Current and Future Biomarkers in Multiple Sclerosis
Abstract
:1. Introduction
2. Classic Diagnostic Markers
2.1. Magnetic Resonance Imaging
2.2. Spinal Fluid Analysis
2.3. Evoked Potentials
3. Other Imaging Techniques
3.1. Optical Coherence Tomography
3.2. Magnetic Transfer Imaging
3.3. Magnetic Resonance Spectroscopy
3.4. Diffusion Weighted Imaging
3.5. Diffusion Tensor Imaging
4. Biomarkers of Axonal Damage
4.1. Neurofilament Light Chain
4.2. Tau Protein
4.3. Amyloid-Precursor Protein
4.4. Tubulin Beta
5. Biomarkers of Neuronal Damage
5.1. 14-3-3 Protein
5.2. Neuron Specific Enolase
6. Biomarkers of Glial Dysfunction
6.1. Glial Fibrillary Acidic Protein
6.2. S100β Protein
6.3. Anti-Aquaporin 4 Antibodies
6.4. Nitric Oxide
7. Biomarkers of Myelin Biology/Demyelination
7.1. Myelin Basic Protein
7.2. Myelin Oligodendrocyte Glycoprotein
8. Biomarkers of Immunomodulation and Inflammation
8.1. Immune Mediators and Cytokines
8.2. Soluble CD40L
8.3. Chitinase-3-Like-1 Precursor
8.4. Heat Shock Protein 70 and 90
8.5. Kappa Free Light Chain
8.6. Human Endogenous Retroviruses
8.7. Uric Acid
9. Biomarkers for a Future Bioinformatic Approach
9.1. Proteomic Approach
9.2. Cellular Studies
9.3. Transcriptomic Approach
9.4. Micro-RNA Molecules
9.5. Extracellular Vesicles
9.6. Metabolomics
9.7. Metabolites and Gut Microbiome
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.J.; Chen, W.W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017, 13, 3163–3166. [Google Scholar] [CrossRef] [Green Version]
- Dilokthornsakul, P.; Valuck, R.J.; Nair, K.V.; Corboy, J.R.; Allen, R.R.; Campbell, J.D. Multiple sclerosis prevalence in the United States commercially insured population. Neurology 2016, 86, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, B.D.; Peterson, J.; Ransohoff, R.M.; Rudick, R.; Mörk, S.; Bö, L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 1998, 338, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Rech, J.; Hueber, A.J.; Finzel, S.; Englbrecht, M.; Haschka, J.; Manger, B.; Kleyer, A.; Reiser, M.; Cobra, J.F.; Figueiredo, C.; et al. Prediction of disease relapses by multibiomarker disease activity and autoantibody status in patients with rheumatoid arthritis on tapering DMARD treatment. Ann. Rheum. Dis. 2016, 75, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.A.; Mirza, A.; Mao-Draayer, Y. Emerging Approaches for Validating and Managing Multiple Sclerosis Relapse. Front. Neurol. 2017, 8, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegen, H.; Adrianto, I.; Lessard, C.J.; Millonig, A.; Bertolotto, A.; Comabella, M.; Giovannoni, G.; Guger, M.; Hoelzl, M.; Khalil, M.; et al. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e202. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.A.; Begay, J.A.; Fisher, C.; Mao-Draayer, Y. Impact of trial design and patient heterogeneity on the identification of clinically effective therapies for progressive MS. Mult. Scler. 2018, 24, 1795–1807. [Google Scholar] [CrossRef] [Green Version]
- Van Schependom, J.; D’hooghe, M.B.; Cleynhens, K.; D’hooge, M.; Haelewyck, M.C.; De Keyser, J.; Nagels, G. The Symbol Digit Modalities Test as sentinel test for cognitive impairment in multiple sclerosis. Eur. J. Neurol. 2014, 21, 1219-e72. [Google Scholar] [CrossRef]
- Ziemssen, T.; Akgün, K.; Brück, W. Molecular biomarkers in multiple sclerosis. J. Neuroinflamm. 2019, 16, 272. [Google Scholar] [CrossRef] [Green Version]
- Zivadinov, R.; Bergsland, N.; Dwyer, M.G. Atrophied brain lesion volume, a magnetic resonance imaging biomarker for monitoring neurodegenerative changes in multiple sclerosis. Quant. Imaging Med. Surg. 2018, 8, 979–983. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Lingfeld, G.; Bitsch, A.; Schuchardt, J.; Brück, W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002, 125, 2202–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallantyre, E.C.; Bø, L.; Al-Rawashdeh, O.; Owens, T.; Polman, C.H.; Lowe, J.S.; Evangelou, N. Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Mult. Scler. 2010, 16, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Rocca, M.A.; Battaglini, M.; Benedict, R.H.; De Stefano, N.; Geurts, J.J.; Henry, R.G.; Horsfield, M.A.; Jenkinson, M.; Pagani, E.; Filippi, M. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2017, 88, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielekova, B.; Martin, R. Development of biomarkers in multiple sclerosis. Brain 2004, 127, 1463–1478. [Google Scholar] [CrossRef] [Green Version]
- Sellebjerg, F.; Börnsen, L.; Ammitzbøll, C.; Nielsen, J.E.; Vinther-Jensen, T.; Hjermind, L.E.; von Essen, M.; Ratzer, R.L.; Soelberg Sørensen, P.; Romme Christensen, J. Defining active progressive multiple sclerosis. Mult. Scler. 2017, 23, 1727–1735. [Google Scholar] [CrossRef]
- Villar, L.; Garcia-Barragan, N.; Espino, M.; Roldan, E.; Sadaba, M.; Gomez-Rial, J.; Gonzalez-Porque, P.; Alvarez-Cermeno, J. Influence of oligoclonal IgM specificity in multiple sclerosis disease course. Mult. Scler. 2008, 14, 183–187. [Google Scholar] [CrossRef]
- Becker, M.; Latarche, C.; Roman, E.; Debouverie, M.; Malaplate-Armand, C.; Guillemin, F. No prognostic value of routine cerebrospinal fluid biomarkers in a population-based cohort of 407 multiple sclerosis patients. BMC Neurol. 2015, 15, 79. [Google Scholar] [CrossRef] [Green Version]
- Villar, L.M.; Sadaba, M.C.; Roldan, E.; Masjuan, J.; Gonzalez-Porque, P.; Villarrubia, N.; Espino, M.; Garcia-Trujillo, J.A.; Bootello, A.; Alvarez-Cermeno, J.C. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Investig. 2005, 115, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Cermeno, J.C.; Munoz-Negrete, F.J.; Costa-Frossard, L.; Sainz de la Maza, S.; Villar, L.M.; Rebolleda, G. Intrathecal lipid-specific oligoclonal IgM synthesis associates with retinal axonal loss in multiple sclerosis. J. Neurol. Sci. 2016, 360, 41–44. [Google Scholar] [CrossRef]
- Thangarajh, M.; Gomez-Rial, J.; Hedstrom, A.K.; Hillert, J.; Alvarez-Cermeno, J.C.; Masterman, T.; Villar, L.M. Lipid-specific immunoglobulin M in CSF predicts adverse long-term outcome in multiple sclerosis. Mult. Scler. 2008, 14, 1208–1213. [Google Scholar] [CrossRef]
- Monreal, E.; Sainz de la Maza, S.; Costa-Frossard, L.; Walo-Delgado, P.; Zamora, J.; Fernandez-Velasco, J.I.; Villarrubia, N.; Espino, M.; Lourido, D.; Lapuente, P.; et al. Predicting Aggressive Multiple Sclerosis with Intrathecal IgM Synthesis among Patients with a Clinically Isolated Syndrome. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.; Kane, N.; Butler, S. The clinical role of evoked potentials. J. Neurol. Neurosurg. Psychiatry 2005, 76, ii16–ii22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardmeier, M.; Leocani, L.; Fuhr, P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult. Scler. 2017, 23, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Galetta, K.M.; Calabresi, P.A.; Frohman, E.M.; Balcer, L.J. Optical coherence tomography (OCT): Imaging the visual pathway as a model for neurodegeneration. Neurotherapeutics 2011, 8, 117–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deloire-Grassin, M.S.; Brochet, B.; Quesson, B.; Delalande, C.; Dousset, V.; Canioni, P.; Petry, K.G. In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J. Neurol. Sci. 2000, 178, 10–16. [Google Scholar] [CrossRef]
