Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment
Abstract
:1. Introduction
2. Results
2.1. Protein Expression over Time
2.2. Treatment Modalities and Effects on Protein Expression
3. Discussion
3.1. Protein Expression over Time
3.2. Treatment Modality and Effects on Protein Expression
4. Materials and Methods
4.1. Study Population
- (a)
- Surgery only (Surg group), n = 24.
- (b)
- RT +/− surgery (RT group), n = 94.
- (c)
- RT and chemotherapy (cisplatin) +/− surgery (CRT group), n = 47.
- (d)
- RT and targeted therapy (EGFR monoclonal antibody) +/− surgery (RT Cetux group), n = 15.
4.2. Immune Marker Measurement
4.3. T-Distributed Stochastic Neighbor Embedding (tSNE)
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Psyrri, A.; Licitra, L.; Lacombe, D.; Schuuring, E.; Budach, W.; Ozsahin, M.; Knecht, R.; Vermorken, J.; Langendijk, J. Strategies to promote translational research within the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Group: A report from the Translational Research Subcommittee. Ann. Oncol. 2010, 21, 1952–1960. [Google Scholar] [CrossRef]
- dos Santos, L.V.; Abrahão, C.M.; William, W.N.J. Overcoming Resistance to Immune CheckpoInt. Inhibitors in Head and Neck Squamous Cell Carcinomas. Front. Oncol. 2021, 11, 596290. [Google Scholar] [CrossRef]
- Valero, C.; Pardo, L.; Sansa, A.; Lorenzo, J.G.; López, M.; Quer, M.; León, X. Prognostic capacity of Systemic Inflammation Response Index (SIRI) in patients with head and neck squamous cell carcinoma. Head Neck 2020, 42, 336–343. [Google Scholar] [CrossRef]
- Cantiello, F.; Russo, G.I.; Vartolomei, M.D.; Abu Farhan, A.R.; Terracciano, D.; Musi, G.; Lucarelli, G.; Di Stasi, S.M.; Hurle, R.; Serretta, V.; et al. Systemic Inflammatory Markers and Oncologic Outcomes in Patients with High-risk Non-muscle-invasive Urothelial Bladder Cancer. Eur. Urol. Oncol. 2018, 1, 403–410. [Google Scholar] [CrossRef]
- Topkan, E.; Kucuk, A.; Ozdemir, Y.; Mertsoylu, H.; Besen, A.A.; Sezen, D.; Bolukbasi, Y.; Pehlivan, B.; Selek, U. Systemic Inflammation Response Index Predicts Survival Outcomes in Glioblastoma Multiforme Patients Treated with Standard Stupp Protocol. J. Immunol. Res. 2020, 2020, 8628540. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Farhood, B.; Musa, A.E.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol. 2020, 85, 106663. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Probst, H.C.; Vuong, V.; Landshammer, A.; Muth, S.; Yagita, H.; Schwendener, R.; Pruschy, M.; Knuth, A.; van den Broek, M. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 2012, 189, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugade, A.A.; Moran, J.P.; Gerber, S.A.; Rose, R.C.; Frelinger, J.G.; Lord, E.M. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005, 174, 7516–7523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demaria, S.; Coleman, C.N.; Formenti, S.C. Radiotherapy: Changing the Game in Immunotherapy. Trends Cancer 2016, 2, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 2009, 10, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Fu, D.; Wu, J.; Lai, J.; Liu, Y.; Zhou, L.; Chen, L.; Zhang, Q. T cell recruitment triggered by optimal dose platinum compounds contributes to the therapeutic efficacy of sequential PD-1 blockade in a mouse model of colon cancer. Am. J. Cancer Res. 2020, 10, 473–490. [Google Scholar]
- Kroon, P.; Frijlink, E.; Iglesias-Guimarais, V.; Volkov, A.; van Buuren, M.M.; Schumacher, T.N.; Verheij, M.; Borst, J.; Verbrugge, I. Radiotherapy and Cisplatin Increase Immunotherapy Efficacy by Enabling Local and Systemic Intratumoral T-cell Activity. Cancer Immunol. Res. 2019, 7, 670–682. [Google Scholar] [CrossRef]
- De Biasi, A.R.; Villena-Vargas, J.; Adusumilli, P.S. Cisplatin-induced antitumor immunomodulation: A review of preclinical and clinical evidence. Clin. Cancer Res. 2014, 20, 5384–5391. [Google Scholar] [CrossRef] [Green Version]
- Astradsson, T.; Sellberg, F.; Berglund, D.; Ehrsson, Y.T.; Laurell, G.F.E. Systemic Inflammatory Reaction in Patients With Head and Neck Cancer-An Explorative Study. Front. Oncol. 2019, 9, 1177. [Google Scholar] [CrossRef] [Green Version]
