Arginine-Vasopressin) is an independent long-term prognostic marker in heart failure with reduced ejection fraction. Heart Lung Circ. 2015, 24, 359–367. [Google Scholar] [CrossRef]
- Morello, F.; Oddi, M.; Cavalot, G.; Ianniello, A.; Giachino, F.; Nazerian, P.; Battista, S.; Magnino, C.; Tizzani, M.; Settanni, F.; et al. Prospective diagnostic and prognostic study of copeptin in suspected acute aortic syndromes. Sci. Rep. 2018, 8, 16713. [Google Scholar] [CrossRef]
- Bosch, A.; Ott, C.; Schmid, A.; Kannenkeril, D.; Karg, M.; Ditting, T.; Veelken, R.; Uder, M.; Schmieder, R.E. Copeptin As a Research Marker in Cardiovascular Disease. J. Hypertens. 2018, 36, e35. [Google Scholar] [CrossRef]
- Afsar, B. Pathophysiology of copeptin in kidney disease and hypertension. Clin. Hypertens. 2017, 23, 13. [Google Scholar] [CrossRef] [Green Version]
- Tenderenda-Banasiuk, E.; Wasilewska, A.; Filonowicz, R.; Jakubowska, U.; Waszkiewicz-Stojda, M. Serum copeptin levels in adolescents with primary hypertension. Pediatr. Nephrol. 2014, 29, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Dobša, L.; Edozien, C.K. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem. Med. 2012, 23, 172–190. [Google Scholar]
- Jougasaki, M.; Burnett, J.C. Adrenomedullin: Potential in physiology and pathophysiology. Life Sci. 2000, 66, 855–872. [Google Scholar] [CrossRef]
- Voors, A.A.; Kremer, D.; Geven, C.; ter Maaten, J.M.; Struck, J.; Bergmann, A.; Pickkers, P.; Metra, M.; Mebazaa, A.; Düngen, H.D.; et al. Adrenomedullin in heart failure: Pathophysiology and therapeutic application. Eur. J. Heart Fail. 2019, 21, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Yoshihara, F.; Mori, Y.; Kangawa, K.; Matsuoka, H. Cardioprotective effect of adrenomedullin in heart failure. Hypertens. Res. 2003, 26, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Sugo, S.; Minamino, N.; Kangawa, K.; Miyamoto, K.; Kitamura, K.; Sakata, J.; Eto, T.; Matsuo, H. Endothelial Cells Actively Synthesize and Secrete Adrenomedullin. Biochem. Biophys. Res. Commun. 1994, 201, 1160–1166. [Google Scholar] [CrossRef]
- Kitamura, K.; Matsui, E.; Kato, J.; Katoh, F.; Kita, T.; Tsuji, T.; Kangawa, K.; Eto, T. Adrenomedullin (11-26): A novel endogenous hypertensive peptide isolated from bovine adrenal medulla. Peptides 2001, 22, 1713–1718. [Google Scholar] [CrossRef]
- Nishikimi, T.; Kuwahara, K.; Nakagawa, Y.; Kangawa, K.; Nakao, K. Adrenomedullin; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin. Chem. 2005, 51, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Meeran, K.; O’Shea, D.; Upton, P.D.; Small, C.J.; Ghatei, M.A.; Byfield, P.H.; Bloom, S.R. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: A pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997, 82, 95–100. [Google Scholar] [CrossRef]
- Caruhel, P.; Mazier, C.; Kunde, J.; Morgenthaler, N.G.; Darbouret, B. Homogeneous time-resolved fluoroimmunoassay for the measurement of midregional proadrenomedullin in plasma on the fully automated system B.R.A.H.M.S. KRYPTOR®. Clin. Biochem. 2009, 42, 725–728. [Google Scholar] [CrossRef]
- Maisel, A.; Mueller, C.; Nowak, R.; Peacock, W.F.; Landsberg, J.W.; Ponikowski, P.; Mockel, M.; Hogan, C.; Wu, A.H.B.; Richards, M.; et al. Mid-Region Pro-Hormone Markers for Diagnosis and Prognosis in Acute Dyspnea. Results From the BACH (Biomarkers in Acute Heart Failure) Trial. J. Am. Coll. Cardiol. 2010, 55, 2062–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunton, D.C.; Petrie, M.C.; Hillier, C.; Johnston, F.; McMurray, J.J.V. The clinical relevance of adrenomedullin: A promising profile? Pharmacol. Ther. 2004, 103, 179–201. [Google Scholar] [CrossRef] [PubMed]
- Jougasaki, M.; Rodeheffer, R.J.; Redfield, M.M.; Yamamoto, K.; Wei, C.M.; McKinley, L.J.; Burnett, J.C. Cardiac secretion of adrenomedullin in human heart failure. J. Clin. Investig. 1996, 97, 2370–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.M.; Cheung, B.M.Y.; Leung, R.; Wang, Q.; Lai, W.H.; Lau, C.P. Increase in plasma adrenomedullin in patients with heart failure characterised by diastolic dysfunction. Heart 2001, 86, 155–160. [Google Scholar]
- Pousset, F.; Masson, F.; Chavirovskaia, O.; Isnard, R.; Carayon, A.; Golmard, J.L.; Lechat, P.; Thomas, D.; Komajda, M. Plasma adrenomedullin, a new independent predictor of prognosis in patients with chronic heart failure. Eur. Heart J. 2000, 21, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Richards, A.M.; Doughty, R.; Nicholls, M.G.; MacMahon, S.; Sharpe, N.; Murphy, J.; Espiner, E.A.; Frampton, C.; Yandle, T.G. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: Prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 2001, 37, 1781–1787. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.V.; Truong, Q.A.; Gaggin, H.K.; Pfannkuche, J.; Hartmann, O.; Januzzi, J.L. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur. Heart J. 2012, 33, 2197–2205. [Google Scholar] [CrossRef] [Green Version]
- Nishikimi, T.; Saito, Y.; Kitamura, K.; Ishimitsu, T.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 1995, 26, 1424–1431. [Google Scholar] [CrossRef] [Green Version]
- Klip, I.; Voors, A.A.; Anker, S.D.; Hillege, H.L.; Struck, J.; Squire, I.; Van Veldhuisen, D.J.; Dickstein, K. Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 2011, 97, 892–898. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Morrow, D.A.; de Lemos, J.A.; Omland, T.; Sloan, S.; Jarolim, P.; Solomon, S.D.; Pfeffer, M.A.; Braunwald, E. Evaluation of Multiple Biomarkers of Cardiovascular Stress for Risk Prediction and Guiding Medical Therapy in Patients with Stable Coronary Disease. Circulation 2012, 125, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.Q.; O’Brien, R.J.; Struck, J.; Quinn, P.; Morgenthaler, N.; Squire, I.; Davies, J.; Bergmann, A.; Ng, L.L. Prognostic Value of Midregional Pro-Adrenomedullin in Patients with Acute Myocardial Infarction. The LAMP (Leicester Acute Myocardial Infarction Peptide) Study. J. Am. Coll. Cardiol. 2007, 49, 1525–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishimitsu, T.; Nishikimi, T.; Saito, Y.; Kitamura, K.; Eto, T.; Kangawa, K.; Matsuo, H.; Omae, T.; Matsuoka, H. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J. Clin. Investig. 1994, 94, 2158–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEver, R.P. Selectins: Initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 2015, 107, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.M.; Chapman, S.M.; Brown, A.A.; Frenette, P.S.; Hynes, R.O.; Wagner, D.D. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Investig. 1998, 102, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.G.; Velji, R.; Guevara, N.V.; Hicks, M.J.; Chan, L.; Beaudet, A.L. P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E.-deficient mice. J. Exp. Med. 2000, 191, 189–194. [Google Scholar] [CrossRef]
- An, G.; Wang, H.; Tang, R.; Yago, T.; McDaniel, J.M.; McGee, S.; Huo, Y.; Xia, L. P-selectin glycoprotein ligand-1 is highly expressed on ly-6Chi monocytes and a major determinant for ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 2008, 117, 3227–3237. [Google Scholar] [CrossRef] [Green Version]
- Johnson-Tidey, R.R.; McGregor, J.L.; Taylor, P.R.; Poston, R.N. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques: Coexpression with intercellular adhesion molecule-1. Am. J. Pathol. 1994, 144, 952–961. [Google Scholar]
- Body, R.; Pemberton, P.; Ali, F.; McDowell, G.; Carley, S.; Smith, A.; Mackway-Jones, K. Low soluble P-selectin may facilitate early exclusion of acute myocardial infarction. Clin. Chim. Acta 2011, 412, 614–618. [Google Scholar] [CrossRef]
- Thomas, M.R.; Wijeyeratne, Y.D.; May, J.A.; Johnson, A.; Heptinstall, S.; Fox, S.C. A platelet P-selectin test predicts adverse cardiovascular events in patients with acute coronary syndromes treated with aspirin and clopidogrel. Platelets 2014, 25, 612–618. [Google Scholar] [CrossRef]
- Tardif, J.C.; Tanguay, J.F.; Wright, S.S.; Duchatelle, V.; Petroni, T.; Grégoire, J.C.; Ibrahim, R.; Heinonen, T.M.; Robb, S.; Bertrand, O.F.; et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-st-segment elevation myocardial infarction: Results of the SELECT-ACS trial. J. Am. Coll. Cardiol. 2013, 61, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Tscharre, M.; Vogel, B.; Tentzeris, I.; Freynhofer, M.K.; Rohla, M.; Wojta, J.; Weiss, T.W.; Ay, C.; Huber, K.; Farhan, S. Prognostic Impact of Soluble P-Selectin on Long-Term Adverse Cardiovascular Outcomes in Patients Undergoing Percutaneous Coronary Intervention. Thromb. Haemost. 2019, 119, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Buring, J.E.; Rifai, N. Soluble P-Selectin and the Risk of Future Cardiovascular Events. Circulation 2001, 103, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.A.; Augeri, A.L.; Capizzi, J.A.; Ballard, K.D.; Kupchak, B.R.; Volek, J.S.; Troyanos, C.; Kriz, P.; D’Hemecourt, P.; Thompson, P.D. Effect of marathon run and air travel on pre- and post-run soluble d-dimer, microparticle procoagulant activity, and p-selectin levels. Am. J. Cardiol. 2012, 109, 1521–1525. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B. The urokinase system in the pathogenesis of atherosclerosis. Atherosclerosis 2012, 222, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Carmeliet, P. uPAR: A versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 2002, 3, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.D.; Ferraris, G.M.S.; Andolfo, A.; Cunningham, O.; Sidenius, N. uPAR-induced cell adhesion and migration: Vitronectin provides the key. J. Cell Biol. 2007, 177, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Madsen, C.D.; Sidenius, N. The interaction between urokinase receptor and vitronectin in cell adhesion and signalling. Eur. J. Cell Biol. 2008, 87, 617–629. [Google Scholar] [CrossRef]
- Eapen, D.J.; Manocha, P.; Ghasemzadeh, N.; Patel, R.S.; Kassem, H.A.L.; Hammadah, M.; Veledar, E.; Le, N.A.; Pielak, T.; Thorball, C.W.; et al. Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J. Am. Heart Assoc. 2014, 3, e001118. [Google Scholar] [CrossRef] [Green Version]
- Corban, M.T.; Prasad, A.; Nesbitt, L.; Loeffler, D.; Herrmann, J.; Lerman, L.O.; Lerman, A. Local production of soluble urokinase plasminogen activator receptor and plasminogen activator inhibitor-1 in the coronary circulation is associated with coronary endothelial dysfunction in humans. J. Am. Heart Assoc. 2018, 7, e009881. [Google Scholar] [CrossRef] [Green Version]