- Dousset, V.; Grossman, R.I.; Ramer, K.N.; Schnall, M.D.; Young, L.H.; Gonzalez-Scarano, F.; Lavi, E.; Cohen, J.A. Experimental allergic encephalomyelitis and multiple sclerosis: Lesion characterization with magnetization transfer imaging. Radiology 1992, 182, 483–491. [Google Scholar] [CrossRef]
- Zheng, Y.; Lee, J.C.; Rudick, R.; Fisher, E. Long-Term Magnetization Transfer Ratio Evolution in Multiple Sclerosis White Matter Lesions. J. Neuroimaging 2018, 28, 191–198. [Google Scholar] [CrossRef]
- Trip, S.A.; Schlottmann, P.G.; Jones, S.J.; Li, W.Y.; Garway-Heath, D.F.; Thompson, A.J.; Plant, G.T.; Miller, D.H. Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis. Mult. Scler. 2007, 13, 875–879. [Google Scholar] [CrossRef]
- Tiberio, M.; Chard, D.T.; Altmann, D.R.; Davies, G.; Griffin, C.M.; McLean, M.A.; Rashid, W.; Sastre-Garriga, J.; Thompson, A.J.; Miller, D.H. Metabolite changes in early relapsing-remitting multiple sclerosis. A two year follow-up study. J. Neurol. 2006, 253, 224–230. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Dijkstra, C.; Polman, C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol. 2005, 4, 32–41. [Google Scholar] [CrossRef]
- Narayana, P.A. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J. Neuroimaging 2005, 15, 46S–57S. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.G.S.; Claudio, A.O.; Zabala, E.L.; Teledo, J.D. Diffusion weighted imaging changes in multiple sclerosis patients, frequency and co-relation to disease activity. Austin Neurol. 2018, 3, 1012. [Google Scholar]
- Abolhasani Foroughi, A.; Salahi, R.; Nikseresht, A.; Heidari, H.; Nazeri, M.; Khorsand, A. Comparison of diffusion-weighted imaging and enhanced T1-weighted sequencing in patients with multiple sclerosis. Neuroradiol. J. 2017, 30, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.P.; Kao, H.W.; Chen, S.Y.; Chu, C.M.; Hsu, C.C.; Chen, Y.C.; Lin, W.C.; Liu, D.W.; Hsu, W.L. Comparison of diffusion-weighted imaging and contrast-enhanced T1-weighted imaging on a single baseline MRI for demonstrating dissemination in time in multiple sclerosis. BMC Neurol. 2014, 14, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, W.Y.; Mar, S.; Benzinger, T.L. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013, 5, 427–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, W.; Zhu, T.; Zhong, J.; Liu, X.; Rao, P.; Segal, B.M.; Ekholm, S. Progressive decline in fractional anisotropy on serial DTI examinations of the corpus callosum: A putative marker of disease activity and progression in SPMS. Neuroradiology 2012, 54, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.M.; Gupta, R.K.; Santos, R.M.; Wolinsky, J.S.; Narayana, P.A. Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J. Magn. Reson. Imaging 2005, 21, 735–743. [Google Scholar] [CrossRef]
- Hakulinen, U.; Brander, A.; Ryymin, P.; Ohman, J.; Soimakallio, S.; Helminen, M.; Dastidar, P.; Eskola, H. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain. BMC Med. Imaging 2012, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mitchell, P.J.; Kilpatrick, T.J.; Stein, M.S.; Harrison, L.C.; Baker, J.; Ditchfield, M.; Li, K.; Egan, G.F.; Butzkueven, H.; et al. Diffusion tensor imaging of acute inflammatory lesion evolution in multiple sclerosis. J. Clin. Neurosci. 2012, 19, 1689–1694. [Google Scholar] [CrossRef]
- Pierpaoli, C.; Jezzard, P.; Basser, P.J.; Barnett, A.; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648. [Google Scholar] [CrossRef]
- Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 2005, 23, 683–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzer, J.; Svenningsson, A.; Sundstrom, P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult. Scler. 2010, 16, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Malmeström, C.; Haghighi, S.; Rosengren, L.; Andersen, O.; Lycke, J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003, 61, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Gisslén, M.; Price, R.W.; Andreasson, U.; Norgren, N.; Nilsson, S.; Hagberg, L.; Fuchs, D.; Spudich, S.; Blennow, K.; Zetterberg, H. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study. EBioMedicine 2016, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol 2017, 81, 857–870. [Google Scholar] [CrossRef]
- Novakova, L.; Zetterberg, H.; Sundström, P.; Axelsson, M.; Khademi, M.; Gunnarsson, M.; Malmeström, C.; Svenningsson, A.; Olsson, T.; Piehl, F.; et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology 2017, 89, 2230–2237. [Google Scholar] [CrossRef] [Green Version]
- Cantó, E.; Barro, C.; Zhao, C.; Caillier, S.J.; Michalak, Z.; Bove, R.; Tomic, D.; Santaniello, A.; Häring, D.A.; Hollenbach, J.; et al. Association between Serum Neurofilament Light Chain Levels and Long-term Disease Course among Patients with Multiple Sclerosis Followed Up for 12 Years. JAMA Neurol. 2019, 76, 1359–1366. [Google Scholar] [CrossRef]
- Akgün, K.; Kretschmann, N.; Haase, R.; Proschmann, U.; Kitzler, H.H.; Reichmann, H.; Ziemssen, T. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e555. [Google Scholar] [CrossRef] [Green Version]
- Uher, T.; Schaedelin, S.; Srpova, B.; Barro, C.; Bergsland, N.; Dwyer, M.; Tyblova, M.; Vodehnalova, K.; Benkert, P.; Oechtering, J.; et al. Monitoring of radiologic disease activity by serum neurofilaments in MS. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Barro, C.; Benkert, P.; Disanto, G.; Tsagkas, C.; Amann, M.; Naegelin, Y.; Leppert, D.; Gobbi, C.; Granziera, C.; Yaldizli, Ö.; et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 2018, 141, 2382–2391. [Google Scholar] [CrossRef]
- Thebault, S.; Abdoli, M.; Fereshtehnejad, S.M.; Tessier, D.; Tabard-Cossa, V.; Freedman, M.S. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci. Rep. 2020, 10, 10381. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Munger, K.L.; Cortese, M.; Barro, C.; Healy, B.C.; Niebuhr, D.W.; Scher, A.I.; Kuhle, J.; Ascherio, A. Serum Neurofilament Light Chain Levels in Patients With Presymptomatic Multiple Sclerosis. JAMA Neurol. 2020, 77, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Wang, H.; Wu, M.; Zhan, C.; Ma, E.; Yang, M.; Yang, X.; Li, Y. Neurofilament proteins in axonal regeneration and neurodegenerative diseases. Neural Regen. Res. 2012, 7, 620–626. [Google Scholar] [CrossRef]
- Manouchehrinia, A.; Piehl, F.; Hillert, J.; Kuhle, J.; Alfredsson, L.; Olsson, T.; Kockum, I. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann. Clin. Transl. Neurol. 2020, 7, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wang, Q.; Mao, G.; Dowling, C.A.; Lundy, S.K.; Mao-Draayer, Y. Dimethyl Fumarate Selectively Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2 in Multiple Sclerosis Patients. J. Immunol. 2017, 198, 3069–3080. [Google Scholar] [CrossRef] [Green Version]