- Kadomoto, S.; Izumi, K.; Mizokami, A. The CCL20-CCR6 Axis in Cancer Progression. Int. J. Mol. Sci. 2020, 21, 5186. [Google Scholar] [CrossRef]
- Bruchard, M.; Geindreau, M.; Perrichet, A.; Truntzer, C.; Ballot, E.; Boidot, R.; Racoeur, C.; Barsac, E.; Chalmin, F.; Hibos, C.; et al. Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses. Nat. Immunol. 2022, 23, 262–274. [Google Scholar] [CrossRef]
- Sarkar, T.; Dhar, S.; Chakraborty, D.; Pati, S.; Bose, S.; Panda, A.K.; Basak, U.; Chakraborty, S.; Mukherjee, S.; Guin, A.; et al. FOXP3/HAT1 Axis Controls Treg Infiltration in the Tumor Microenvironment by Inducing CCR4 Expression in Breast Cancer. Front. Immunol. 2022, 13, 740588. [Google Scholar] [CrossRef]
- Weide, B.; Allgaier, N.; Hector, A.; Forschner, A.; Leiter, U.; Eigentler, T.K.; Garbe, C.; Hartl, D. Increased CCL17 serum levels are associated with improved survival in advanced melanoma. Cancer Immunol. Immunother. 2015, 64, 1075–1082. [Google Scholar] [CrossRef]
- Ulukaya, E.; Acilan, C.; Yilmaz, M.; Yilmaztepe-Oral, A.; Ari, F.; Zik, B.; Ursavas, A.; Tokullugil, A.H. sFas levels increase in response to cisplatin-based chemotherapy in lung cancer patients. Cell Biochem. Funct. 2010, 28, 565–570. [Google Scholar] [CrossRef]
- Schmidt, J.; Jäger, D.; Hoffmann, K.; Büchler, M.W.; Märten, A. Impact of interferon-alpha in combined chemoradioimmunotherapy for pancreatic adenocarcinoma (CapRI): First data from the immunomonitoring. J. Immunother. 2007, 30, 108–115. [Google Scholar] [CrossRef]
- Argiris, A.; Lee, S.; Feinstein, T.; Thomas, S.; Branstetter, B.; Seethala, R.; Wang, L.; Gooding, W.; Grandis, J.R.; Ferris, R.L. Serum biomarkers as potential predictors of antitumor activity of cetuximab-containing therapy for locally advanced head and neck cancer. Oral. Oncol. 2011, 47, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Kormosh, N.; Laktionov, K.; Antoshechkina, M. Effect of a combination of extract from several plants on cell-mediated and humoral immunity of patients with advanced ovarian cancer. Phytother. Res. 2006, 20, 424–425. [Google Scholar] [CrossRef]
- Dorothee, G.; Vergnon, I.; El Hage, F.; Chansac, B.L.M.; Ferrand, V.; Lécluse, Y.; Opolon, P.; Chouaib, S.; Bismuth, G.; Mami-Chouaib, F. In situ sensory adaptation of tumor-infiltrating T lymphocytes to peptide-MHC levels elicits strong antitumor reactivity. J. Immunol. 2005, 174, 6888–6897. [Google Scholar] [CrossRef] [Green Version]
- Cocetta, V.; Ragazzi, E.; Montopoli, M. Mitochondrial Involvement in Cisplatin Resistance. Int. J. Mol. Sci. 2019, 20, 3384. [Google Scholar] [CrossRef] [Green Version]
- Soni, H.; Kaminski, D.; Gangaraju, R.; Adebiyi, A. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren. Fail. 2018, 40, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, H.; Liu, F.; Dong, Z. Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch. Toxicol. 2014, 88, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
- Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front. Cell Neurosci. 2017, 11, 338. [Google Scholar] [CrossRef]
- Grabosch, S.; Bulatović, M.; Zeng, F.; Ma, T.; Zhang, L.; Ross, M.; Brozick, J.; Fang, Y.; Tseng, G.; Kim, E.; et al. Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene 2019, 38, 2380–2393. [Google Scholar] [CrossRef]
- Nejad, E.B.; van der Sluis, T.C.; van Duikeren, S.; Yagita, H.; Janssen, G.M.; van Veelen, P.A.; Melief, C.J.; van der Burg, S.H.; Arens, R. Tumor Eradication by Cisplatin Is Sustained by CD80/86-Mediated Costimulation of CD8+ T Cells. Cancer Res. 2016, 76, 6017–6029. [Google Scholar] [CrossRef] [Green Version]