- Lyngbæk, S.; Andersson, C.; Marott, J.L.; Møller, D.V.; Christiansen, M.; Iversen, K.K.; Clemmensen, P.; Eugen-Olsen, J.; Hansen, P.R.; Jeppesen, J.L. Soluble urokinase plasminogen activator receptor for risk prediction in patients admitted with acute chest pain. Clin. Chem. 2013, 59, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Jung, R.G.; Motazedian, P.; Ramirez, F.D.; Simard, T.; Di Santo, P.; Visintini, S.; Faraz, M.A.; Labinaz, A.; Jung, Y.; Hibbert, B. Association between plasminogen activator inhibitor-1 and cardiovascular events: A systematic review and meta-analysis. Thromb. J. 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyngbæk, S.; Marott, J.L.; Moller, D.V.; Christiansen, M.; Iversen, K.K.; Clemmensen, P.M.; Eugen-Olsen, J.; Jeppesen, J.L.; Hansen, P.R. Usefulness of soluble urokinase plasminogen activator receptor to predict repeat myocardial infarction and mortality in patients with st-segment elevation myocardial infarction undergoing primary percutaneous intervention. Am. J. Cardiol. 2012, 110, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, R.; Brogi, D.; Sofi, F.; Giglioli, C.; Valente, S.; Liotta, A.A.; Lenti, M.; Gori, A.M.; Prisco, D.; Abbate, R.; et al. PAI-1 and homocysteine, but not lipoprotein (a) and thrombophilic polymorphisms, are independently associated with the occurrence of major adverse cardiac events after successful coronary stenting. Heart 2006, 92, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eugen-Olsen, J.; Andersen, O.; Linneberg, A.; Ladelund, S.; Hansen, T.W.; Langkilde, A.; Petersen, J.; Pielak, T.; Møller, L.N.; Jeppesen, J.; et al. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J. Intern. Med. 2010, 268, 296–308. [Google Scholar] [CrossRef]
- Lyngbæk, S.; Marott, J.L.; Sehestedt, T.; Hansen, T.W.; Olsen, M.H.; Andersen, O.; Linneberg, A.; Haugaard, S.B.; Eugen-Olsen, J.; Hansen, P.R.; et al. Cardiovascular risk prediction in the general population with use of suPAR, CRP, and Framingham Risk Score. Int. J. Cardiol. 2013, 167, 2904–2911. [Google Scholar] [CrossRef]
- Cesari, M.; Pahor, M.; Incalzi, R.A. REVIEW: Plasminogen Activator Inhibitor-1 (PAI-1): A Key Factor Linking Fibrinolysis and Age-Related Subclinical and Clinical Conditions. Cardiovasc. Ther. 2010, 28, e72–e91. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, J.; Furtak, V.; Lukyanov, P. Extracellular functions of galectin-3. Glycoconj. J. 2002, 19, 527–535. [Google Scholar] [CrossRef]
- Chen, H.Y.; Weng, I.C.; Hong, M.H.; Liu, F.T. Galectins as bacterial sensors in the host innate response. Curr. Opin. Microbiol. 2014, 17, 75–81. [Google Scholar] [CrossRef]
- Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 616–635. [Google Scholar] [CrossRef]
- Yang, R.Y.; Rabinovich, G.A.; Liu, F.T. Galectins: Structure, function and therapeutic potential. Expert Rev. Mol. Med. 2008, 10, e17. [Google Scholar] [CrossRef]
- Lala, R.I.; Puschita, M.; Darabantiu, D.; Pilat, L. Galectin-3 in heart failure pathology—‘Another brick in the wall’? Acta Cardiol. 2015, 70, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Clementy, N.; Garcia, B.; André, C.; Bisson, A.; Benhenda, N.; Pierre, B.; Bernard, A.; Fauchier, L.; Piver, E.; Babuty, D. Galectin-3 level predicts response to ablation and outcomes in patients with persistent atrial fibrillation and systolic heart failure. PLoS ONE 2018, 13, e0201517. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Piver, E.; Perault, R.; Bisson, A.; Pucheux, J.; Vermes, E.; Pierre, B.; Fauchier, L.; Babuty, D.; Clementy, N. Galectin-3 predicts response and outcomes after cardiac resynchronization therapy 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology. J. Transl. Med. 2018, 16, 299. [Google Scholar]
- Agnello, L.; Bivona, G.; Lo Sasso, B.; Scazzone, C.; Bazan, V.; Bellia, C.; Ciaccio, M. Galectin-3 in acute coronary syndrome. Clin. Biochem. 2017, 50, 797–803. [Google Scholar] [CrossRef]
- Weir, R.A.P.; Petrie, C.J.; Murphy, C.A.; Clements, S.; Steedman, T.; Miller, A.M.; McInnes, I.B.; Squire, I.B.; Ng, L.L.; Dargie, H.J.; et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ. Heart Fail. 2013, 6, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Ipek, E.G.; Akin Suljevic, S.; Kafes, H.; Basyigit, F.; Karalok, N.; Guray, Y.; Dinc Asarcikli, L.; Acar, B.; Demirel, H. Evaluation of galectin-levels in acute coronary syndrome. Ann. Cardiol. Angeiol. 2016, 65, 26–30. [Google Scholar] [CrossRef]
- George, M.; Shanmugam, E.; Srivatsan, V.; Rajaram, M.; Jena, A.; Sridhar, A.; Vasanth, K.; Chaudhury, M.; Kaliappan, I.; Ramraj, B. Value of pentraxin-3 and galectin-3 in acute coronary syndrome: A short-term prospective cohort study. Ther. Adv. Cardiovasc. Dis. 2015, 9, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Felker, G.M.; Fiuzat, M.; Shaw, L.K.; Clare, R.; Whellan, D.J.; Bettari, L.; Shirolkar, S.C.; Donahue, M.; Kitzman, D.W.; Zannad, F.; et al. Galectin-3 in ambulatory patients with heart failure results from the HF-ACTION study. Circ. Heart Fail. 2012, 5, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, K.; Tomita, H.; Kanayama, T.; Niwa, A.; Hatano, Y.; Hoshi, M.; Sugie, S.; Okada, H.; Niwa, M.; Hara, A. Time-course analysis of cardiac and serum galectin-3 in viral myocarditis after an encephalomyocarditis virus inoculation. PLoS ONE 2019, 14, e0210971. [Google Scholar] [CrossRef] [Green Version]
- de Couto, G.; Ouzounian, M.; Liu, P.P. Early detection of myocardial dysfunction and heart failure. Nat. Rev. Cardiol. 2010, 7, 334–344. [Google Scholar] [CrossRef]
- Zuern, C.S.; Floss, N.; Mueller, I.I.; Eick, C.; Duckheim, M.; Patzelt, J.; Gawaz, M.; May, A.E.; Mueller, K.A.L. Galectin-3 is associated with left ventricular reverse remodeling and outcome after percutaneous mitral valve repair. Int. J. Cardiol. 2018, 263, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Asleh, R.; Enriquez-Sarano, M.; Jaffe, A.S.; Manemann, S.M.; Weston, S.A.; Jiang, R.; Roger, V.L. Galectin-3 Levels and Outcomes After Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Qi, X.; Huang, A.; Li, J.; Hou, W.; Liu, K. Differential and predictive value of galectin-3 and soluble suppression of tumorigenicity-2 (sST2) in heart failure with preserved ejection fraction. Med. Sci. Monit. 2018, 24, 5139–5146. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Bhambhani, V.; Christenson, R.H.; Meijers, W.C.; de Boer, R.A.; Levy, D.; Larson, M.G.; Ho, J.E. Longitudinal Change in Galectin-3 and Incident Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2018, 72, 3246–3254. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Kuster, N.; Curinier, C.; Huet, F.; Plawecki, M.; Solecki, K.; Roubille, F.; Cristol, J.P. Exploring collagen remodeling and regulation as prognosis biomarkers in stable heart failure. Clin. Chim. Acta 2019, 490, 167–171. [Google Scholar] [CrossRef]
- van Kimmenade, R.R.; Januzzi, J.L.; Ellinor, P.T.; Sharma, U.C.; Bakker, J.A.; Low, A.F.; Martinez, A.; Crijns, H.J.; MacRae, C.A.; Menheere, P.P.; et al. Utility of Amino-Terminal Pro-Brain Natriuretic Peptide, Galectin-3, and Apelin for the Evaluation of Patients with Acute Heart Failure. J. Am. Coll. Cardiol. 2006, 48, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- de Boer, R.A.; Lok, D.J.A.; Jaarsma, T.; Van Der Meer, P.; Voors, A.A.; Hillege, H.L.; Van Veldhuisen, D.J. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 2011, 43, 60–68. [Google Scholar] [CrossRef]
- Lopez-Andrés, N.; Rossignol, P.; Iraqi, W.; Fay, R.; Nuée, J.; Ghio, S.; Cleland, J.G.F.; Zannad, F.; Lacolley, P. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: Insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur. J. Heart Fail. 2012, 14, 74–81. [Google Scholar] [CrossRef]
- van der Velde, A.R.; Gullestad, L.; Ueland, T.; Aukrust, P.; Guo, Y.; Adourian, A.; Muntendam, P.; Van Veldhuisen, D.J.; De Boer, R.A. Prognostic value of changes in galectin-3 levels over time in patients with heart failure data from CORONA and COACH. Circ. Heart Fail. 2013, 6, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Baldenhofer, G.; Baldenhofer, G.; Zhang, K.; Spethmann, S.; Laule, M.; Eilers, B.; Leonhardt, F.; Sanad, W.; Dreger, H.; Sander, M.; et al. Galectin-3 predicts short- and long-term outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Int. J. Cardiol. 2014, 177, 912–917. [Google Scholar] [CrossRef]
- Srivatsan, V.; George, M.; Shanmugam, E. Utility of galectin-3 as a prognostic biomarker in heart failure: Where do we stand? Eur. J. Prev. Cardiol. 2015, 22, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.B.; Cheung, C.L.; Lee, A.C.H.; Lam, J.K.Y.; Wong, Y.; Shiu, S.W.M. Galectin-3 is independently associated with progression of nephropathy in type 2 diabetes mellitus. Diabetologia 2018, 61, 1212–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.L.; Katz, R.; Bellovich, K.A.; Bhat, Z.Y.; Brosius, F.C.; de Boer, I.H.; Gadegbeku, C.A.; Gipson, D.S.; Hawkins, J.J.; Himmelfarb, J.; et al. Soluble ST2 and Galectin-3 and Progression of CKD. Kidney Int. Rep. 2019, 4, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoj, J.; Becerra, B.; Kim, J.K.; Fusaro, M.; Gallieni, M.; Lombardo, D.; Lau, W.L. Utility of Cardiac Biomarkers in the Setting of Kidney Disease. Nephron 2019, 141, 227–235. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, P.L. The role of galectin-3 in the kidneys. Int. J. Mol. Sci. 2016, 17, 565. [Google Scholar] [CrossRef] [Green Version]
- Gopal, D.M.; Ayalon, N.; Wang, Y.C.; Siwik, D.; Sverdlov, A.; Donohue, C.; Perez, A.; Downing, J.; Apovian, C.; Silva, V.; et al. Galectin-3 is associated with stage B metabolic heart disease and pulmonary hypertension in young obese patients. J. Am. Heart Assoc. 2019, 8, e011100. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.T.; Østergaard, O.; Rasmussen, N.S.; Jacobsen, S.; Heegaard, N.H.H. A review of studies of the proteomes of circulating microparticles: Key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin. Proteom. 2017, 14, 11. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Niwa, M.; Hoshi, M.; Saito, K.; Hisamatsu, K.; Hatano, Y.; Tomita, H.; Miyazaki, T.; Hara, A. Early microlesion of viral encephalitis confirmed by galectin-3 expression after a virus inoculation. Neurosci. Lett. 2015, 592, 107–112. [Google Scholar] [CrossRef]