- Binder, L.I.; Frankfurter, A.; Rebhun, L.I. The distribution of tau in the mammalian central nervous system. J. Cell. Biol. 1985, 101, 1371–1378. [Google Scholar] [CrossRef] [Green Version]
- Sjogren, M.; Vanderstichele, H.; Agren, H.; Zachrisson, O.; Edsbagge, M.; Wikkelso, C.; Skoog, I.; Wallin, A.; Wahlund, L.O.; Marcusson, J.; et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21–93 years of age: Establishment of reference values. Clin. Chem. 2001, 47, 1776–1781. [Google Scholar] [CrossRef] [Green Version]
- Rostasy, K.; Withut, E.; Pohl, D.; Lange, P.; Ciesielcyk, B.; Diem, R.; Gartner, J.; Otto, M. Tau, phospho-tau, and S-100B in the cerebrospinal fluid of children with multiple sclerosis. J. Child Neurol. 2005, 20, 822–825. [Google Scholar] [CrossRef]
- Martinez-Yelamos, A.; Saiz, A.; Bas, J.; Hernandez, J.J.; Graus, F.; Arbizu, T. Tau protein in cerebrospinal fluid: A possible marker of poor outcome in patients with early relapsing-remitting multiple sclerosis. Neurosci. Lett. 2004, 363, 14–17. [Google Scholar] [CrossRef]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Hein Nee Maier, K.; Kohler, A.; Diem, R.; Sattler, M.B.; Demmer, I.; Lange, P.; Bahr, M.; Otto, M. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci. Lett. 2008, 436, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Brettschneider, J.; Petzold, A.; Junker, A.; Tumani, H. Axonal damage markers in the cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite multiple sclerosis. Mult. Scler. 2006, 12, 143–148. [Google Scholar] [CrossRef]
- Guimaraes, I.; Cardoso, M.I.; Sa, M.J. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult. Scler. 2006, 12, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Clarner, T.; Buschmann, J.P.; Beyer, C.; Kipp, M. Glial amyloid precursor protein expression is restricted to astrocytes in an experimental toxic model of multiple sclerosis. J. Mol. Neurosci. 2011, 43, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Gehrmann, J.; Banati, R.B.; Cuzner, M.L.; Kreutzberg, G.W.; Newcombe, J. Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia 1995, 15, 141–151. [Google Scholar] [CrossRef]
- Madeddu, R.; Farace, C.; Tolu, P.; Solinas, G.; Asara, Y.; Sotgiu, M.A.; Delogu, L.G.; Prados, J.C.; Sotgiu, S.; Montella, A. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis. Neurol. Sci. 2013, 34, 181–186. [Google Scholar] [CrossRef]
- Colucci, M.; Roccatagliata, L.; Capello, E.; Narciso, E.; Latronico, N.; Tabaton, M.; Mancardi, G.L. The 14-3-3 protein in multiple sclerosis: A marker of disease severity. Mult. Scler. 2004, 10, 477–481. [Google Scholar] [CrossRef]
- Satoh, J.; Yukitake, M.; Kurohara, K.; Takashima, H.; Kuroda, Y. Detection of the 14-3-3 protein in the cerebrospinal fluid of Japanese multiple sclerosis patients presenting with severe myelitis. J. Neurol. Sci. 2003, 212, 11–20. [Google Scholar] [CrossRef]
- Martinez-Yelamos, A.; Saiz, A.; Sanchez-Valle, R.; Casado, V.; Ramon, J.M.; Graus, F.; Arbizu, T. 14-3-3 protein in the CSF as prognostic marker in early multiple sclerosis. Neurology 2001, 57, 722–724. [Google Scholar] [CrossRef]
- de Seze, J.; Peoc’h, K.; Ferriby, D.; Stojkovic, T.; Laplanche, J.L.; Vermersch, P. 14-3-3 Protein in the cerebrospinal fluid of patients with acute transverse myelitis and multiple sclerosis. J. Neurol. 2002, 249, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Zysk, G.; Bruck, W.; Gerber, J.; Bruck, Y.; Prange, H.W.; Nau, R. Anti-inflammatory treatment influences neuronal apoptotic cell death in the dentate gyrus in experimental pneumococcal meningitis. J. Neuropathol. Exp. Neurol. 1996, 55, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Pollak, D.; Cairns, N.; Lubec, G. Cytoskeleton derangement in brain of patients with Down syndrome, Alzheimer’s disease and Pick’s disease. J. Neural Transm. Suppl. 2003, 2003, 149–158. [Google Scholar] [CrossRef]
- Cunningham, R.T.; Morrow, J.I.; Johnston, C.F.; Buchanan, K.D. Serum neurone-specific enolase concentrations in patients with neurological disorders. Clin. Chim. Acta 1994, 230, 117–124. [Google Scholar] [CrossRef]
- Koch, M.; Mostert, J.; Heersema, D.; Teelken, A.; De Keyser, J. Plasma S100beta and NSE levels and progression in multiple sclerosis. J. Neurol. Sci. 2007, 252, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Lucchinetti, C.F.; Bruck, W.; Rodriguez, M.; Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996, 6, 259–274. [Google Scholar] [CrossRef]
- Ozawa, K.; Suchanek, G.; Breitschopf, H.; Bruck, W.; Budka, H.; Jellinger, K.; Lassmann, H. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 1994, 117, 1311–1322. [Google Scholar] [CrossRef]
- Sun, M.; Liu, N.; Xie, Q.; Li, X.; Sun, J.; Wang, H.; Wang, M. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2021, 51, 102870. [Google Scholar] [CrossRef]
- Petzold, A.; Eikelenboom, M.J.; Gveric, D.; Keir, G.; Chapman, M.; Lazeron, R.H.; Cuzner, M.L.; Polman, C.H.; Uitdehaag, B.M.; Thompson, E.J.; et al. Markers for different glial cell responses in multiple sclerosis: Clinical and pathological correlations. Brain 2002, 125, 1462–1473. [Google Scholar] [CrossRef] [Green Version]
- Missler, U.; Wandinger, K.P.; Wiesmann, M.; Kaps, M.; Wessel, K. Acute exacerbation of multiple sclerosis increases plasma levels of S-100 protein. Acta Neurol. Scand. 1997, 96, 142–144. [Google Scholar] [CrossRef]
- Jonsson, H.; Johnsson, P.; Birch-Iensen, M.; Alling, C.; Westaby, S.; Blomquist, S. S100B as a predictor of size and outcome of stroke after cardiac surgery. Ann. Thorac. Surg. 2001, 71, 1433–1437. [Google Scholar] [CrossRef]
- Sussmuth, S.D.; Tumani, H.; Ecker, D.; Ludolph, A.C. Amyotrophic lateral sclerosis: Disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett. 2003, 353, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Paul, F.; Jarius, S.; Aktas, O.; Bluthner, M.; Bauer, O.; Appelhans, H.; Franciotta, D.; Bergamaschi, R.; Littleton, E.; Palace, J.; et al. Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med. 2007, 4, e133. [Google Scholar] [CrossRef] [Green Version]
- Waters, P.; Jarius, S.; Littleton, E.; Leite, M.I.; Jacob, S.; Gray, B.; Geraldes, R.; Vale, T.; Jacob, A.; Palace, J.; et al. Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. Arch. Neurol. 2008, 65, 913–919. [Google Scholar] [CrossRef]
- Brundin, L.; Morcos, E.; Olsson, T.; Wiklund, N.P.; Andersson, M. Increased intrathecal nitric oxide formation in multiple sclerosis; cerebrospinal fluid nitrite as activity marker. Eur. J. Neurol. 1999, 6, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Danilov, A.I.; Andersson, M.; Bavand, N.; Wiklund, N.P.; Olsson, T.; Brundin, L. Nitric oxide metabolite determinations reveal continuous inflammation in multiple sclerosis. J. Neuroimmunol. 2003, 136, 112–118. [Google Scholar] [CrossRef]