- Ansell, A.; Jerhammar, F.; Ceder, R.; Grafström, R.; Grénman, R.; Roberg, K. Matrix metalloproteinase-7 and -13 expression associate to cisplatin resistance in head and neck cancer cell lines. Oral. Oncol. 2009, 45, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Hanoteau, A.; Newton, J.M.; Krupar, R.; Huang, C.; Liu, H.-C.; Gaspero, A.; Gartrell, R.D.; Saenger, Y.M.; Hart, T.D.; Santegoets, S.J.; et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J. Immunother. Cancer 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-J.; Ye, W.; Xiao, R.; Silvin, C.; Padget, M.; Hodge, J.W.; Van Waes, C.; Schmitt, N.C. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral. Oncol. 2019, 95, 127–135. [Google Scholar] [CrossRef]
- Chyuan, I.-T.; Lai, J.-H. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem. Pharmacol. 2020, 175, 113928. [Google Scholar] [CrossRef]
- Skeate, J.G.; Otsmaa, M.E.; Prins, R.; Fernandez, D.J.; Da Silva, D.M.; Kast, W.M. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front. Immunol. 2020, 11, 922. [Google Scholar] [CrossRef] [PubMed]
- Agresta, L.; Lehn, M.; Lampe, K.; Cantrell, R.; Hennies, C.; Szabo, S.; Wise-Draper, T.; Conforti, L.; Hoebe, K.; Janssen, E.M. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J. Immunother. Cancer 2020, 8, e000245. [Google Scholar] [CrossRef]
- Chien, M.-H.; Chang, W.-M.; Lee, W.-J.; Chang, Y.-C.; Lai, T.-C.; Chan, D.V.; Sharma, R.; Lin, Y.-F.; Hsiao, M. A Fas Ligand (FasL)-Fused Humanized Antibody Against Tumor-Associated Glycoprotein 72 Selectively Exhibits the Cytotoxic Effect Against Oral Cancer Cells with a Low FasL/Fas Ratio. Mol. Cancer Ther. 2017, 16, 1102–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, T.; Herrnring, C.; Koczan, D.; Richter, D.; Gerber, B.; Kabelitz, D.; Friese, K.; Thiesen, H.J. FasL:Fas ratio—A prognostic factor in breast carcinomas. Cancer Res. 2000, 60, 822–828. [Google Scholar]
- De Carvalho-Neto, P.B.; Dos Santos, M.; De Carvalho, M.B.; Mercante, A.M.D.C.; Dos Santos, V.P.P.; Severino, P.; Tajara, E.H.; Louro, I.D.; Da Silva-Conforti, A.M. FAS/FASL expression profile as a prognostic marker in squamous cell carcinoma of the oral cavity. PLoS ONE 2013, 8, e69024. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.K.; Dworacki, G.; Tsukihiro, T.; Meidenbauer, N.; Gooding, W.; Johnson, J.T.; Whiteside, T.L. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin. Cancer Res. 2002, 8, 2553–2562. [Google Scholar] [PubMed]
- Zepeda-Nuño, J.S.; Guerrero-Velázquez, C.; Del Toro-Arreola, S.; Vega-Magaña, N.; Ángeles-Sánchez, J.; Haramati, J.; Pereira-Suárez, A.L.; Bueno, M.R. Expression of ADAM10, Fas, FasL and Soluble FasL in Patients with Oral Squamous Cell Carcinoma (OSCC) and their Association with Clinical-Pathological Parameters. Pathol. Oncol. Res. 2017, 23, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Schneiderman, D.; Kim, J.M.; Senterman, M.; Tsang, B.K. Sustained suppression of Fas ligand expression in cisplatin-resistant human ovarian surface epithelial cancer cells. Apoptosis 1999, 4, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.P.; Fecek, R.J.; Qin, T.; Storkus, W.J.; Wang, Y. Single injection of IL-12 coacervate as an effective therapy against B16-F10 melanoma in mice. J. Control. Release 2020, 318, 270–278. [Google Scholar] [CrossRef]
- Mansurov, A.; Ishihara, J.; Hosseinchi, P.; Potin, L.; Marchell, T.M.; Ishihara, A.; Williford, J.-M.; Alpar, A.T.; Raczy, M.M.; Gray, L.T.; et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 2020, 4, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Jebreel, A.; Mistry, D.; Loke, D.; Dunn, G.; Hough, V.; Oliver, K.; Stafford, N.; Greenman, J. Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer. J. Laryngol. Otol. 2007, 121, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Lv, Y.; Xu, W.; Yang, Y.; Liu, C.; Dong, X.; Zhang, H.; Prabhakar, B.S.; Maker, A.V.; Seth, P.; et al. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene. Ther. 2020, 27, 923–933. [Google Scholar] [CrossRef]
- Agresta, L.; Hoebe, K.H.N.; Janssen, E.M. The Emerging Role of CD244 Signaling in Immune Cells of the Tumor Microenvironment. Front. Immunol. 2018, 9, 2809. [Google Scholar] [CrossRef]