- Sato, S.; Ouellet, M.; St-Pierre, C.; Tremblay, M.J. Glycans, galectins, and HIV-1 infection. Ann. N. Y. Acad. Sci. 2012, 1253, 133–148. [Google Scholar] [CrossRef]
- de Oliveira, F.L.; Gatto, M.; Bassi, N.; Luisetto, R.; Ghirardello, A.; Punzi, L.; Doria, A. Galectin-3 in autoimmunity and autoimmune diseases. Exp. Biol. Med. 2015, 240, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Dhirapong, A.; Lleo, A.; Leung, P.; Gershwin, M.E.; Liu, F.T. The immunological potential of galectin-1 and -3. Autoimmun. Rev. 2009, 8, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Shin, T. The pleiotropic effects of galectin-3 in neuroinflammation: A review. Acta Histochem. 2013, 115, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Saccon, F.; Gatto, M.; Ghirardello, A.; Iaccarino, L.; Punzi, L.; Doria, A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun. Rev. 2017, 16, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Niwa, M.; Binh, N.H.; Nakashima, M.; Kobayashi, K.; Takamatsu, M.; Hara, A. Increase of galectin-3 expression in microglia by hyperthermia in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia. Neurosci. Lett. 2011, 504, 199–203. [Google Scholar] [CrossRef]
- Satoh, K.; Niwa, M.; Goda, W.; Binh, N.H.; Nakashima, M.; Takamatsu, M.; Hara, A. Galectin-3 expression in delayed neuronal death of hippocampal CA1 following transient forebrain ischemia, and its inhibition by hypothermia. Brain Res. 2011, 1382, 266–274. [Google Scholar] [CrossRef]
- Hisamatsu, K.; Niwa, M.; Kobayashi, K.; Miyazaki, T.; Hirata, A.; Hatano, Y.; Tomita, H.; Hara, A. Galectin-3 expression in hippocampal CA2 following transient forebrain ischemia and its inhibition by hypothermia or antiapoptotic agents. Neuroreport 2016, 27, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, G.M.; Baeesa, S.S. Investigation of Gal-3 Expression Pattern in Serum and Cerebrospinal Fluid of Patients Suffering From Neurodegenerative Disorders. Front. Neurosci. 2018, 12, 430. [Google Scholar] [CrossRef] [Green Version]
- Rotshenker, S. The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J. Mol. Neurosci. 2009, 39, 99–103. [Google Scholar] [CrossRef]
- Song, L.; Tang, J.W.; Owusu, L.; Sun, M.Z.; Wu, J.; Zhang, J. Galectin-3 in cancer. Clin. Chim. Acta 2014, 431, 185–191. [Google Scholar] [CrossRef]
- Fortuna-Costa, A.; Gomes, A.M.; Kozlowski, E.O.; Stelling, M.P.; Pavão, M.S.G. Extracellular galectin-3 in tumor progression and metastasis. Front. Oncol. 2014, 4, 138. [Google Scholar] [CrossRef] [Green Version]
- Funasaka, T.; Raz, A.; Nangia-Makker, P. Galectin-3 in angiogenesis and metastasis. Glycobiology 2014, 24, 886–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, M.; Dong, X.W.; Guo, X.L. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed. Pharmacother. 2015, 69, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Ruvolo, P.P. Galectin 3 as a guardian of the tumor microenvironment. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, M.; Adelinik, A.; Papian, S.; Khorramdelazad, H.; Abedinzadeh, M. Role of galectin-3 in the pathogenesis of bladder transitional cell carcinoma. Hum. Immunol. 2015, 76, 770–774. [Google Scholar] [CrossRef]
- Wang, L.; Guo, X.L. Molecular regulation of galectin-expression and therapeutic implication in cancer progression. Biomed. Pharmacother. 2016, 78, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Nangia-Makker, P.; Hogan, V.; Raz, A. Galectin-3 and cancer stemness. Glycobiology 2018, 28, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhou, X.; Ma, L.; Zhuang, Y.; Wei, Y.; Zhang, L.; Jin, S.; Liang, W.; Shen, X.; Li, C.; et al. Galectin-3 may serve as a marker for poor prognosis in colorectal cancer: A meta-analysis. Pathol. Res. Pract. 2019, 215, 152612. [Google Scholar] [CrossRef]
- Binh, N.H.; Satoh, K.; Kobayashi, K.; Takamatsu, M.; Hatano, Y.; Hirata, A.; Tomita, H.; Kuno, T.; Hara, A. Galectin-3 in preneoplastic lesions of glioma. J. Neurooncol. 2013, 111, 123–132. [Google Scholar] [CrossRef]
- Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology 2013, 28, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; De Castro Brás, L.E.; Toba, H.; Iyer, R.P.; Hall, M.E.; Winniford, M.D.; Lange, R.A.; Tyagi, S.C.; Lindsey, M.L. Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. Eur. J. Physiol. 2014, 466, 1113–1127. [Google Scholar] [CrossRef] [Green Version]
- Ikonomidis, J.S.; Hendrick, J.W.; Parkhurst, A.M.; Herron, A.R.; Escobar, P.G.; Dowdy, K.B.; Stroud, R.E.; Hapke, E.; Zile, M.R.; Spinale, F.G. Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: Effects of exogenous MMP inhibition. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Rouis, M.; Adamy, C.; Duverger, N.; Lesnik, P.; Horellou, P.; Moreau, M.; Emmanuel, F.; Caillaud, J.M.; Laplaud, P.M.; Dachet, C.; et al. Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E- deficient mice. Circulation 1999, 100, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Akahane, T.; Akahane, M.; Shah, A.; Thorgeirsson, U.P. TIMP-1 stimulates proliferation of human aortic smooth muscle cells and Ras effector pathways. Biochem. Biophys. Res. Commun. 2004, 324, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Uchinaka, A.; Kawaguchi, N.; Mori, S.; Hamada, Y.; Miyagawa, S.; Saito, A.; Sawa, Y.; Matsuura, N. Tissue inhibitor of metalloproteinase-1 and-3 improves cardiac function in an ischemic cardiomyopathy model rat. Tissue Eng. Part A 2014, 20, 3073–3084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Chiao, Y.A.; Clark, R.; Flynn, E.R.; Yabluchanskiy, A.; Ghasemi, O.; Zouein, F.; Lindsey, M.L.; Jin, Y.F. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc. Res. 2015, 106, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Zamilpa, R.; Ibarra, J.; de Castro Brás, L.E.; Ramirez, T.A.; Nguyen, N.; Halade, G.V.; Zhang, J.; Dai, Q.; Dayah, T.; Chiao, Y.A.; et al. Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J. Mol. Cell. Cardiol. 2012, 53, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Chiao, Y.A.; Ramirez, T.A.; Zamilpa, R.; Okoronkwo, S.M.; Dai, Q.; Zhang, J.; Jin, Y.F.; Lindsey, M.L. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc. Res. 2012, 96, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Song, X.; Chen, Y.; Yuan, F.; Xu, F.; Zhang, M.; Tan, K.; Yang, X.; Yu, X.; Lv, S. The Long-Term Influence of Tissue Inhibitor of Matrix Metalloproteinase-1 in Patients with Mild to Moderate Coronary Artery Lesions in a Chinese Population: A 7-Year Follow-Up Study. Cardiology 2015, 132, 151–158. [Google Scholar] [CrossRef]
- Kelly, D.; Squire, I.B.; Khan, S.Q.; Dhillon, O.; Narayan, H.; Ng, K.H.; Quinn, P.; Davies, J.E.; Ng, L.L. Usefulness of plasma tissue inhibitors of metalloproteinases as markers of prognosis after acute myocardial infarction. Am. J. Cardiol. 2010, 106, 477–482. [Google Scholar] [CrossRef]
- Lubos, E.; Schnabel, R.; Rupprecht, H.J.; Bickel, C.; Messow, C.M.; Prigge, S.; Cambien, F.; Tiret, L.; Münzel, T.; Blankenberg, S. Prognostic value of tissue inhibitor of metalloproteinase-1 for cardiovascular death among patients with cardiovascular disease: Results from the AtheroGene study. Eur. Heart J. 2006, 27, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Sundstrom, J. Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: The Framingham heart study. Eur. Heart J. 2004, 25, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Kormi, I.; Nieminen, M.T.; Havulinna, A.S.; Zeller, T.; Blankenberg, S.; Tervahartiala, T.; Sorsa, T.; Salomaa, V.; Pussinen, P.J. Matrix metalloproteinase-8 and tissue inhibitor of matrix metalloproteinase-1 predict incident cardiovascular disease events and all-cause mortality in a population-based cohort. Eur. J. Prev. Cardiol. 2017, 24, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Borne, S.W.M.; Cleutjens, J.P.M.; Hanemaaijer, R.; Creemers, E.E.; Smits, J.F.M.; Daemen, M.J.A.P.; Blankesteijn, W.M. Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc. Pathol. 2009, 18, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, S.; Rupprecht, H.J.; Poirier, O.; Bickel, C.; Smieja, M.; Hafner, G.; Meyer, J.; Cambien, F.; Tiret, L. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003, 107, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Hamed, G.M.; Fattah, M.F.A. Clinical Relevance of Matrix Metalloproteinase 9 in Patients with Acute Coronary Syndrome. Clin. Appl. Thromb. 2015, 21, 750–754. [Google Scholar] [CrossRef] [Green Version]
- Morishita, T.; Uzui, H.; Mitsuke, Y.; Amaya, N.; Kaseno, K.; Ishida, K.; Fukuoka, Y.; Ikeda, H.; Tama, N.; Yamazaki, T.; et al. Association between matrix metalloproteinase-9 and worsening heart failure events in patients with chronic heart failure. ESC Heart Fail. 2017, 4, 321–330. [Google Scholar] [CrossRef]
- Wagner, D.R.; Delagardelle, C.; Ernens, I.; Rouy, D.; Vaillant, M.; Beissel, J. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J. Card. Fail. 2006, 12, 66–72. [Google Scholar] [CrossRef]
- Tan, J.; Hua, Q.; Xing, X.; Wen, J.; Liu, R.; Yang, Z. Impact of the Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 System on Large Arterial Stiffness in Patients with Essential Hypertension. Hypertens. Res. 2007, 30, 959–963. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Xu, J.; Kimball, T.R.; Lorenz, J.N.; Brown, D.A.; Bauskin, A.R.; Klevitsky, R.; Hewett, T.E.; Breit, S.N.; Molkentin, J.D. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ. Res. 2006, 98, 342–350. [Google Scholar] [CrossRef] [Green Version]
- de Jager, S.C.A.; Bermúdez, B.; Bot, I.; Koenen, R.R.; Bot, M.; Kavelaars, A.; De Waard, V.; Heijnen, C.J.; Muriana, F.J.G.; Weber, C. Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis. J. Exp. Med. 2011, 208, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaterra, G.A.; Zügel, S.; Thogersen, J.; Walter, S.A.; Haberkorn, U.; Strelau, J.; Kinscherf, R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J. Am. Heart Assoc. 2012, 1, e002550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murielle, M.; Batra, S.K. Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J. Cell. Physiol. 2010, 224, 626–635. [Google Scholar]