- Brown, G.C.; Bal-Price, A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 2003, 27, 325–355. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Giovannoni, G.; Hand, A.; Madsen, H.O.; Jensen, C.V.; Garred, P. Cerebrospinal fluid levels of nitric oxide metabolites predict response to methylprednisolone treatment in multiple sclerosis and optic neuritis. J. Neuroimmunol. 2002, 125, 198–203. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Christiansen, M.; Garred, P. MBP, anti-MBP and anti-PLP antibodies, and intrathecal complement activation in multiple sclerosis. Mult. Scler. 1998, 4, 127–131. [Google Scholar] [CrossRef]
- Cohen, S.R.; Herndon, R.M.; McKhann, G.M. Radioimmunoassay of myelin basic protein in spinal fluid. An index of active demyelination. N. Engl. J. Med. 1976, 295, 1455–1457. [Google Scholar] [CrossRef]
- Harris, V.K.; Sadiq, S.A. Disease biomarkers in multiple sclerosis: Potential for use in therapeutic decision making. Mol. Diagn. Ther. 2009, 13, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Romme Christensen, J.; Bornsen, L.; Khademi, M.; Olsson, T.; Jensen, P.E.; Sorensen, P.S.; Sellebjerg, F. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult. Scler. 2013, 19, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esaulova, E.; Cantoni, C.; Shchukina, I.; Zaitsev, K.; Bucelli, R.C.; Wu, G.F.; Artyomov, M.N.; Cross, A.H.; Edelson, B.T. Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e732. [Google Scholar] [CrossRef]
- Cala, C.M.; Moseley, C.E.; Steele, C.; Dowdy, S.M.; Cutter, G.R.; Ness, J.M.; DeSilva, T.M. T cell cytokine signatures: Biomarkers in pediatric multiple sclerosis. J. Neuroimmunol. 2016, 297, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademi, M.; Kockum, I.; Andersson, M.L.; Iacobaeus, E.; Brundin, L.; Sellebjerg, F.; Hillert, J.; Piehl, F.; Olsson, T. Cerebrospinal fluid CXCL13 in multiple sclerosis: A suggestive prognostic marker for the disease course. Mult. Scler. 2011, 17, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Khademi, M.; Fugger, L.; Lindhe, O.; Novakova, L.; Axelsson, M.; Malmestrom, C.; Constantinescu, C.; Lycke, J.; Piehl, F.; et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117, 12952–12960. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Yang, X.; Miao, L.; Liu, Z.G.; Li, W.; Zhao, Z.X.; Sun, X.J.; Jiang, G.X.; Chen, S.D.; Cheng, Q. Serum level of interleukin-6 in Chinese patients with multiple sclerosis. J. Neuroimmunol. 2012, 249, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Bertolotto, A.; Deisenhammer, F.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Killestein, J.; McFarland, H.F.; Oger, J.; Pachner, A.R.; et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010, 9, 740–750. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Q.; Yang, J.; Martens, J.W.; Mills, E.A.; Saad, A.; Chilukuri, P.; Dowling, C.A.; Mao-Draayer, Y. Elevated sCD40L in Secondary Progressive Multiple Sclerosis in Comparison to Non-progressive Benign and Relapsing Remitting Multiple Sclerosis. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211050712. [Google Scholar] [CrossRef]
- Fadul, C.E.; Mao-Draayer, Y.; Ryan, K.A.; Noelle, R.J.; Wishart, H.A.; Channon, J.Y.; Kasper, I.R.; Oliver, B.; Mielcarz, D.W.; Kasper, L.H. Safety and Immune Effects of Blocking CD40 Ligand in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1096. [Google Scholar] [CrossRef]
- Soltys, J.; Wang, Q.; Mao-Draayer, Y. Optical coherence tomography and T cell gene expression analysis in patients with benign multiple sclerosis. Neural Regen. Res. 2017, 12, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Hinsinger, G.; Galeotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler. 2015, 21, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Canto, E.; Reverter, F.; Morcillo-Suarez, C.; Matesanz, F.; Fernandez, O.; Izquierdo, G.; Vandenbroeck, K.; Rodriguez-Antiguedad, A.; Urcelay, E.; Arroyo, R.; et al. Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Mult. Scler. 2012, 18, 983–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comabella, M.; Fernandez, M.; Martin, R.; Rivera-Vallve, S.; Borras, E.; Chiva, C.; Julia, E.; Rovira, A.; Canto, E.; Alvarez-Cermeno, J.C.; et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 2010, 133, 1082–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matute-Blanch, C.; Rio, J.; Villar, L.M.; Midaglia, L.; Malhotra, S.; Alvarez-Cermeno, J.C.; Vidal-Jordana, A.; Montalban, X.; Comabella, M. Chitinase 3-like 1 is associated with the response to interferon-beta treatment in multiple sclerosis. J. Neuroimmunol. 2017, 303, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Daugaard, M.; Rohde, M.; Jaattela, M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007, 581, 3702–3710. [Google Scholar] [CrossRef] [Green Version]
- Pockley, A.G.; Henderson, B.; Multhoff, G. Extracellular cell stress proteins as biomarkers of human disease. Biochem. Soc. Trans. 2014, 42, 1744–1751. [Google Scholar] [CrossRef]
- Radons, J. The human HSP70 family of chaperones: Where do we stand? Cell Stress Chaperones 2016, 21, 379–404. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, M.J.; Montalban, X.; Espejo, C. Heat shock protein 70: Roles in multiple sclerosis. Mol. Med. 2012, 18, 1018–1028. [Google Scholar] [CrossRef]
- Turturici, G.; Tinnirello, R.; Sconzo, G.; Asea, A.; Savettieri, G.; Ragonese, P.; Geraci, F. Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: An overview. J. Neuropathol. Exp. Neurol. 2014, 73, 1092–1106. [Google Scholar] [CrossRef] [Green Version]
- Boiocchi, C.; Monti, M.C.; Osera, C.; Mallucci, G.; Pistono, C.; Ferraro, O.E.; Nosari, G.; Romani, A.; Cuccia, M.; Govoni, S.; et al. Heat shock protein 70-hom gene polymorphism and protein expression in multiple sclerosis. J. Neuroimmunol. 2016, 298, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Lechner, P.; Buck, D.; Sick, L.; Hemmer, B.; Multhoff, G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Munjal, A.K.; Iqbal, H.M.N.; Dhama, K. Heat Shock Proteins: Therapeutic Perspectives in Inflammatory Disorders. Recent Pat. Inflamm. Allergy Drug Discov. 2017, 10, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, M.; Makosa, B.; Walczak, A.; Selmaj, K. Patients with multiple sclerosis resisted to glucocorticoid therapy: Abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex. Mult. Scler. 2008, 14, 919–926. [Google Scholar] [CrossRef]
- Gurtner, K.M.; Shosha, E.; Bryant, S.C.; Andreguetto, B.D.; Murray, D.L.; Pittock, S.J.; Willrich, M.A.V. CSF free light chain identification of demyelinating disease: Comparison with oligoclonal banding and other CSF indexes. Clin. Chem. Lab. Med. 2018, 56, 1071–1080. [Google Scholar] [CrossRef]
- Presslauer, S.; Milosavljevic, D.; Brucke, T.; Bayer, P.; Hubl, W. Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J. Neurol. 2008, 255, 1508–1514. [Google Scholar] [CrossRef]
- Rinker, J.R., 2nd; Trinkaus, K.; Cross, A.H. Elevated CSF free kappa light chains correlate with disability prognosis in multiple sclerosis. Neurology 2006, 67, 1288–1290. [Google Scholar] [CrossRef]