- Sugita, Y.; Yamashita, K.; Fujita, M.; Saito, M.; Yamada, K.; Agawa, K.; Watanabe, A.; Fukuoka, E.; Hasegawa, H.; Kanaji, S.; et al. CD244(+) polymorphonuclear myeloid-derived suppressor cells reflect the status of peritoneal dissemination in a colon cancer mouse model. Oncol. Rep. 2021, 45, 106. [Google Scholar] [CrossRef] [PubMed]
- Ong, Z.Y.; Gibson, R.J.; Bowen, J.M.; Stringer, A.M.; Darby, J.M.; Logan, R.M.; Yeoh, A.S.; Keefe, D.M. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat. Oncol. 2010, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Normando, A.G.; Rocha, C.L.; De Toledo, I.P.; Figueiredo, P.T.D.S.; dos Reis, P.E.D.; Canto, G.D.L.; Guerra, E.N.S. Biomarkers in the assessment of oral mucositis in head and neck cancer patients: A systematic review and meta-analysis. Support. Care Cancer 2017, 25, 2969–2988. [Google Scholar] [CrossRef] [PubMed]
- Mytilineos, D.; Ezić, J.; Von Witzleben, A.; Mytilineos, J.; Lotfi, R.; Fürst, D.; Tsamadou, C.; Theodoraki, M.-N.; Oster, A.; Völkel, G.; et al. Peripheral Cytokine Levels Differ by HPV Status and Change Treatment-Dependently in Patients with Head and Neck Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 5990. [Google Scholar] [CrossRef]
- Dickinson, A.; Saraswat, M.; Syrjänen, S.; Tohmola, T.; Silén, R.; Randén-Brady, R.; Carpén, T.; Hagström, J.; Haglund, C.; Mattila, P.; et al. Comparing serum protein levels can aid in differentiating HPV-negative and -positive oropharyngeal squamous cell carcinoma patients. PLoS ONE 2020, 15, e0233974. [Google Scholar] [CrossRef] [PubMed]
- Ramqvist, T.; Näsman, A.; Franzén, B.; Bersani, C.; Alexeyenko, A.; Becker, S.; Haeggblom, L.; Kolev, A.; Dalianis, T.; Munck-Wikland, E. Protein Expression in Tonsillar and Base of Tongue Cancer and in Relation to Human Papillomavirus (HPV) and Clinical Outcome. Int. J. Mol. Sci. 2018, 19, 978. [Google Scholar] [CrossRef] [Green Version]
- Carnielli, C.M.; Macedo, C.C.S.; De Rossi, T.; Granato, D.C.; Rivera, C.; Domingues, R.R.; Pauletti, B.A.; Yokoo, S.; Heberle, H.; Lopes, A.B.; et al. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat. Commun. 2018, 9, 3598. [Google Scholar] [CrossRef] [PubMed]
- Voortman, J.; Pham, T.V.; Knol, J.C.; Giaccone, G.; Jimenez, C.R. Prediction of outcome of non-small cell lung cancer patients treated with chemotherapy and bortezomib by time-course MALDI-TOF-MS serum peptide profiling. Proteome Sci. 2009, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yuan, Y.; Cho, J.H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE 2012, 7, e41561. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ecog-acrin.org/resources/ecog-performance-status/ (accessed on 7 May 2022).
- World Health Organization. WHO Handbook for Reporting Results of Cancer Treatment; World Health Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Assarsson, E.; Lundberg, M.; Holmquist, G.; Björkesten, J.; Thorsen, S.B.; Ekman, D.; Eriksson, A.; Dickens, E.R.; Ohlsson, S.; Edfeldt, G.; et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 2014, 9, e95192. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Rabkin, C.S.; Ito, H.; Oze, I.; Koyanagi, Y.N.; Pfeiffer, R.M.; Kasugai, Y.; Matsuo, K.; Camargo, M.C. Circulating immune- and inflammation-related biomarkers and early-stage noncardia gastric cancer risk. Eur. J. Cancer Prev. 2022, 31, 270–273. [Google Scholar] [CrossRef]
- Lindgaard, S.C.; Sztupinszki, Z.; Maag, E.; Chen, I.M.; Johansen, A.Z.; Jensen, B.V.; Bojesen, S.E.; Nielsen, D.L.; Hansen, C.P.; Hasselby, J.P.; et al. Circulating Protein Biomarkers for Use in Pancreatic Ductal Adenocarcinoma Identification. Clin. Cancer Res. 2021, 27, 2592–2603. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.C.; Song, M.; Ito, H.; Oze, I.; Koyanagi, Y.N.; Kasugai, Y.; Rabkin, C.S.; Matsuo, K. Associations of circulating mediators of inflammation, cell regulation and immune response with esophageal squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2021, 147, 2885–2892. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.olink.com/content/uploads/2021/09/olink-immuno-oncology-validation-data-v2.1.pdf (accessed on 1 September 2021).