- Tsai, V.W.W.; Lin, S.; Brown, D.A.; Salis, A.; Breit, S.N. Anorexia-cachexia and obesity treatment may be two sides of the same coin: Role of the TGF-b superfamily cytokine MIC-1/GDF15. Int. J. Obes. 2016, 40, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, T.; Zarbock, A.; Widera, C.; Butz, S.; Stadtmann, A.; Rossaint, J.; Bolomini-Vittori, M.; Korf-Klingebiel, M.; Napp, L.C.; Hansen, B.; et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 2011, 17, 581–588. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Peter, T.; Olofsson, S.; James, S.; Johnston, N.; Lindahl, B.; Horn-Wichmann, R.; Brabant, G.; Simoons, M.L.; et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 2007, 115, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Lok, S.I.; Winkens, B.; Goldschmeding, R.; Van Geffen, A.J.P.; Nous, F.M.A.; Van Kuik, J.; Van Der Weide, P.; Klöpping, C.; Kirkels, J.H.; Lahpor, J.R.; et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur. J. Heart Fail. 2012, 14, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; von Haehling, S.; Peter, T.; Allhoff, T.; Cicoira, M.; Doehner, W.; Ponikowski, P.; Filippatos, G.S.; Rozentryt, P.; Drexler, H.; et al. Prognostic Utility of Growth Differentiation Factor-15 in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.A.; Breit, S.N.; Buring, J.; Fairlie, W.D.; Bauskin, A.R.; Liu, T.; Ridker, P.M. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: A nested case-control study. Lancet 2002, 359, 2159–2163. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Daniels, L.B.; Clopton, P.; Laughlin, G.A.; Maisel, A.S.; Barrett-Connor, E. Growth-Differentiation Factor-15 Is a Robust, Independent Predictor of 11-Year Mortality Risk in Community-Dwelling Older Adults. Circulation 2011, 123, 2101–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.E.; Mahajan, A.; Chen, M.-H.; Larson, M.G.; McCabe, E.L.; Ghorbani, A.; Cheng, S.; Johnson, A.D.; Lindgren, C.M.; Kempf, T.; et al. Clinical and Genetic Correlates of Growth Differentiation Factor 15 in the Community. Clin. Chem. 2012, 58, 1582–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohatgi, A.; Patel, P.; Das, S.R.; Ayers, C.R.; Khera, A.; Martinez-Rumayor, A.; Berry, J.D.; McGuire, D.K.; de Lemos, J.A. Association of Growth Differentiation Factor-15 with Coronary Atherosclerosis and Mortality in a Young, Multiethnic Population: Observations from the Dallas Heart Study. Clin. Chem. 2012, 58, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiklund, F.E.; Bennet, A.M.; Magnusson, P.K.E.; Eriksson, U.K.; Lindmark, F.; Wu, L.; Yaghoutyfam, N.; Marquis, C.P.; Stattin, P.; Pedersen, N.L.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell 2010, 9, 1057–1064. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Enserro, D.; Sullivan, L.; Wang, T.J.; Januzzi, J.L.; Benjamin, E.J.; Vita, J.A.; Hamburg, N.M.; Larson, M.G.; Mitchell, G.F.; et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: The Framingham Heart Study. Atherosclerosis 2016, 248, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Xanthakis, V.; Larson, M.G.; Wollert, K.C.; Aragam, J.; Cheng, S.; Ho, J.; Coglianese, E.; Levy, D.; Colucci, W.S.; Michael Felker, G.; et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: Implications for screening. J. Am. Heart Assoc. 2013, 2, e000399. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Horn-Wichmann, R.; Brabant, G.; Peter, T.; Allhoff, T.; Klein, G.; Drexler, H.; Johnston, N.; Wallentin, L.; Wollert, K.C. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin. Chem. 2007, 53, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Wallentin, L.; Zethelius, B.; Berglund, L.; Eggers, K.M.; Lind, L.; Lindahl, B.; Wollert, K.C.; Siegbahn, A. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS ONE 2013, 8, e78797. [Google Scholar] [CrossRef] [Green Version]
- Hagström, E.; James, S.K.; Bertilsson, M.; Becker, R.C.; Himmelmann, A.; Husted, S.; Katus, H.A.; Steg, P.G.; Storey, R.F.; Siegbahn, A.; et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: Results from the PLATO study. Eur. Heart J. 2016, 37, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Schopfer, D.W.; Ku, I.A.; Regan, M.; Whooley, M.A. Growth differentiation factor 15 and cardiovascular events in patients with stable ischemic heart disease (The Heart and Soul Study). Am. Heart J. 2014, 167, 186–192.e1. [Google Scholar] [CrossRef] [PubMed]
- Bonaca, M.P.; Morrow, D.A.; Braunwald, E.; Cannon, C.P.; Jiang, S.; Breher, S.; Sabatine, M.S.; Kempf, T.; Wallentin, L.; Wollert, K.C. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: Observations from PROVE IT-TIMI 22. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, I.S.; Kempf, T.; Rector, T.S.; Tapken, H.; Allhoff, T.; Jantzen, F.; Kuskowski, M.; Cohn, J.N.; Drexler, H.; Wollert, K.C. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the valsartan heart failure trial. Circulation 2010, 122, 1387–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.M.Y.; Santhanakrishnan, R.; Chong, J.P.C.; Chen, Z.; Tai, B.C.; Liew, O.W.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.G.; et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2016, 18, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, G.; Voors, A.A.; Prescott, M.F.; Felker, G.M.; Filippatos, G.; Greenberg, B.H.; Pang, P.S.; Ponikowski, P.; Milo, O.; Hua, T.A.; et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: Results from the RELAX-AHF study. Eur. J. Heart Fail. 2015, 17, 1133–1143. [Google Scholar] [CrossRef]
- Hijazi, Z.; Oldgren, J.; Lindbäck, J.; Alexander, J.H.; Connolly, S.J.; Eikelboom, J.W.; Ezekowitz, M.D.; Held, C.; Hylek, E.M.; Lopes, R.D.; et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: A derivation and validation study. Lancet 2016, 387, 2302–2311. [Google Scholar] [CrossRef]
- Hijazi, Z.; Lindbäck, J.; Alexander, J.H.; Hanna, M.; Held, C.; Hylek, E.M.; Lopes, R.D.; Oldgren, J.; Siegbahn, A.; Stewart, R.A.H.; et al. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 2016, 37, 1582–1590. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Oldgren, J.; Lindbäck, J.; Alexander, J.H.; Connolly, S.J.; Eikelboom, J.W.; Ezekowitz, M.D.; Held, C.; Hylek, E.M.; Lopes, R.D.; et al. A biomarker-based risk score to predict death in patients with atrial fibrillation: The ABC (age, biomarkers, clinical history) death risk score. Eur. Heart J. 2018, 39, 477–485. [Google Scholar] [CrossRef]
- Wallentin, L.; Hijazi, Z.; Andersson, U.; Alexander, J.H.; De Caterina, R.; Hanna, M.; Horowitz, J.D.; Hylek, E.M.; Lopes, R.D. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Circulation 2014, 130, 1847–1858. [Google Scholar]
- Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Eikelboom, J.W.; Ezekowitz, M.D.; Reilly, P.A.; Yusuf, S.; Siegbahn, A.; Wallentin, L. Growth-differentiation factor 15 and risk of major bleeding in atrial fibrillation: Insights from the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial. Am. Heart J. 2017, 190, 94–103. [Google Scholar] [CrossRef]
- Widera, C.; Pencina, M.J.; Bobadilla, M.; Reimann, I.; Guba-Quint, A.; Marquardt, I.; Bethmann, K.; Korf-Klingebiel, M.; Kempf, T.; Lichtinghagen, R.; et al. Incremental prognostic value of biomarkers beyond the GRACE (Global Registry of Acute Coronary Events) score and high-sensitivity cardiac troponin T in non-ST-elevation acute coronary syndrome. Clin. Chem. 2013, 59, 1497–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widera, C.; Pencina, M.J.; Meisner, A.; Kempf, T.; Bethmann, K.; Marquardt, I.; Katus, H.A.; Giannitsis, E.; Wollert, K.C. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur. Heart J. 2012, 33, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.E.; Hwang, S.J.; Wollert, K.C.; Larson, M.G.; Cheng, S.; Kempf, T.; Vasan, R.S.; Januzzi, J.L.; Wang, T.J.; Fox, C.S. Biomarkers of cardiovascular stress and incident chronic kidney disease. Clin. Chem. 2013, 59, 1613–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saucerman, J.J.; Tan, P.M.; Buchholz, K.S.; McCulloch, A.D.; Omens, J.H. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 2019, 16, 361–378. [Google Scholar] [CrossRef] [PubMed]
- Vila, G.; Riedl, M.; Anderwald, C.; Resl, M.; Handisurya, A.; Clodi, M.; Prager, G.; Ludvik, B.; Krebs, M.; Luger, A. The relationship between insulin resistance and the cardiovascular biomarker growth differentiation factor-15 in obese patients. Clin. Chem. 2011, 57, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Farhan, S.; Freynhofer, M.K.; Brozovic, I.; Bruno, V.; Vogel, B.; Tentzeris, I.; Baumgartner-Parzer, S.; Huber, K.; Kautzky-Willer, A. Determinants of growth differentiation factor 15 in patients with stable and acute coronary artery disease. A prospective observational study. Cardiovasc. Diabetol. 2016, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Schaub, N.; Reichlin, T.; Twerenbold, R.; Reiter, M.; Steuer, S.; Bassetti, S.; Stelzig, C.; Wolf, C.; Winkler, K.; Haaf, P.; et al. Growth differentiation factor-15 in the early diagnosis and risk stratification of patients with acute chest pain. Clin. Chem. 2012, 58, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Leitner, I.; Egger, M.; Haltmayer, M.; Dieplinger, B. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin. Chim. Acta 2015, 445, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Dhaun, N.; Webb, D.J. Endothelins in cardiovascular biology and therapeutics. Nat. Rev. Cardiol. 2019, 16, 491–502. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Pollock, D.M. 2013 Dahl Lecture American heart association council for high blood pressure research clarifying the physiology of endothelin. Hypertension 2014, 63, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.W.; Moorhouse, R.; Farrah, T.E.; MacIntyre, I.M.; Asai, T.; Gallacher, P.J.; Kerr, D.; Melville, V.; Czopek, A.; Morrison, E.E.; et al. First-in-Man Demonstration of Direct Endothelin-Mediated Natriuresis and Diuresis. Hypertension 2017, 70, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, W.G.; Webb, D.J. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994, 344, 852–854. [Google Scholar] [CrossRef]
- Morrell, N.; Suntharalingam, J. Endothelins. Encycl. Respir. Med. Four-Volume Set 2006, 95499, 75–79. [Google Scholar]
- van Wamel, A.J.E.T.; Ruwhof, C.; van der Valk-Kokshoorn, L.E.J.M.; Schriern, P.I.; van der Laarse, A. The role of angiotensin II, endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol. Cell. Biochem. 2001, 218, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.S.; Davies, J.E.; Struck, J.; Ng, L.L. Plasma C-terminal proEndothelin-1 (CTproET-1) is affected by age, renal function, left atrial size and diastolic blood pressure in healthy subjects. Peptides 2014, 52, 53–57. [Google Scholar] [CrossRef]