- Villar, L.M.; Espino, M.; Costa-Frossard, L.; Muriel, A.; Jimenez, J.; Alvarez-Cermeno, J.C. High levels of cerebrospinal fluid free kappa chains predict conversion to multiple sclerosis. Clin. Chim. Acta 2012, 413, 1813–1816. [Google Scholar] [CrossRef]
- Kury, P.; Nath, A.; Creange, A.; Dolei, A.; Marche, P.; Gold, J.; Giovannoni, G.; Hartung, H.P.; Perron, H. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol. Med. 2018, 24, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Sotgiu, S.; Arru, G.; Mameli, G.; Serra, C.; Pugliatti, M.; Rosati, G.; Dolei, A. Multiple sclerosis-associated retrovirus in early multiple sclerosis: A six-year follow-up of a Sardinian cohort. Mult. Scler. 2006, 12, 698–703. [Google Scholar] [CrossRef]
- Sotgiu, S.; Pugliatti, M.; Sanna, A.; Sotgiu, A.; Fois, M.L.; Arru, G.; Rosati, G. Serum uric acid and multiple sclerosis. Neurol. Sci. 2002, 23, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Harroud, A.; Richards, J.B.; Baranzini, S.E. Mendelian randomization study shows no causal effects of serum urate levels on the risk of MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e920. [Google Scholar] [CrossRef] [PubMed]
- Gawde, S.; Agasing, A.; Bhatt, N.; Tolliver, M.; Kumar, G.; Massey, K.; Nguyen, A.; Mao-Draayer, Y.; Pardo, G.; Dunn, J.; et al. Biomarker panel increases sensitivity for identification of inflammatory MS disease activity beyond NfL. Mult. Scler. Relat. Disord. in press.
- Gandhi, K.S.; McKay, F.C.; Cox, M.; Riveros, C.; Armstrong, N.; Heard, R.N.; Vucic, S.; Williams, D.W.; Stankovich, J.; Brown, M.; et al. The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. Hum. Mol. Genet. 2010, 19, 2134–2143. [Google Scholar] [CrossRef] [Green Version]
- Lundy, S.K.; Wu, Q.; Wang, Q.; Dowling, C.A.; Taitano, S.H.; Mao, G.; Mao-Draayer, Y. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e211. [Google Scholar] [CrossRef] [Green Version]
- Mills, E.A.; Ogrodnik, M.A.; Plave, A.; Mao-Draayer, Y. Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Front. Neurol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Wu, Q.; Mills, E.A.; Wang, Q.; Dowling, C.A.; Fisher, C.; Kirch, B.; Lundy, S.K.; Fox, D.A.; Mao-Draayer, Y.; Group, A.M.S.S. Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight 2020, 5, e134251. [Google Scholar] [CrossRef]
- Satoh, J.; Misawa, T.; Tabunoki, H.; Yamamura, T. Molecular network analysis of T-cell transcriptome suggests aberrant regulation of gene expression by NF-kappaB as a biomarker for relapse of multiple sclerosis. Dis. Markers 2008, 25, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Greer, J.M. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. CNS Neurol. Disord. Drug Targets 2008, 7, 536–557. [Google Scholar] [CrossRef] [Green Version]
- Eggert, M.; Goertsches, R.; Seeck, U.; Dilk, S.; Neeck, G.; Zettl, U.K. Changes in the activation level of NF-kappa B in lymphocytes of MS patients during glucocorticoid pulse therapy. J. Neurol. Sci. 2008, 264, 145–150. [Google Scholar] [CrossRef]
- Peng, H.; Guerau-de-Arellano, M.; Mehta, V.B.; Yang, Y.; Huss, D.J.; Papenfuss, T.L.; Lovett-Racke, A.E.; Racke, M.K. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J. Biol. Chem. 2012, 287, 28017–28026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Schafflick, D.; Xu, C.A.; Hartlehnert, M.; Cole, M.; Schulte-Mecklenbeck, A.; Lautwein, T.; Wolbert, J.; Heming, M.; Meuth, S.G.; Kuhlmann, T.; et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 2020, 11, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, A.; Schubert, R.D.; Greenfield, A.L.; Dandekar, R.; Loudermilk, R.; Sabatino, J.J.; Koelzer, M.T.; Tran, E.B.; Koshal, K.; Kim, K.; et al. A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117, 22932–22943. [Google Scholar] [CrossRef]
- Harris, V.K.; Tuddenham, J.F.; Sadiq, S.A. Biomarkers of multiple sclerosis: Current findings. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 19–29. [Google Scholar] [CrossRef] [Green Version]
- de Faria, O., Jr.; Moore, C.S.; Kennedy, T.E.; Antel, J.P.; Bar-Or, A.; Dhaunchak, A.S. MicroRNA dysregulation in multiple sclerosis. Front. Genet. 2012, 3, 311. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhou, J.; Zhong, Y.; Jiang, L.; Mu, P.; Li, Y.; Singh, N.; Nagarkatti, M.; Nagarkatti, P. Expression, regulation and function of microRNAs in multiple sclerosis. Int. J. Med. Sci. 2014, 11, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Amoruso, A.; Blonda, M.; Gironi, M.; Grasso, R.; Di Francescantonio, V.; Scaroni, F.; Furlan, R.; Verderio, C.; Avolio, C. Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Sci. Rep. 2020, 10, 6125. [Google Scholar] [CrossRef] [Green Version]
- Ahlbrecht, J.; Martino, F.; Pul, R.; Skripuletz, T.; Suhs, K.W.; Schauerte, C.; Yildiz, O.; Trebst, C.; Tasto, L.; Thum, S.; et al. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. Mult. Scler. 2016, 22, 1202–1214. [Google Scholar] [CrossRef]
- Bergman, P.; Piket, E.; Khademi, M.; James, T.; Brundin, L.; Olsson, T.; Piehl, F.; Jagodic, M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e219. [Google Scholar] [CrossRef] [Green Version]
- Manu, M.S.; Hohjoh, H.; Yamamura, T. Extracellular Vesicles as Pro- and Anti-inflammatory Mediators, Biomarkers and Potential Therapeutic Agents in Multiple Sclerosis. Aging Dis. 2021, 12, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Mittelbrunn, M.; Gutierrez-Vazquez, C.; Villarroya-Beltri, C.; Gonzalez, S.; Sanchez-Cabo, F.; Gonzalez, M.A.; Bernad, A.; Sanchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2011, 2, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, W.; Zhang, W.; Jia, J.; Lu, Q.; Eric Gershwin, M. Exosomal microRNA in autoimmunity. Cell. Mol. Immunol. 2019, 16, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wu, H.; Liu, Y.; Zhao, M.; Li, D.; Lu, Q. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 2016, 49, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qiu, B. Exosomal MicroRNA-320a Derived from Mesenchymal Stem Cells Regulates Rheumatoid Arthritis Fibroblast-Like Synoviocyte Activation by Suppressing CXCL9 Expression. Front. Physiol. 2020, 11, 441. [Google Scholar] [CrossRef]
- Kimura, K.; Hohjoh, H.; Fukuoka, M.; Sato, W.; Oki, S.; Tomi, C.; Yamaguchi, H.; Kondo, T.; Takahashi, R.; Yamamura, T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat. Commun. 2018, 9, 17. [Google Scholar] [CrossRef]
- Pieragostino, D.; Cicalini, I.; Lanuti, P.; Ercolino, E.; di Ioia, M.; Zucchelli, M.; Zappacosta, R.; Miscia, S.; Marchisio, M.; Sacchetta, P.; et al. Enhanced release of acid sphingomyelinase-enriched exosomes generates a lipidomics signature in CSF of Multiple Sclerosis patients. Sci. Rep. 2018, 8, 3071. [Google Scholar] [CrossRef] [Green Version]
- Geraci, F.; Ragonese, P.; Barreca, M.M.; Aliotta, E.; Mazzola, M.A.; Realmuto, S.; Vazzoler, G.; Savettieri, G.; Sconzo, G.; Salemi, G. Differences in Intercellular Communication During Clinical Relapse and Gadolinium-Enhanced MRI in Patients with Relapsing Remitting Multiple Sclerosis: A Study of the Composition of Extracellular Vesicles in Cerebrospinal Fluid. Front. Cell. Neurosci. 2018, 12, 418. [Google Scholar] [CrossRef]