7 Weeks | 3 Months | 12 Months | |||
---|---|---|---|---|---|
Decreased | Increased | Decreased | Increased | Decreased | Increased |
ARG1 * | CCL17 *** | ARG1 **** | CCL17 ** | ARG1 ** | CCL17 * |
CCL20 **** | CCL23 * | CASP-8 * | CCL20 **** | ||
CD5 *** | IL-6 **** | CCL4 * | CXCL13 * | ||
CD244 ** | IL-7 * | CCL19 * | TNFSF14 * | ||
CXCL5 *** | IL-10 **** | CCL20 **** | |||
FASL **** | CXCL13 ** | ||||
IL-13 ** | MMP12 * | ||||
LAMP3 * | TNF * | ||||
MCP-4 * | TNFSF14 *** | ||||
MMP12 **** |
Mucositis | Tumor Stage | Pack-Years | Weight Change |
---|---|---|---|
IL-6 (p = 0.0004) | GZMH (p = 0.0086) | CD5 (p = 0.0145) | IL-6 (p = 0.0038) |
IL-10 (p = 0.0479) | CD83 (p = 0.0134) | IL-10 (p = 0.0381) | |
IL-6 (p = 0.0016) | |||
IL-10 (p = 0.038) | |||
IL-18 (p = 0.0014) |
Characteristics | n (%) |
---|---|
Number of patients | 180 |
Female | 48 (26.7) |
Male | 132 (73.3) |
Age (in years) | |
Mean | 62.8 |
Range | 34–85 |
Smoking habits | |
Never | 57 (31.7) |
Previous | 107 (59.4) |
Active | 16 (8.9) |
Pack-years | |
1–20 | 60 |
21–50 | 27 |
>50 | 15 |
Missing | 21 |
Tumor site | |
Oropharynx | 81 (45) |
p16-positive | 77 |
p16-negative | 4 |
Oral cavity | 53 (29.4) |
Larynx | 22 (12.2) |
Sinonasal | 6 (3.3) |
Hypopharynx | 5 (2.7) |
Salivary gland | 4 (2.2) |
Nasopharynx | 3 (1.7) |
CUP a | 3 (1.7) |
Other b | 3 (1.7) |
Stage c | |
I | 77 (42.8) |
II | 35 (19.4) |
III | 29 (16.1) |
IVa | 32 (17.8) |
IVb | 6 (3.3) |
IVc | 1 (0.6) |
Treatment | |
RT +/− surgery | 94 (52.2) |
CRT d | 47 (26.1) |
RT + targeted therapy e | 15 (8.3) |
Surgery only | 24 (13,4) |
Mucositis grade f | |
0 | 34 |
1 | 22 |
2 | 35 |
3 | 55 |
4 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astradsson, T.; Sellberg, F.; Ehrsson, Y.T.; Sandström, K.; Laurell, G. Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment. Int. J. Mol. Sci. 2022, 23, 6304. https://doi.org/10.3390/ijms23116304
Astradsson T, Sellberg F, Ehrsson YT, Sandström K, Laurell G. Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment. International Journal of Molecular Sciences. 2022; 23(11):6304. https://doi.org/10.3390/ijms23116304
Chicago/Turabian StyleAstradsson, Thorsteinn, Felix Sellberg, Ylva Tiblom Ehrsson, Karl Sandström, and Göran Laurell. 2022. "Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment" International Journal of Molecular Sciences 23, no. 11: 6304. https://doi.org/10.3390/ijms23116304
APA StyleAstradsson, T., Sellberg, F., Ehrsson, Y. T., Sandström, K., & Laurell, G. (2022). Serum Proteomics in Patients with Head and Neck Cancer: Peripheral Blood Immune Response to Treatment. International Journal of Molecular Sciences, 23(11), 6304. https://doi.org/10.3390/ijms23116304