- Jankowich, M.D.; Wu, W.C.; Choudhary, G. Association of elevated plasma endothelin-1 levels with pulmonary hypertension, mortality, and heart failure in African American Individuals: The jackson heart study. JAMA Cardiol. 2016, 1, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Hirai, Y.; Adachi, H.; Fujiura, Y.; Hiratsuka, A.; Enomoto, M.; Imaizumi, T. Plasma endothelin-1 level is related to renal function and smoking status but not to blood pressure: An epidemiological study. J. Hypertens. 2004, 22, 713–718. [Google Scholar] [CrossRef]
- Yokoi, K.; Adachi, H.; Hirai, Y.; Enomoto, M.; Fukami, A.; Ogata, K.; Tsukagawa, E.; Kasahara, A.; Imaizumi, T. Plasma endothelin-1 level is a predictor of 10-year mortality in a general population: The tanushimaru study. Circ. J. 2012, 76, 2779–2784. [Google Scholar] [CrossRef] [Green Version]
- Papassotiriou, J.; Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Immunoluminometric assay for measurement of the C-terminal endothelin-I precursor fragment in human plasma. Clin. Chem. 2006, 52, 1144–1151. [Google Scholar] [CrossRef] [Green Version]
- Jankowich, M.; Elston, B.; Liu, Q.; Abbasi, S.; Wu, W.C.; Blackshear, C.; Godfrey, M.; Choudhary, G. Restrictive spirometry pattern, cardiac structure and function, and incident heart failure in African Americans. The Jackson heart study. Ann. Am. Thorac. Soc. 2018, 15, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Oelsner, E.C.; Pottinger, T.D.; Burkart, K.M.; Allison, M.; Buxbaum, S.G.; Hansel, N.N.; Kumar, R.; Larkin, E.K.; Lange, L.A.; Loehr, L.R.; et al. Adhesion molecules, endothelin-1 and lung function in seven population-based cohorts. Biomarkers 2013, 18, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeder, M.T.; Brutsche, M.H.; Arenja, N.; Socrates, T.; Reiter, M.; Meissner, J.; Staub, D.; Morgenthaler, N.G.; Bergmann, A.; Mueller, C. Biomarkers and peak oxygen uptake in patients with chronic lung disease. Respiration 2010, 80, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaun, N.; Yuzugulen, J.; Kimmitt, R.A.; Wood, E.G.; Chariyavilaskul, P.; MacIntyre, I.M.; Goddard, J.; Webb, D.J.; Corder, R. Plasma pro-endothelin-1 peptide concentrations rise in chronic kidney disease and following selective endothelin A receptor antagonism. J. Am. Heart Assoc. 2015, 4, e001624. [Google Scholar] [CrossRef] [Green Version]
- Pavo, N.; Hülsmann, M.; Neuhold, S.; Adlbrecht, C.; Strunk, G.; Goliasch, G.; Gisslinger, H.; Steger, G.G.; Hejna, M.; Köstler, W.; et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart 2015, 101, 1874–1880. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Zou, Y.; Wang, D.; Zhu, L.; Tian, T.; Wang, J.; Bao, J.; Hui, R.; Kang, L.; et al. Plasma level of big endothelin-1 predicts the prognosis in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2017, 243, 283–289. [Google Scholar] [CrossRef]
- Gupta, R.M.; Hadaya, J.; Trehan, A.; Zekavat, S.M.; Roselli, C.; Klarin, D.; Emdin, C.A.; Hilvering, C.R.E.; Bianchi, V.; Mueller, C.; et al. A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell 2017, 170, 522–533.e15. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.L.; Grodin, J.L.; Wu, Y.; Hernandez, A.F.; Butler, J.; Metra, M.; Felker, G.M.; Voors, A.A.; McMurray, J.J.; Armstrong, P.W.; et al. Increased mortality with elevated plasma endothelin-1 in acute heart failure: An ASCEND-HF biomarker substudy. Eur. J. Heart Fail. 2016, 18, 290–297. [Google Scholar] [CrossRef]
- Weitzberg, E.; Ahlborg, G.; Lundberg, J.M. Long-lasting vasoconstriction and efficient regional extraction of endothelin-1 in human splanchnic and renal tissues. Biochem. Biophys. Res. Commun. 1991, 180, 1298–1303. [Google Scholar] [CrossRef]
- Vierhapper, H.; Wagner, O.; Nowotny, P.; Waldhäusl, W. Effect of endothelin-1 in man. Circulation 1990, 81, 1415–1418. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.D.; Thiessen, J.J.; Reilly, R.; Tong, J.H.; Stewart, D.J.; Pandey, A.S. Human endothelin-1 clearance kinetics revealed by a radiotracer technique. J. Pharmacol. Exp. Ther. 1999, 289, 261–265. [Google Scholar] [PubMed]
- Khan, S.Q.; Dhillon, O.; Struck, J.; Quinn, P.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-terminal pro-endothelin-1 offers additional prognostic information in patients after acute myocardial infarction. Leicester Acute Myocardial Infarction Peptide (LAMP) Study. Am. Heart J. 2007, 154, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Adlbrecht, C.; Hülsmann, M.; Strunk, G.; Berger, R.; Mörtl, D.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Jakowitsch, J.; Maurer, G.; et al. Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. Eur. J. Heart Fail. 2009, 11, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, R.; Lee, R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008, 7, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, I.; Dieplinger, B.; Mueller, T. ST2 and the ST2/IL-33 signalling pathway–biochemistry and pathophysiology in animal models and humans. Clin. Chim. Acta 2019, 495, 493–500. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The international ST2 consensus panel. Am. J. Cardiol. 2015, 115, n3B–7B. [Google Scholar] [CrossRef]
- Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Riccardi, R.; Di Nunzio, D.; Moncelli, M.; Iacoviello, M.; Scicchitano, P. A novel cardiac bio-marker: ST2: A review. Molecules 2013, 18, 15314–15328. [Google Scholar] [CrossRef]
- Aimo, A.; Vergaro, G.; Ripoli, A.; Bayes-Genis, A.; Pascual Figal, D.A.; de Boer, R.A.; Lassus, J.; Mebazaa, A.; Gayat, E.; Breidthardt, T.; et al. Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart Failure. JACC Heart Fail. 2017, 5, 287–296. [Google Scholar] [CrossRef]
- Lupón, J.; Simpson, J.; McMurray, J.J.V.; de Antonio, M.; Vila, J.; Subirana, I.; Barallat, J.; Moliner, P.; Domingo, M.; Zamora, E.; et al. Barcelona Bio-HF Calculator Version 2.0: Incorporation of angiotensin II receptor blocker neprilysin inhibitor (ARNI) and risk for heart failure hospitalization. Eur. J. Heart Fail. 2018, 20, 938–940. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Zhang, Y.; Ky, B. ST2 and patient prognosis in chronic heart failure. Am. J. Cardiol. 2015, 115, 64B–69B. [Google Scholar] [CrossRef]
- Weinberg, E.O.; Shimpo, M.; Hurwitz, S.; Tominaga, S.i.; Rouleau, J.L.; Lee, R.T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 2003, 107, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberg, E.O.; Shimpo, M.; De Keulenaer, G.W.; MacGillivray, C.; Tominaga, S.; Ichi Solomon, S.D.; Rouleau, J.L.; Lee, R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 2002, 106, 2961–2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimo, A.; Vergaro, G.; Passino, C.; Ripoli, A.; Ky, B.; Miller, W.L.; Bayes-Genis, A.; Anand, I.; Januzzi, J.L.; Emdin, M. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC Heart Fail. 2017, 5, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, M.T.; Vergaro, G.; Passino, C.; Ripoli, A.; Ky, B.; Miller, W.L.; Bayes-Genis, A.; Anand, I.; Januzzi, J.L.; Emdin, M. Noncardiac Production of Soluble ST2 in ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 1429–1430. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.A.; Lee, C.P.; Huang, Y.J.; Pang, H.W.; Ho, K.C.; Chen, Y.T. One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells. Mater. Today Energy 2018, 8, 15–21. [Google Scholar] [CrossRef]
- Tseng, C.C.S.; Huibers, M.M.H.; van Kuik, J.; de Weger, R.A.; Vink, A.; de Jonge, N. The Interleukin-33/ST2 Pathway Is Expressed in the Failing Human Heart and Associated with Pro-fibrotic Remodeling of the Myocardium. J. Cardiovasc. Transl. Res. 2018, 11, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Bartunek, J.; Delrue, L.; Van Durme, F.; Muller, O.; Casselman, F.; De Wiest, B.; Croes, R.; Verstreken, S.; Goethals, M.; de Raedt, H.; et al. Nonmyocardial Production of ST2 Protein in Human Hypertrophy and Failure Is Related to Diastolic Load. J. Am. Coll. Cardiol. 2008, 52, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
- Vittos, O.; Toana, B.; Vittos, A.; Moldoveanu, E. Lipoprotein-associated phospholipase A2 (Lp-PLA2): A review of its role and significance as a cardiovascular biomarker. Biomarkers 2012, 17, 289–302. [Google Scholar] [CrossRef]
- Caslake, M.J.; Packard, C.J.; Suckling, K.E.; Holmes, S.D.; Chamberlain, P.; Macphee, C.H. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: A potential new risk factor for coronary artery disease. Atherosclerosis 2000, 150, 413–419. [Google Scholar] [CrossRef]
- Packard, C.J.; O’Reilly, D.S.J.; Caslake, M.J.; McMahon, A.D.; Ford, I.; Cooney, J.; Macphee, C.H.; Suckling, K.E.; Krishna, M.; Wilkinson, F.E.; et al. Lipoprotein-Associated Phospholipase A 2 as an Independent Predictor of Coronary Heart Disease. N. Engl. J. Med. 2000, 343, 1148–1155. [Google Scholar] [CrossRef]
- Oei, H.H.S.; Van Der Meer, I.M.; Hofman, A.; Koudstaal, P.J.; Stijnen, T.; Breteler, M.M.B.; Witteman, J.C.M. Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: The Rotterdam Study. Circulation 2005, 111, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, Y.; McConnell, J.P.; Jaffe, A.S.; Weston, S.A.; Killian, J.M.; Roger, V.L. Lipoprotein-associated phospholipase A2 and prognosis after myocardial infarction in the community. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2517–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, P.; Nannizzi-Alaimo, L.; Prasad, S.K.; Phillips, D.R. Platelet-derived CD40L: The switch-hitting player of cardiovascular disease. Circulation 2002, 106, 896–899. [Google Scholar] [CrossRef] [Green Version]
- Antoniades, C.; Bakogiannis, C.; Tousoulis, D.; Antonopoulos, A.S.; Stefanadis, C. The CD40/CD40 Ligand System. Linking Inflammation with Atherothrombosis. J. Am. Coll. Cardiol. 2009, 54, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutgens, E.; Gorelik, L.; Daemen, M.J.A.P.; De Muinck, E.D.; Grewal, I.S.; Koteliansky, V.E.; Flavell, R.A. Requirement for CD154 in the progression of atherosclerosis. Nat. Med. 1999, 5, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Varo, N.; De Lemos, J.A.; Libby, P.; Morrow, D.A.; Murphy, S.A.; Nuzzo, R.; Gibson, C.M.; Cannon, C.P.; Braunwald, E.; Schönbeck, U. Soluble CD40L: Risk prediction after acute coronary syndromes. Circulation 2003, 108, 1049–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-da-Silva, T.; Napoleao, P.; Pinheiro, T.; Selas, M.; Silva, F.; Ferreira, R.C.; Carmo, M.M. Inflammation is associated with the presence and severity of chronic coronary syndrome through soluble CD40 ligand. Am. J. Cardiovasc. Dis. 2020, 10, 329–339. [Google Scholar]