- Minagar, A.; Jy, W.; Jimenez, J.J.; Sheremata, W.A.; Mauro, L.M.; Mao, W.W.; Horstman, L.L.; Ahn, Y.S. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001, 56, 1319–1324. [Google Scholar] [CrossRef]
- Galazka, G.; Mycko, M.P.; Selmaj, I.; Raine, C.S.; Selmaj, K.W. Multiple sclerosis: Serum-derived exosomes express myelin proteins. Mult. Scler. 2018, 24, 449–458. [Google Scholar] [CrossRef]
- Moyano, A.L.; Li, G.; Boullerne, A.I.; Feinstein, D.L.; Hartman, E.; Skias, D.; Balavanov, R.; van Breemen, R.B.; Bongarzone, E.R.; Mansson, J.E.; et al. Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients. J. Neurosci. Res. 2016, 94, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Nogueras-Ortiz, C.; Chawla, S.; Baek, R.; Jorgensen, M.M.; Kapogiannis, D. Altered Levels of Toll-like Receptors in Circulating Extracellular Vesicles in Multiple Sclerosis. Cells 2019, 8, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welton, J.L.; Loveless, S.; Stone, T.; von Ruhland, C.; Robertson, N.P.; Clayton, A. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J. Extracell. Vesicles 2017, 6, 1369805. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, I.; Rui, B.; Khan, J.; Datta, I.; Giri, S. An emerging potential of metabolomics in multiple sclerosis: A comprehensive overview. Cell. Mol. Life Sci. 2021, 78, 3181–3203. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.B.; Melo, T.; Monteiro, A.; Paiva, A.; Domingues, P.; Domingues, M.R. Serum phospholipidomics reveals altered lipid profile and promising biomarkers in multiple sclerosis. Arch. Biochem. Biophys. 2021, 697, 108672. [Google Scholar] [CrossRef]
- Bhargava, P.; Smith, M.D.; Mische, L.; Harrington, E.; Fitzgerald, K.C.; Martin, K.; Kim, S.; Reyes, A.A.; Gonzalez-Cardona, J.; Volsko, C.; et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J. Clin. Investig. 2020, 130, 3467–3482. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, K.C.; Smith, M.D.; Kim, S.; Sotirchos, E.S.; Kornberg, M.D.; Douglas, M.; Nourbakhsh, B.; Graves, J.; Rattan, R.; Poisson, L.; et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021, 2, 100424. [Google Scholar] [CrossRef]
- Villoslada, P.; Alonso, C.; Agirrezabal, I.; Kotelnikova, E.; Zubizarreta, I.; Pulido-Valdeolivas, I.; Saiz, A.; Comabella, M.; Montalban, X.; Villar, L.; et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e321. [Google Scholar] [CrossRef] [Green Version]
- Yeo, T.; Probert, F.; Sealey, M.; Saldana, L.; Geraldes, R.; Hoeckner, S.; Schiffer, E.; Claridge, T.D.W.; Leppert, D.; DeLuca, G.; et al. Objective biomarkers for clinical relapse in multiple sclerosis: A metabolomics approach. Brain Commun. 2021, 3, fcab240. [Google Scholar] [CrossRef]
- Mirza, A.; Mao-Draayer, Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin. Immunol. 2017, 183, 213–224. [Google Scholar] [CrossRef]
- Hand, T.W.; Vujkovic-Cvijin, I.; Ridaura, V.K.; Belkaid, Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol. Metab. 2016, 27, 831–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wekerle, H. The gut-brain connection: Triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology 2016, 55, ii68–ii75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [Green Version]
- Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016, 7, 12015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Guan, N.L.; et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Repáraz, J.; Kasper, L.H. The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl. Res. 2017, 179, 126–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.; Locca, A.; Dorsett, Y.; Cantoni, C.; Ghezzi, L.; Lin, Q.; Bokoliya, S.; Panier, H.; Suther, C.; Gormley, M.; et al. Alterations of the gut mycobiome in patients with MS. EBioMedicine 2021, 71, 103557. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.; Fadrosh, D.W.; Faruqi, A.A.; Hart, J.; Roalstad, S.; Graves, J.; Lynch, S.; Waubant, E.; Centers, U.N.o.P.M. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J. Neurol. Sci. 2016, 363, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.W.; et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 2015, 10, e0137429. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Wang, Q.; Wu, Q.; Mao-Draayer, Y.; Kim, C.H. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci. Rep. 2019, 9, 8837. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.A. The tantalizing links between gut microbes and the brain. Nature 2015, 526, 312–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
NfL | RRMS (65), SPMS (10), PPMS (20) | CSF | Correlated with RRMS progression to SPMS [42] | Predictive, prognostic, treatment response |
RRMS (41), SPMS (25), controls (50) | CSF | Increased during active and acute relapse in MS patients compared to healthy controls [43] | ||
RRMS (62), SPMS (3) PPMS (16), CIS (48), RIS (13), controls (87) | CSF, serum | Strong associated between CSF and serum levels; serum levels lower with disease-modifying treatment; serum levels positively correlated with age and higher in older patients during relapse and associated with higher risk of relapse and EDSS worsening [45] | ||
RRMS (435), SPMS (54), PPMS (25), CIS (93) | Serum | Lower levels associated with active treatment, with larger decreases in NfL levels with high-potency treatments. Associated with T2 lesion volume over time; no association between higher levels at disease onset and higher long-term EDSS scores nor any association with relapse activity overtime; large overlap between the baseline level in MS patients and controls who may have migraine or conversion disorder [47] | ||
RRMS (15) | Serum | Associated with clinical or MRI disease activity [48] | ||
SET cohort: RRMS (163) GeneMSA cohort: RRMS (179) | Serum | Lower levels associated with lower probability of recent imaging disease activity; higher levels associated with higher number of active MRI lesions [49] | ||
RRMS (35), PPMS (17), CIS (15) | Serum | Higher baseline levels associated with higher hazard ratio of developing EDSS ≥ 4 after 15+ years [51] | ||
MS (60) | Serum | Levels were increased six years prior to onset of MS [52] | ||
MS (955) | Serum | Levels were elevated only after EBV seroconversion [53] | ||
Tau | MS (25), controls (67) | CSF | Correlated with prominence of clinical symptoms [59] | Predictive, prognostic |
Probable or confirmed RRMS (32) | CSF | Correlated with quicker disease progression and predicts time of next relapse [60] | ||
CIS (21), controls (20) | CSF, serum | No difference between CIS patients and controls; no correlation with EDSS scores [62] | ||
RRMS (38), CIS (52), controls (25) | CSF | Correlated with EDSS in both CIS and RRMS patients; higher correlated with conversion of CIS into clinically defined MS; associated with the number of T2-lesions on MRI [63] | ||
RRMS (32), SPMS (2), PPMS (4), CIS (12), controls (19) | CSF | Similar levels among all clinical sub-groups and controls [64] | ||