- Romaine, S.P.R.; Tomaszewski, M.; Condorelli, G.; Samani, N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart 2015, 101, 921–928. [Google Scholar] [CrossRef]
- Bargieł, W.; Cierpiszewska, K.; Maruszczak, K.; Pakuła, A.; Szwankowska, D.; Wrzesińska, A.; Gutowski, Ł.; Formanowicz, D. Recognized and potentially new biomarkers—their role in diagnosis and prognosis of cardiovascular disease. Medicina 2021, 57, 701. [Google Scholar] [CrossRef]
- Wang, K.; Gao, X.Q.; Wang, T.; Zhou, L.Y. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc. Drugs Ther. 2021. [Google Scholar] [CrossRef]
- McAloon, C.J.; Ali, D.; Hamborg, T.; Banerjee, P.; O’Hare, P.; Randeva, H.; Osman, F. Extracellular cardiac matrix biomarkers in patients with reduced ejection fraction heart failure as predictors of response to cardiac resynchronisation therapy: A systematic review. Open Heart 2017, 4, e000639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAloon, C.J.; Barwari, T.; Hu, J.; Hamborg, T.; Nevill, A.; Hyndman, S.; Ansell, V.; Musa, A.; Jones, J.; Goodby, J.; et al. Characterisation of circulating biomarkers before and after cardiac resynchronisation therapy and their role in predicting CRT response: The COVERT-HF study. Open Heart 2018, 5, e000899. [Google Scholar] [CrossRef] [PubMed]
- Sack, G.H., Jr. Serum amyloid A—A review. Mol. Med. 2018, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, M.M.; Scicchitano, P.; Gesualdo, M.; Zito, A.; Carbonara, R.; Locorotondo, M.; Mandurino, C.; Masi, F.; Boccalini, F.; Lepera, M.E. Serum osteoprotegerin and carotid intima-media thickness in acute/chronic coronary artery diseases. J. Cardiovasc Med. 2013, 14, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Lippi, G.; Danese, E.; Guidi, G.C. The role of osteoprotegerin in cardiovascular disease. Ann. Med. 2013, 45, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef]
- NICE. Diagnosis and management of chronic heart failure in adults. Natl. Inst. Health Care Excell. 2018, 75, 742–753. [Google Scholar]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar]
- Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F. Systemic inflammation and arrhythmic risk: Lessons from rheumatoid arthritis. Eur. Heart J. 2017, 38, 1717–1727. [Google Scholar] [CrossRef]
- Issac, T.T.; Dokainish, H.; Lakkis, N.M. Role of Inflammation in Initiation and Perpetuation of Atrial Fibrillation. A Systematic Review of the Published Data. J. Am. Coll. Cardiol. 2007, 50, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.; Li, N.; Dobrev, D. Role of inflammatory signaling in atrial fibrillation. Int. J. Cardiol. 2019, 287, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Melenovsky, V.; Lip, G.Y.H. Interleukin-8 and atrial fibrillation. Europace 2008, 10, 784–785. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, J.; Ding, J.; Liu, W.; Feng, Y.; Bao, Y.; Li, H.; Wang, X.; Zhou, Z.; Chen, Z. Arrhythmias in patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: Incidences and implications. J. Electrocardiol. 2021, 65, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.V.; Anand, A.; Sandoval, Y.; Lee, K.K.; Smith, S.W.; Adamson, P.D.; Chapman, A.R.; Langdon, T.; Sandeman, D.; Vaswani, A.; et al. High-sensitivity cardiac troponin i at presentation in patients with suspected acute coronary syndrome: A cohort study. Lancet 2015, 386, 2481–2488. [Google Scholar] [CrossRef] [Green Version]
- Roos, A.; Bandstein, N.; Lundbäck, M.; Hammarsten, O.; Ljung, R.; Holzmann, M.J. Stable High-Sensitivity Cardiac Troponin T Levels and Outcomes in Patients with Chest Pain. J. Am. Coll. Cardiol. 2017, 70, 2226–2236. [Google Scholar] [CrossRef]
- Kvisvik, B.; Mørkrid, L.; Røsjø, H.; Cvancarova, M.; Rowe, A.D.; Eek, C.; Bendz, B.; Edvardsen, T.; Gravning, J. High-sensitivity troponin T vs i in acute coronary syndrome: Prediction of significant coronary lesions and long-term prognosis. Clin. Chem. 2017, 63, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Tahhan, A.S.; Sandesara, P.; Hayek, S.S.; Hammadah, M.; Alkhoder, A.; Kelli, H.M.; Topel, M.; O’Neal, W.T.; Ghasemzadeh, N.; Ko, Y.A.; et al. High-sensitivity troponin I levels and coronary artery disease severity, progression, and long-term outcomes. J. Am. Heart Assoc. 2018, 7, e007914. [Google Scholar] [CrossRef] [Green Version]
- Omland, T.; de Lemos, J.A.; Sabatine, M.S.; Christophi, C.A.; Rice, M.M.; Jablonski, K.A.; Tjora, S.; Domanski, M.J.; Gersh, B.J.; Rouleau, J.L.; et al. A Sensitive Cardiac Troponin T Assay in Stable Coronary Artery Disease. N. Engl. J. Med. 2009, 361, 2538–2547. [Google Scholar] [CrossRef] [Green Version]
- Vavik, V.; Pedersen, E.K.R.; Svingen, G.F.T.; Tell, G.S.; Schartum-Hansen, H.; Aakre, K.M.; Nygård, O.; Vikenes, K. Usefulness of Higher Levels of Cardiac Troponin T in Patients with Stable Angina Pectoris to Predict Risk of Acute Myocardial Infarction. Am. J. Cardiol. 2018, 122, 1142–1147. [Google Scholar] [CrossRef]
- McQueen, M.J.; Kavsak, P.A.; Xu, L.; Shestakovska, O.; Yusuf, S. Predicting myocardial infarction and other serious cardiac outcomes using high-sensitivity cardiac troponin T in a high-risk stable population. Clin. Biochem. 2013, 46, 5–9. [Google Scholar] [CrossRef]
- Saunders, J.T.; Nambi, V.; de Lemos, J.A.; Chambless, L.E.; Virani, S.S.; Boerwinkle, E.; Hoogeveen, R.C.; Liu, X.; Astor, B.C.; Mosley, T.H.; et al. Cardiac Troponin T Measured by a Highly Sensitive Assay Predicts Coronary Heart Disease, Heart Failure, and Mortality in the Atherosclerosis Risk in Communities Study. Circulation 2011, 123, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippi, C.R.; de Lemos, J.A.; Tkaczuk, A.T.; Christenson, R.H.; Carnethon, M.R.; Siscovick, D.S.; Gottdiener, J.S.; Seliger, S.L. Physical Activity, Change in Biomarkers of Myocardial Stress and Injury, and Subsequent Heart Failure Risk in Older Adults. J. Am. Coll. Cardiol. 2012, 60, 2539–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndumele, C.E.; Coresh, J.; Lazo, M.; Hoogeveen, R.C.; Blumenthal, R.S.; Folsom, A.R.; Selvin, E.; Ballantyne, C.M.; Nambi, V. Obesity, Subclinical Myocardial Injury, and Incident Heart Failure. JACC Heart Fail. 2014, 2, 600–607. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; Chen, Y.; Ndumele, C.E.; Solomon, S.D.; Nambi, V.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.; Selvin, E. Six-Year Change in High-Sensitivity Cardiac Troponin T and Risk of Subsequent Coronary Heart Disease, Heart Failure, and Death. JAMA Cardiol. 2016, 1, 519. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.D.W.; Dobbin, S.J.H.; Pettit, S.J.; di Angelantonio, E.; Willeit, P. High-Sensitivity Cardiac Troponin and New-Onset Heart Failure: A Systematic Review and Meta-Analysis of 67,063 Patients with 4,165 Incident Heart Failure Events. JACC Heart Fail. 2018, 6, 187–197. [Google Scholar] [CrossRef]
- Horwich, T.B.; Patel, J.; MacLellan, W.R.; Fonarow, G.C. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 2003, 108, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Rienstra, M.; Yin, X.; Larson, M.G.; Fontes, J.D.; Magnani, J.W.; McManus, D.D.; McCabe, E.L.; Coglianese, E.E.; Amponsah, M.; Ho, J.E.; et al. Relation between soluble ST2, growth differentiation factor–15, and high-sensitivity troponin I and incident atrial fibrillation. Am. Heart J. 2014, 167, 109–115.e2. [Google Scholar] [CrossRef] [Green Version]
- Filion, K.B.; Agarwal, S.K.; Ballantyne, C.M.; Eberg, M.; Hoogeveen, R.C.; Huxley, R.R.; Loehr, L.R.; Nambi, V.; Soliman, E.Z.; Alonso, A. High-sensitivity cardiac troponin T and the risk of incident atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J. 2015, 169, 31–38.e3. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Siegbahn, A.; Andersson, U.; Granger, C.B.; Alexander, J.H.; Atar, D.; Gersh, B.J.; Mohan, P.; Harjola, V.P.; Horowitz, J.; et al. High-sensitivity troponin I for risk assessment in patients with atrial fibrillation: Insights from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Circulation 2014, 129, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Wallentin, L.; Siegbahn, A.; Andersson, U.; Alexander, J.H.; Atar, D.; Gersh, B.J.; Hanna, M.; Harjola, V.P.; Horowitz, J.D.; et al. High-sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin. J. Am. Coll. Cardiol. 2014, 63, 52–61. [Google Scholar] [CrossRef]
- Zeller, T.; Tunstall-Pedoe, H.; Saarela, O.; Ojeda, F.; Schnabel, R.B.; Tuovinen, T.; Woodward, M.; Struthers, A.; Hughes, M.; Kee, F.; et al. High population prevalence of cardiac troponin I measured by a high-sensitivity assay and cardiovascular risk estimation: The MORGAM Biomarker Project Scottish Cohort. Eur. Heart J. 2014, 35, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luers, C.; Sutcliffe, A.; Binder, L.; Irle, S.; Pieske, B. NT-proANP and NT-proBNP as prognostic markers in patients with acute decompensated heart failure of different etiologies. Clin. Biochem. 2013, 46, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.B.; et al. Rapid Measurement of B-Type Natriuretic Peptide in the Emergency Diagnosis of Heart Failure. N. Engl. J. Med. 2002, 347, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Omland, T.; Sabatine, M.S.; Jablonski, K.A.; Rice, M.M.; Hsia, J.; Wergeland, R.; Landaas, S.; Rouleau, J.L.; Domanski, M.J.; Hall, C.; et al. Prognostic Value of B-Type Natriuretic Peptides in Patients with Stable Coronary Artery Disease. The PEACE Trial. J. Am. Coll. Cardiol. 2007, 50, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Rouleau, J.L.; Moye, L.; De Champlain, J.; Bichet, D.; Klein, M.; Sussex, B.; Packer, M.; Rouleau, J.; Arnold, M.O.; et al. N-terminal proatrial natriuretic factor: An independent predictor of long- term prognosis after myocardial infarction. Circulation 1994, 89, 1934–1942. [Google Scholar] [CrossRef] [Green Version]
- Anand, I.S.; Fisher, L.D.; Chiang, Y.T.; Latini, R.; Masson, S.; Maggioni, A.P.; Glazer, R.D.; Tognoni, G.; Cohn, J.N. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003, 107, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Maisel, A.; Hollander, J.E.; Guss, D.; McCullough, P.; Nowak, R.; Green, G.; Saltzberg, M.; Ellison, S.R.; Bhalla, M.A.; Bhalla, V.; et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT): A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J. Am. Coll. Cardiol. 2004, 44, 1328–1333. [Google Scholar] [CrossRef] [Green Version]
- Doust, J.A.; Pietrzak, E.; Dobson, A.; Glasziou, P.P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: Systematic review. Br. Med. J. 2005, 330, 625–627. [Google Scholar] [CrossRef] [Green Version]
- Kragelund, C.; Grønning, B.; Køber, L.; Hildebrandt, P.; Steffensen, R. N-Terminal Pro–B-Type Natriuretic Peptide and Long-Term Mortality in Stable Coronary Heart Disease. N. Engl. J. Med. 2005, 352, 666–675. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; Gupta, R.; Na, B.; Wu, A.H.B.; Schiller, N.B.; Whooley, M.A. N-terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. J. Am. Med. Assoc. 2007, 297, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.Q.; Dhillon, O.; Kelly, D.; Squire, I.B.; Struck, J.; Quinn, P.; Morgenthaler, N.G.; Bergmann, A.; Davies, J.E.; Ng, L.L. Plasma N-Terminal B-Type Natriuretic Peptide as an Indicator of Long-Term Survival after Acute Myocardial Infarction: Comparison with Plasma Midregional Pro-Atrial Natriuretic Peptide. The LAMP (Leicester Acute Myocardial Infarction Peptide) Study. J. Am. Coll. Cardiol. 2008, 51, 1857–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, A.M.; Nicholls, M.G.; Yandle, T.G.; Frampton, C.; Espiner, E.A.; Turner, J.G.; Buttimore, R.C.; Lainchbury, J.G.; Elliott, J.M.; Ikram, H.; et al. Plasma N-Terminal Pro–Brain Natriuretic Peptide and Adrenomedullin. Circulation 1998, 97, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, A.M.; Nicholls, M.G.; Espiner, E.A.; Lainchbury, J.G.; Troughton, R.W.; Elliott, J.; Frampton, C.; Turner, J.; Crozier, I.G.; Yandle, T.G. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation 2003, 107, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Patton, K.K.; Ellinor, P.T.; Heckbert, S.R.; Christenson, R.H.; DeFilippi, C.; Gottdiener, J.S.; Kronmal, R.A. N-Terminal Pro-B-Type Natriuretic Peptide Is a Major Predictor of the Development of Atrial Fibrillation. Circulation 2009, 120, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; et al. Cardiac Biomarkers Are Associated with an Increased Risk of Stroke and Death in Patients with Atrial Fibrillation. Circulation 2012, 125, 1605–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folsom, A.R.; Nambi, V.; Bell, E.J.; Oluleye, O.W.; Gottesman, R.F.; Lutsey, P.L.; Huxley, R.R.; Ballantyne, C.M. Troponin T, N-Terminal Pro–B-Type Natriuretic Peptide, and Incidence of Stroke. Stroke 2013, 44, 961–967. [Google Scholar] [CrossRef] [PubMed]
- McCann, C.J.; Glover, B.M.; Menown, I.B.A.; Moore, M.J.; McEneny, J.; Owens, C.G.; Smith, B.; Sharpe, P.C.; Young, I.S.; Adgey, J.A. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur. Heart J. 2008, 29, 2843–2850. [Google Scholar] [CrossRef] [Green Version]
- Ishii, J.; Ozaki, Y.; Lu, J.; Kitagawa, F.; Kuno, T.; Nakano, T.; Nakamura, Y.; Naruse, H.; Mori, Y.; Matsui, S.; et al. Prognostic value of serum concentration of heart-type fatty acid-binding protein relative to cardiac troponin T on admission in the early hours of acute coronary syndrome. Clin. Chem. 2005, 51, 1397–1404. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, M.; De Lemos, J.A.; Morrow, D.A.; Murphy, S.A.; Buros, J.L.; Cannon, C.P.; Sabatine, M.S. Prognostic utility of heart-type fatty acid binding protein in patients with acute coronary syndromes. Circulation 2006, 114, 550–557. [Google Scholar] [CrossRef]
- Viswanathan, K.; Kilcullen, N.; Morrell, C.; Thistlethwaite, S.J.; Sivananthan, M.U.; Hassan, T.B.; Barth, J.H.; Hall, A.S. Heart-Type Fatty Acid-Binding Protein Predicts Long-Term Mortality and Re-Infarction in Consecutive Patients with Suspected Acute Coronary Syndrome Who Are Troponin-Negative. J. Am. Coll. Cardiol. 2010, 55, 2590–2598. [Google Scholar] [CrossRef] [Green Version]
- Arimoto, T.; Takeishi, Y.; Shiga, R.; Fukui, A.; Tachibana, H.; Nozaki, N.; Hirono, O.; Nitobe, J.; Miyamoto, T.; Hoit, B.D.; et al. Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. J. Card. Fail. 2005, 11, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.; Mueller, C.; Neath, S.X.; Christenson, R.H.; Morgenthaler, N.G.; McCord, J.; Nowak, R.M.; Vilke, G.; Daniels, L.B.; Hollander, J.E.; et al. Copeptin helps in the early detection of patients with acute myocardial infarction: Primary results of the CHOPIN trial (Copeptin Helps in the early detection of Patients with acute myocardial INfarction). J. Am. Coll. Cardiol. 2013, 62, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voors, A.A.; Von Haehling, S.; Anker, S.D.; Hillege, H.L.; Struck, J.; Hartmann, O.; Bergmann, A.; Squire, I.; Van Veldhuisen, D.J.; Dickstein, K. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. Eur. Heart J. 2009, 30, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.J.; Dong, X.; Zhao, S.J.; Yang, D.G.; Chen, H. Prognostic value of plasma neuroendocrine biomarkers in patients with acute ischaemic stroke. J. Neuroendocrinol. 2013, 25, 771–778. [Google Scholar] [CrossRef]
- de Marchis, G.M.; Katan, M.; Weck, A.; Fluri, F.; Foerch, C.; Findling, O.; Schuetz, P.; Buhl, D.; El-Koussy, M.; Gensicke, H.; et al. Copeptin adds prognostic information after ischemic stroke: Results from the CoRisk study. Neurology 2013, 80, 1278–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katan, M.; Fluri, F.; Morgenthaler, N.G.; Schuetz, P.; Zweifel, C.; Bingisser, R.; Müller, K.; Meckel, S.; Gass, A.; Kappos, L.; et al. Copeptin: A novel, independent prognostic marker in patients with ischemic stroke. Ann. Neurol. 2009, 66, 799–808. [Google Scholar] [CrossRef]
- Dhillon, O.S.; Khan, S.Q.; Narayan, H.K.; Ng, K.H.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; et al. Prognostic Value of Mid-Regional Pro-Adrenomedullin Levels Taken on Admission and Discharge in Non-ST-Elevation Myocardial Infarction. The LAMP (Leicester Acute Myocardial Infarction Peptide) II Study. J. Am. Coll. Cardiol. 2010, 56, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Bar-Or, D.; Winkler, J.V.; VanBenthuysen, K.; Harris, L.; Lau, E.; Hetzel, F.W. Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: A preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am. Heart J. 2001, 141, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Christenson, R.H.; Show Hong, D.; Sanhai, W.R.; Wu, A.H.B.; Holtman, V.; Painter, P.; Branham, E.; Apple, F.S.; Murakami, M.; Morris, D.L. Characteristics of an albumin cobalt binding test for assessment of acute coronary syndrome patients: A multicenter study. Clin. Chem. 2001, 47, 464–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—A preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Lai, E.M.; Rios, P.A.; Yang, J.; Ortega-Lopez, A.M.; Shinoda, H.; Honda, S.A.A.; Rios, C.N.; Sugiyama, C.E.; Ha, C.E. Evaluation of human serum albumin cobalt binding assay for the assessment of myocardial ischemia and myocardial infarction. Clin. Chem. 2003, 49, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, R.V.; Chen-Tournoux, A.A.; Picard, M.H.; van Kimmenade, R.R.J.; Januzzi, J.L. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 2010, 12, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Lok, D.J.A.; Van Der Meer, P.; De La Porte, P.W.B.A.; Lipsic, E.; Van Wijngaarden, J.; Hillege, H.L.; Van Veldhuisen, D.J. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: Data from the DEAL-HF study. Clin. Res. Cardiol. 2010, 99, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Whincup, P.; Welsh, P.; Wannamethee, G.; Rumley, A.; Lennon, L.; Thomson, A.; Lawlor, D.; Carson, C.; Ebrahim, S.; et al. Prospective study of matrix metalloproteinase-9 and risk of myocardial infarction and stroke in older men and women. Atherosclerosis 2010, 208, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Welsh, P.; Whincup, P.H.; Papacosta, O.; Wannamethee, S.G.; Lennon, L.; Thomson, A.; Rumley, A.; Lowe, G.D.O. Serum matrix metalloproteinase-9 and coronary heart disease: A prospective study in middle-aged men. Qjm 2008, 101, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, W.S.; Roger, V.L.; Jaffe, A.S.; Weston, S.A.; AbouEzzeddine, O.F.; Jiang, R.; Manemann, S.M.; Enriquez-Sarano, M. Prognostic Value of Soluble ST2 After Myocardial Infarction: A Community Perspective. Am. J. Med. 2017, 130, 1112.e9–1112.e15. [Google Scholar] [CrossRef] [Green Version]
- Kohli, P.; Bonaca, M.P.; Kakkar, R.; Kudinova, A.Y.; Scirica, B.M.; Sabatine, M.S.; Murphy, S.A.; Braunwald, E.; Lee, R.T.; Morrow, D.A. Role of ST2 in Non–ST-Elevation Acute Coronary Syndrome in the MERLIN-TIMI 36 Trial. Clin. Chem. 2012, 58, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Figal, D.A.; Ordoñez-Llanos, J.; Tornel, P.L.; Vázquez, R.; Puig, T.; Valdés, M.; Cinca, J.; de Luna, A.B.; Bayes-Genis, A.; MUSIC Investigators. Soluble ST2 for Predicting Sudden Cardiac Death in Patients with Chronic Heart Failure and Left Ventricular Systolic Dysfunction. J. Am. Coll. Cardiol. 2009, 54, 2174–2179. [Google Scholar] [CrossRef] [Green Version]
- Januzzi, J.L.; Peacock, W.F.; Maisel, A.S.; Chae, C.U.; Jesse, R.L.; Baggish, A.L.; O’Donoghue, M.; Sakhuja, R.; Chen, A.A.; van Kimmenade, R.R.J.; et al. Measurement of the Interleukin Family Member ST2 in Patients with Acute Dyspnea. Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) Study. J. Am. Coll. Cardiol. 2007, 50, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Figal, D.A.; Manzano-Fernández, S.; Boronat, M.; Casas, T.; Garrido, I.P.; Bonaque, J.C.; Pastor-Perez, F.; Valdés, M.; Januzzi, J.L. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: Complementary role for risk stratification in acutely decompensated heart failure. Eur. J. Heart Fail. 2011, 13, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Dieplinger, B.; Egger, M.; Haltmayer, M.; Kleber, M.E.; Scharnagl, H.; Silbernagel, G.; De Boer, R.A.; Maerz, W.; Mueller, T. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: Results from the ludwigshafen risk and cardiovascular health study. Clin. Chem. 2014, 60, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Kaptoge, S.; Seshasai, S.R.K.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.O.; et al. Inflammatory cytokines and risk of coronary heart disease: New prospective study and updated meta-analysis. Eur. Heart J. 2014, 35, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran, B.S.R.; Mohanalakshmi, T.; Srikumar, R.; Prabhakar, E. Reddy C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in diabetes. Int. J. Res. Pharm. Sci. 2017, 8, 476–479. [Google Scholar]