CIS (20), CDMS (43), controls (56) | CSF | Similar concentrations between those with demyelinating disease and controls [68] | ||
APP | MS (6), controls (6) | CSF | Higher in MS patients compared to controls; MS patients with axons that are positive for APP are correlated with CNS lesion development [66] | Associated marker |
TUBβ | RRMS (24), SPMS (7), PRMS (1), PPMS (1) | CSF | Higher in MS patients than patients with other neurological diseases [67] | Associated marker |
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
14-3-3 | CIS (21), controls (20) | CSF | Levels are undetectable in the majority [62] | Prognostic |
CIS (20), CDMS (43), controls (56) | CSF | Associated with greater disease disability and rate of disease progression [68] | ||
RRMS (10), SPMS (7), PPMS (2), controls (5) | CSF | Associated with more severe disability and extensive involvement of spinal cord [69] | ||
CIS (38) | CSF | Associated with quicker progression to MS and predictive of EDSS ≥ 2 [70] | ||
MS (22) | CSF | Levels are undetectable in the large majority [71] | ||
NSE | RRMS (41), SPMS (25), controls (50) | CSF | No difference between MS patients and controls [43] | Prognostic |
CIS (21), controls (20) | CSF, serum | Lower in CIS patients compared to controls [62] | ||
RRMS (19), SPMS or PPMS (2) | Serum | Normal range in patients with MS [74] | ||
RRMS (25), SPMS (23), PPMS (16) | Plasma | Negative correlated with EDSS and MSSS score [75] |
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
GFAP | MS (503), controls (252) | CSF | Patients with SPMS had higher levels than those with RRMS [78] | Prognostic |
RRMS (20), SPMS (21), PPMS (10), controls (51) | CSF | Associated with greater disabilities and relapse [79] | ||
S100β | RRMS (41), SPMS (25), controls (50) | CSF | No difference between MS patients and controls [43] | Prognostic |
CIS (21), controls (20) | CSF, serum | No difference between CIS patients and controls; no correlation with EDSS score [62] | ||
RRMS (25), SPMS (23), PPMS (16) | Plasma | No difference between various clinical subtypes of MS [75] | ||
RRMS (20), SPMS (21), PPMS (10), controls (51) | CSF | Highest levels in order of PPMS, SPMS, then RRMS, with all higher than controls [79] | ||
RRMS (9 with acute exacerbations, 3 stable), chronic progressive (8 with acute exacerbations, 3 stable) | Plasma | Acute exacerbations results in higher levels [80] | ||
AQP4 | MS (144), NMO (37) | Serum | Only detectable in 4 out of 144 MS patients but detectable in 21 out of 37 NMO patients [83] | Diagnostic |
RRMS (27), SPMS (6), PPMS (5), controls (14), NMO (24) | Serum | Undetectable in all MS patients and controls, but detectable in 14 out of 24 patients with NMO [84] | ||
NO | RRMS (8), SPMS (8), PPMS (1), controls (8) | CSF, serum | Increased in MS patients compared to controls [85] | Associated marker |
MS exacerbation (24), MS remission (17), MS progression (20), tension headache (8), controls (11) | CSF | Increased in MS patients compared to controls [86] |
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
MBP | RRMS (31), CIS (18) | CSF | Correlated with EDSS scores [89] | Prognostic |
Acute exacerbation of MS (15), remission (19), slow progressive form (13) | CSF | MS patients with an acute exacerbation had higher levels than those with slower progressive MS and even higher than those in remission [90] | ||
MOG | RRMS (2), anti-MOG (1) | CSF | Distinct myeloid cell types if subjects with neuroinflammation [93] | Diagnostic |
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
Cytokines | RRMS (114), CIS (43) | Serum | Immunologically distinct subgroups of MS, and these subgroups may stratify treatment response to IFN-β [6] | Predictive, prognostic, treatment response |
Pediatric onset MS (40), controls (11) | Serum | IL-10 is predictive of relapse [94] | ||
RRMS (323), SPMS (40), PPMS (24), CIS (79), OIND (176), ONIND (181), controls (14) | CSF | CXCL13 has been found to be correlated with worse prognosis and exacerbations in RRMS and conversion of CIS to MS [95] | ||
MS (136), OND (35), controls (49) | CSF, plasma | Plasma and CSF levels of CCL11 is associated with disease duration, especially in patients with SPMS; CCL20 is associated with disease severity and CSF levels of IL-12B, MIP-1a, CD5, and CXCL9, and plasma levels of OSM and HGF to be associated with MS [96] | ||
RRMS (39), controls (39) | Serum | IL-6 has been found to be correlated with age of onset for MS patients and is detected at a higher rate in MS patients compared to controls [97] | ||
sCD40L | RRMS (8), SPMS (32), BMS (12), controls (5) | Plasma | Significantly elevated in SPMS compared to BMS and RRMS; MCP1/CCL2 and sCD40L can be used together to differentiate between RRMS and SPMS; IFN-γ and sCD40L can be used together to differentiate between BMS and SPMS [99] | Prognostic |
CHI3L1 | RRMS (38), progressive MS (16), CIS (40), controls (29) | CSF, serum | Strong expression in MS patients, especially astrocytes and microglia in white matter plaques. Increased with disease stage and associated with more rapid conversion to RRMS in CIS patients. Lower CSF levels in progressive MS compared to RRMS [102] | Predictive, prognostic, treatment response |
RRMS (124), SPMS (30), PPMS (66), controls (57) | Plasma | Increased in patients with progressive MS compared to patients with RRMS and healthy controls; higher levels were associated with more relapses and T1 and T2-weighted lesion load and brain parenchyma fraction in patients with MS [103] | ||
CIS (84) | CSF | Higher levels associated with quicker disease conversion to clinically defined MS in CIS patients [104] | ||
RRMS (117) | Serum | Increased in groups of patients unresponsive to IFN-β treatment [105] | ||
HSP | MS (191), controls (365) | Whole blood | Expression of HSPA1L gene that encodes for HSP70-hom protein was correlated with increased risk of MS development; increased expression of HSP70-hom protein was correlated with disease severity [111] | Prognostic, treatment response |
RRMS (40), SPMS (19), PPMS (9), CIS (26), OIND (28), ONIND (41), controls (114) | Serum | Higher HSP70 levels in MS compared to healthy controls but lower than other inflammatory neurological diseases; Increased HSP70 levels in CIS and RRMS compared to PPMS or SPMS [112] | ||
Steroid-resistant MS (15), steroid-sensitive MS (15) | Peripheral blood | Increased HSP90 in the glucocorticoid receptor complex of patients that are steroid-resistance compared to those that are steroid-sensitive [114] | ||
KFLC | RRMS (37), PPMS (4), OND (368) | CSF, serum | Increased in MS patients [116] | Predictive, prognostic |
RRMS (23), SPMS (28), PPMS (6) | CSF | Correlated with future disability [117] | ||
CIS (78), controls (25) | CSF | CIS patients with higher CSF levels of KFLC had earlier conversion to clinical defined MS [118] | ||
HERVs | MSRV+ MS (10), MSRV- MS (8) | CSF | MSRV+ MS patients had higher EDSS scores compared to MSRV- MS patients at 6-year follow-up. MSRV+ MS patients have a higher annual relapse rate. Two patients in the MSRV+ group developed the progressive form of MS [120]. | Prognostic |
Uric Acid | MS (124), OND (124) | Serum | Uric acid levels are decreased in MS patients compared to those with other neurological diseases. No correlation was found between urate levels and disease activity, duration, disability, or course [121] | Associated marker |
MS (61,667), controls (86,806) | Serum | Increased urate levels do not lead to an increased risk of developing MS [122] |
Potential Biomarker | Study Population (n) | Sample | Results | Possible Utility |
---|---|---|---|---|
Cellular Studies | RRMS (65) | Peripheral blood | DMF shifts the balance between Th1/Th17 and Th2 and reduces memory T cells in MS patients, specifically decreasing the absolute number of CD4+ and CD8+ T cells, while increasing the CD4+/CD8+ ratio [56] | Prognostic, treatment response |
RRMS (36), SPMS (20), PPMS (43), controls (45) | Whole blood | T cell dysregulation in patients with untreated MS [124] | ||
SPMS (36) | Whole blood | Siponimod treatment resulted in a decrease in CD4+ T cells, CD8+ T cells but an increase in Tem cells, Th2 cells, Tregs, and Bregs; affected CD4+ more than CD8+, with a larger reduction seen for Tn and Tcm than Tem [127] | ||
RRMS (6) | Peripheral blood | Abnormal NFkB gene expression in T cells, out of 43 differentially expressed genes between acute relapse and complete remission, correlated most significantly with MS relapse [128] | ||
RRMS (5), SPMS (10), PPMS (5), controls (24) | Peripheral blood | After methylprednisolone pulse therapy, MS patients had significantly lower levels of DNA-binding p65 NFkB subunits compared to that of healthy controls [130] | ||
Transcriptomics | MS (39), controls (27) | CSF | Follicular T cells may drive B cell expansion and infiltration in MS [133] | Prognostic |
RRMS (16), CIS (2), controls (3) | CSF | Polyclonal IgM and IgG1 B cells are polarized towards an inflammatory, memory, and plasma cell phenotype [134] | ||
miRNAs | RRMS (21), PPMS (8) | Serum | An overall upregulation of miRNAs that promote anti-inflammation and pro-regenerative polarization in MS patients; miR-155 is downregulated in both PPMS and RRMS and miR-124 downregulated in PPMS; miR-23a, miR-30c, miR-125a, miR-146a, and miR-223 are upregulated in both RRMS and PPMS, but that miR-181a was only increased in RRMS [138] | Predictive, prognostic |
CIS (58) | CSF | miR-181c is associated with earlier conversion of CIS to RRMS [139] | ||
Cohort 1: RRMS (43), CIS (34), controls (65) Cohort 2: RRMS (96), CIS (120), controls (214) | CSF | miR-150 has been found to be upregulated in MS patients compared to controls; miR-150 is associated with earlier conversion of CIS to MS [140] | ||
EVs | RRMS (4), controls (4) | Plasma | An increase in miRNA let-7i in the exosomes of MS patients [146] | Prognostic |
RRMS (21), OND (20) | CSF | Higher number of total exosomes in MS patients; ASM-enriched exosomes correlated with disease severity [147] | ||
RRMS (35), progressive MS (4), CIS (2), OIND (2), ONIND (16) | CSF | Higher levels of EVs in patients with CIS and progressive forms of MS; increase in the number of EVs during relapse but decrease in number of CD19+/CD200+ EVs; presence of MS lesions is correlated with an increase of CSF EVs that were CD+/CCR3+, CD4+/CCR5+, or CCR3+/CCR5+ [148] | ||
MS exacerbation (30), MS remission (20), controls (48) | Plasma | Release of microparticles of less than 1500 nm from endothelial cells that express CD31 during acute exacerbations [149] | ||
RRMS (45), SPMS (30), controls (45) | Serum | Higher levels of exosomes that express MOG were present in patients with SPMS and in relapse of RRMS patients; higher levels of MOG expression in exosomes also correlated with disease activity [150] | ||
RRMS (8), SPMS (1), controls (9) | Plasma | Exosomes from MS patients have increased C16:0 sulfatides compared to controls [151] | ||
RRMS (18), controls (16) | Serum | EVs from MS patients have lower levels of TLR3 but higher levels of TLR4 compared to controls [152] | ||
RRMS (4), controls (3) | CSF | KLKB1 and ApoE4 are increased in EVs of CSF compared to the CSF [153] | ||
Metabolomics | RRMS (24), controls (30) | Plasma | Decreased levels of PC(34:3), PC(36:6), PE(40:10) and PC(38:1) phospholipids [155] | Prognostic |
RRMS (106), PMS (176), controls (127), pediatric MS (31), pediatric controls (31) | Plasma | Decreased secondary bile acids [156] | ||
MS (637), controls (317) | Plasma | Alteration in aromatic amino acid metabotoxins [157] | ||
Retrospective longitudinal cohort: MS (238), controls (74) Prospective cohort: MS (61), controls (41) | Plasma | Identified metabolic signature consist of hormones, lipids, and amino acids associated with MS and with a severe disease course [158] | ||
RRMS in relapse (38), last relapse (LR) between 1 to 6 months (28), LR between 6–24 months (34); LR more than 24 months ago (101) | Plasma | Identified four metabolites including lysine, asparagine, isoleucine, and leucine, which showed a consistent trend with time away from relapse [159] | ||
Metabolites and microbiome | RRMS (31), controls (36) | Microbiome | MS patients had higher amounts of Pseudomonas, Mycoplama, Haemophilus, Blautia, and Dorea genera, while the control group had higher amounts of Parabacteroides, Adlercreutzia, and Prevotella genera [163] | Prognostic |
RRMS (21), SPMS (1), PPMS (2), controls (22) | Microbiome | MS patients had higher levels of Saccharomyces and Aspergillus, with the former being positively correlated with circulating basophils but negatively correlated with regulatory B cells, and the latter positively correlated with activated CD16+ dendritic cells [167] | ||
Pediatric RRMS (17) | Microbiome | Absence of Fusobacteria is associated with quicker relapse compared to the presence of Fusobacteria [168] | ||
RRMS (20) controls (58) | Microbiome | Decreased cloistral species and butyrate producers in MS patients [169] | ||
SPMS (20), controls (15) | Plasma | SCFAs were also found to be decreased in SPMS [170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Hamade, M.; Wu, Q.; Wang, Q.; Axtell, R.; Giri, S.; Mao-Draayer, Y. Current and Future Biomarkers in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 5877. https://doi.org/10.3390/ijms23115877
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. International Journal of Molecular Sciences. 2022; 23(11):5877. https://doi.org/10.3390/ijms23115877
Chicago/Turabian StyleYang, Jennifer, Maysa Hamade, Qi Wu, Qin Wang, Robert Axtell, Shailendra Giri, and Yang Mao-Draayer. 2022. "Current and Future Biomarkers in Multiple Sclerosis" International Journal of Molecular Sciences 23, no. 11: 5877. https://doi.org/10.3390/ijms23115877
APA StyleYang, J., Hamade, M., Wu, Q., Wang, Q., Axtell, R., Giri, S., & Mao-Draayer, Y. (2022). Current and Future Biomarkers in Multiple Sclerosis. International Journal of Molecular Sciences, 23(11), 5877. https://doi.org/10.3390/ijms23115877