- The Lp-PLA2 Studies Collaboration. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: Collaborative analysis of 32 prospective studies. Lancet 2010, 375, 1536–1544. [Google Scholar] [CrossRef] [Green Version]
- Davì, G.; Tuttolomondo, A.; Santilli, F.; Basili, S.; Ferrante, E.; Di Raimondo, D.; Pinto, A.; Licata, G. CD40 ligand and MCP-1 as predictors of cardiovascular events in diabetic patients with stroke. J. Atheroscler. Thromb. 2009, 16, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Schönbeck, U.; Varo, N.; Libby, P.; Buring, J.; Ridker, P.M. Soluble CD40L and cardiovascular risk in women. Circulation 2001, 104, 2266–2268. [Google Scholar] [CrossRef] [Green Version]
- di Napoli, M.; Papa, F.; Bocola, V. C-Reactive Protein in Ischemic Stroke. Stroke 2001, 32, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Gottdiener, J.S.; Arnold, A.M.; Aurigemma, G.P.; Polak, J.F.; Tracy, R.P.; Kitzman, D.W.; Gardin, J.M.; Rutledge, J.E.; Boineau, R.C. Predictors of congestive heart failure in the elderly: The cardiovascular health study. J. Am. Coll. Cardiol. 2000, 35, 1628–1637. [Google Scholar] [CrossRef] [Green Version]
- Vasan, R.S.; Sullivan, L.M.; Roubenoff, R.; Dinarello, C.A.; Harris, T.; Benjamin, E.J.; Sawyer, D.B.; Levy, D.; Wilson, P.W.F.; D’Agostino, R.B. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: The Framingham Heart Study. Circulation 2003, 107, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- Park, D.W.; Lee, S.W.; Yun, S.C.; Song, H.G.; Ahn, J.M.; Lee, J.Y.; Kim, W.J.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; et al. A point-of-care platelet function assay and C-reactive protein for prediction of major cardiovascular events after drug-eluting stent implantation. J. Am. Coll. Cardiol. 2011, 58, 2630–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, D.P.; Bhatt, D.L.; Robbins, M.A.; Penn, M.S.; Schneider, J.P.; Lauer, M.S.; Topol, E.J.; Ellis, S.G. Incremental prognostic value of elevated baseline C-reactive protein among established markers of risk in percutaneous coronary intervention. Circulation 2001, 104, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Rallidis, L.S.; Zolindaki, M.G.; Manioudaki, H.S.; Laoutaris, N.P.; Velissaridou, A.H.; Papasteriadis, E.G. Prognostic value of C-reactive protein, fibrinogen, interleukin-6, and macrophage colony stimulating factor in severe unstable angina. Clin. Cardiol. 2002, 25, 505–510. [Google Scholar] [CrossRef]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef]
- The Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, B.; Toss, H.; Siegbahn, A.; Venge, P.; Wallentin, L. Markers of Myocardial Damage and Inflammation in Relation to Long-Term Mortality in Unstable Coronary Artery Disease. N. Engl. J. Med. 2000, 343, 1139–1147. [Google Scholar] [CrossRef]
- di Napoli, M.; Schwaninger, M.; Cappelli, R.; Ceccarelli, E.; Di Gianfilippo, G.; Donati, C.; Emsley, H.C.A.; Forconi, S.; Hopkins, S.J.; Masotti, L.; et al. Evaluation of C-Reactive Protein Measurement for Assessing the Risk and Prognosis in Ischemic Stroke. Stroke 2005, 36, 1316–1329. [Google Scholar] [CrossRef]
- Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; et al. Inflammation as a Risk Factor for Atrial Fibrillation. Circulation 2003, 108, 3006–3010. [Google Scholar] [CrossRef] [Green Version]
- Anand, I.S.; Latini, R.; Florea, V.G.; Kuskowski, M.A.; Rector, T.; Masson, S.; Signorini, S.; Mocarelli, P.; Hester, A.; Glazer, R.; et al. C-reactive protein in heart failure: Prognostic value and the effect of Valsartan. Circulation 2005, 112, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Toker, A.; Karatas, Z.; Altın, H.; Karaarslan, S.; Cicekler, H.; Alp, H. Evaluation of serum ischemia modified albumin levels in acute rheumatic fever before and after therapy. Indian J. Pediatr. 2014, 81, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lin, Q.; Li, X.; Wu, L.; Xu, W.; Zhu, Y.; Deng, H.; Zhang, Y.; Yao, B. Cystatin C is an important biomarker for cardiovascular autonomic dysfunction in Chinese type 2 diabetic patients. J. Diabetes Res. 2019, 2019, 1706964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Laan, S.W.; Fall, T.; Soumaré, A.; Teumer, A.; Sedaghat, S.; Baumert, J.; Zabaneh, D.; van Setten, J.; Isgum, I.; Galesloot, T.E.; et al. Cystatin C and Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-Y. Serum Cystatin C as a Biomarker for Predicting Coronary Artery Disease in Diabetes. Korean Diabetes J. 2010, 34, 84. [Google Scholar] [CrossRef] [Green Version]
CVD Biomarker | Use | Present | Future | S | D | P | Ref. |
---|---|---|---|---|---|---|---|
Troponins (Tns) | Myocardial infarction | ✓ | ✓ | ✓ | [14,51,471,472] | ||
Coronary syndromes | ✓ | ✓ | ✓ | [473,474,475,476,477] | |||
Heart failure | ✓(?) | ✓ | ✓ | [80,81,478,479,480,481,482,483] | |||
Atrial fibrillation | ✓(?) | ✓ | ✓ | [484,485,486,487] | |||
Tako-tsubo cardiomyopathy | ✓(?) | ✓ | [69,70,71,72,73,74,75] | ||||
Aortic dissection, Aortic stenosis and other valvular diseases | ✓(?) | ✓ | ✓ | [82,83] | |||
Acute pericarditis | ✓(?) | ✓ | [84,85,86] | ||||
Stroke | ✓(?) | ✓ | ✓ | [486,487,488] | |||
Pulmonary embolism | ✓(?) | ✓ | [90,91,92] | ||||
Natriuretic Peptides (NPs) | Heart failure | ✓ | ✓ | ✓ | ✓ | [142,258,264,489,490,491,492,493,494,495] | |
Coronary syndromes | ✓ | ✓ | [267,491,496,497] | ||||
Myocardial infarction | ✓ | ✓ | [263,473,498,499,500] | ||||
Atrial fibrillation | ✓ | ✓ | ✓ | [142,501,502] | |||
Stroke | ✓ | ✓ | [142,503] | ||||
Surgical procedures involving the heart | ✓ | ✓ | [145] | ||||
Pulmonary embolism | ✓ | ✓ | [166,167] | ||||
Left ventricular hypertrophy | ✓ | ✓ | ✓ | [126,182,383] | |||
Valvular heart disease | ✓ | ✓ | [142,146,160] | ||||
Congenital heart disease | ✓ | ✓ | [122,146,182] | ||||
Heart-Type Fatty Acid-Binding Protein (H-FABP) | Myocardial infarction | ✓ | ✓(?) | ✓ | [504,505,506,507] | ||
Heart failure | ✓ | ✓ | [213,214,508] | ||||
Arrhythmia | ✓ | ✓ | [211,216] | ||||
Valvular heart disease | ✓ | ✓ | [200] | ||||
Pulmonary embolism | ✓ | ✓ | [91,218,219,220] | ||||
Copeptin | Myocardial infarction | ✓ | ✓(?) | ✓ | [226,227,232,509] | ||
Heart failure | ✓ | ✓ | [238,239,510] | ||||
Stroke | ✓ | ✓ | ✓ | [511,512,513] | |||
Pulmonary embolism | ✓ | - | - | - | [91] | ||
Acute aortic syndrome | ✓ | ✓ | [244] | ||||
Adrenomedullin (ADM) | Myocardial infarction | ✓ | ✓ | ✓ | [266,268,514] | ||
Heart failure | ✓ | ✓ | [258,264] | ||||
Ischemia Modified Albumin (IMA) | Unstable angina | ✓ | ✓ | [515,516,517,518] | |||
P-selectin | Myocardial infarction | ✓ | ✓ | ✓ | [275,276,277,278,279] | ||
Acute coronary syndrome | ✓ | ✓ | ✓ | [275,276,278] | |||
Stroke | ✓ | ✓ | [279] | ||||
Soluble Urokinase -type Plasminogen Activator Receptor (suPAR) and Plasminogen Activator Inhibitor-1 (PAI-1) | Myocardial infarction | ✓ | ✓ | [285,286,287,288] | |||
Acute coronary syndrome | ✓ | ✓ | [285,286,287,288] | ||||
Galectin-3 (GAL-3) | Myocardial infarction | ✓ | ✓ | [302] | |||
Heart failure | ✓ | ✓ | [313,314,519,520] | ||||
Acute coronary syndrome | ✓ | ✓ | [301,302,313,314,315] | ||||
acute myocarditis | ✓ | ✓ | [306,521] | ||||
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) | Myocardial infarction | ✓ | ✓ | ✓ | [364,522] | ||
Coronary artery stenosis | ✓ | ✓ | ✓ | [361,523] | |||
Heart failure | ✓ | ✓ | ✓ | [363] | |||
Multiple CVDs | ✓ | ✓ | [522] | ||||
Suppression of Tumorigenicity 2 (ST2) | Myocardial infarction | ✓ | ✓ | [524,525,526,527] | |||
Heart failure | ✓ | ✓ | [526,527,528] | ||||
Aortic valve impairments | ✓ | ✓ | [529] | ||||
Growth Differentiation Factor 15 (GDF-15) | Myocardial infarction | ✓ | [373] | ||||
Heart failure | ✓ | ✓ | ✓ | [375,390] | |||
Atrial fibrillation | ✓ | ✓ | ✓ | [395] | |||
Multiple CVDs | ✓ | ✓ | [7,378,380,385,386,390,391,396,398,399,400] | ||||
Endothelin-1 (ET-1) | Myocardial infarction | ✓ | ✓ | [267,429,430] | |||
Heart failure | ✓ | ✓ | ✓ | ✓ | [267,429,430] | ||
Multiple CVDs | ✓ | ✓ | [307,411,413,414,423,424] | ||||
Cytokines | Atrial fibrillation (interleukin-6, tumor necrosis factor-α and intercellular adhesion molecule-1) | ✓ | ✓ | ✓ | [467,468] | ||
Multiple CVDs | ✓ | ✓ | [530,531,532,533] | ||||
Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) | Multiple CVDs | ✓ | ✓ | [447,448,534] | |||
Soluble CD40 Ligand | Multiple CVDs | ✓ | ✓ | [453,535,536] | |||
Serum Amyloid A | Multiple CVDs | ✓ | ✓ | [449,537] | |||
Osteoprotegerin (OPG) | Multiple CVDs | ✓ | ✓ | [307,434,461,462] | |||
Myeloperoxidase | Multiple CVDs | ✓ | ✓ | [63,359,504] | |||
C-reactive protein (CRP) | Multiple CVDs | ✓ | ✓ | ✓ | ✓ | [467,533,537,538,539,540,541,542,543,544,545,546,547,548] | |
Erythrocyte sedimentation rate (ESR) | Multiple CVDs | ✓ | ✓ | [549] | |||
Neutrophils and monocytes | Multiple CVDs | ✓ | ✓ | [463] | |||
Cystatin C | Multiple CVDs | ✓ | ✓ | [550,551,552] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omran, F.; Kyrou, I.; Osman, F.; Lim, V.G.; Randeva, H.S.; Chatha, K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int. J. Mol. Sci. 2022, 23, 5680. https://doi.org/10.3390/ijms23105680
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. International Journal of Molecular Sciences. 2022; 23(10):5680. https://doi.org/10.3390/ijms23105680
Chicago/Turabian StyleOmran, Farah, Ioannis Kyrou, Faizel Osman, Ven Gee Lim, Harpal Singh Randeva, and Kamaljit Chatha. 2022. "Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future" International Journal of Molecular Sciences 23, no. 10: 5680. https://doi.org/10.3390/ijms23105680
APA StyleOmran, F., Kyrou, I., Osman, F., Lim, V. G., Randeva, H. S., & Chatha, K. (2022). Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. International Journal of Molecular Sciences, 23(10), 5680. https://doi.org/10.3390/ijms23105680