Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test
Abstract
:1. Introduction
2. Results
2.1. Compressive Properties
2.2. Hyperelastic Material Constants
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Specimen Preparation
4.3. Compression Tests
4.4. Quantifying Hyperelastic Material Constants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohamed, W.Z.W.; Baharum, A.; Ahmad, I.; Abdullah, I.; Zakaria, N.E. Effects of fiber size and fiber content on mechanical and physical properties of mengkuang reinforced thermoplastic natural rubber composites. BioResources 2018, 13, 2945–2959. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Ishak, M.R.; Sapuan, S.M.; Rashedi, A.; Sharma, S.; Razman, M.R.; Ilyas, R.A.; et al. Product Development of Natural Fibre-Composites for Various Applications: Design for Sustainability. Polymers 2022, 14, 920. [Google Scholar] [CrossRef] [PubMed]
- Roslan, Z.B.; Ramli, Z.; Razman, M.R.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Nurazzi, N.M. Reflections on Local Community Identity by Evaluating Heritage Sustainability Protection in Jugra, Selangor, Malaysia. Sustainability 2021, 13, 8705. [Google Scholar] [CrossRef]
- Ali, S.S.S.; Razman, M.R.; Awang, A.; Asyraf, M.R.M.; Ishak, M.R.; Ilyas, R.A.; Lawrence, R.J. Critical Determinants of Household Electricity Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. [Google Scholar] [CrossRef]
- Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Suhrisman, A.; Afiq, T.M.N.; Atikah, M.S.N.; Ibrahim, R. Application of Design for Sustainability to Develop Smartphone Holder using Roselle Fiber-Reinforced Polymer Composites. In Roselle: Production, Processing, Products and Biocomposites; Sapuan, S.M., Razali, N., Radzi, A.M., Ilyas, R.A., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2021; pp. 1–300. ISBN 978-0323852135. [Google Scholar]
- Asyraf, M.R.M.; Ishak, M.R.; Syamsir, A.; Amir, A.L.; Nurazzi, N.M.; Norrrahim, M.N.F.; Asrofi, M.; Rafidah, M.; Ilyas, R.A.; Rashid, M.Z.A.; et al. Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers. Polym. Bull. 2022, 1–26. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of Green Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020, 2020, 8878300. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Ishak, M.R.; Sapuan, S.M.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, Morphological Chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932. [Google Scholar] [CrossRef]
- Chan, J.X.; Wong, J.F.; Petrů, M.; Hassan, A.; Nirmal, U.; Othman, N.; Ilyas, R.A. Effect of Nanofillers on Tribological Properties of Polymer Nanocomposites: A Review on Recent Development. Polymers 2021, 13, 2867. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ. 2021, 803, 149911. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.S.B.; Sapuan, S.M.; Sultan, M.T.H.; Jawaid, M.; Maleque, M.A. Design and materials development of automotive crash box: A review. Ciênc. Tecnol. Dos Mater. 2017, 29, 129–144. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Comparison of Static and Long-term Creep Behaviors between Balau Wood and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym. 2021, 22, 793–803. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Utilization of Bracing Arms as Additional Reinforcement in Pultruded Glass Fiber-Reinforced Polymer Composite Cross-Arms: Creep Experimental and Numerical Analyses. Polymers 2021, 13, 620. [Google Scholar] [CrossRef]
- Ary Subagia, I.D.G.; Tijing, L.D.; Kim, Y.; Kim, C.S.; Vista Iv, F.P.; Shon, H.K. Mechanical performance of multiscale basalt fiber-epoxy laminates containing tourmaline micro/nano particles. Compos. Part B Eng. 2014, 58, 611–617. [Google Scholar] [CrossRef]
- Norfarhana, A.S.; Ilyas, R.A.; Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydr. Polym. 2022, 291, 119563. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Zuhri, M.Y.M.; Asyraf, M.R.M.; Sapuan, S.M.; Zainudin, E.S.; Sharma, S.; Abral, H.; et al. Natural Fiber Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A. Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Norrrahim, M.N.F.; Amir, A.L.; Nurazzi, N.M.; Ilyas, R.A.; Asrofi, M.; Rafidah, M.; Razman, M.R. Potential of Flax Fiber Reinforced Biopolymer Composites for Cross-Arm Application in Transmission Tower: A Review. Fibers Polym. 2022, 23, 853–877. [Google Scholar] [CrossRef]
- Thiruganasambanthan, T.; Ilyas, R.A.; Norrrahim, M.N.F.; Kumar, T.S.M.; Siengchin, S.; Misenan, M.S.M.; Farid, M.A.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Zakaria, S.Z.S.; et al. Emerging Developments on Nanocellulose as Liquid Crystals: A Biomimetic Approach. Polymers 2022, 14, 1546. [Google Scholar] [CrossRef] [PubMed]
- Sapuan, S.M.; Hemapriya, G.; Ilyas, R.A.; Atikah, M.S.N.; Asyraf, M.R.M.; Mansor, M.R. Implementation of design for sustainability in developing trophy plaque using green kenaf polymer composites. In Design for Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–103. [Google Scholar]
- Jumaidin, R.; Saidi, Z.A.S.; Ilyas, R.A.; Ahmad, M.N.; Wahid, M.K.; Yaakob, M.Y.; Maidin, N.A.; Rahman, M.H.A.; Osman, M.H. Characteristics of Cogon Grass Fibre Reinforced Thermoplastic Cassava Starch Biocomposite: Water Absorption and Physical Properties. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 62, 43–52. [Google Scholar]
- Sabaruddin, F.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Lee, S.H.; Abdan, K.; Mazlan, N.; Roseley, A.S.M.; Abdul Khalil, H.P.S. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.M.; Coles, S.R.; Maggs, S.; Meredith, J.; Kirwan, K. Use of lignin as a compatibiliser in hemp/epoxy composites. Compos. Sci. Technol. 2011, 71, 1804–1810. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Kamarul Bahrain, S.H.; Mahmud, J.; Ismail, M.H. Arenga pinnata–silicone biocomposite properties via experimental and numerical analysis. Medziagotyra 2018, 24, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Asyraf, M.R.M.; Ishak, M.R.; Norrrahim, M.N.F.; Nurazzi, N.M.; Shazleen, S.S.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int. J. Biol. Macromol. 2021, 193, 1587–1599. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Ishak, M.R.; Syamsir, A.; Nurazzi, N.M.; Sabaruddin, F.A.; Shazleen, S.S.; Norrrahim, M.N.F.; Rafidah, M.; Ilyas, R.A.; Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol. 2022, 17, 33–65. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [Google Scholar] [CrossRef]
- Phong, N.T.; Gabr, M.H.; Okubo, K.; Chuong, B.; Fujii, T. Enhancement of mechanical properties of carbon fabric/epoxy composites using micro/nano-sized bamboo fibrils. Mater. Des. 2013, 47, 624–632. [Google Scholar] [CrossRef]
- Singla, R.; Soni, S.; Kulurkar, P.M.; Kumari, A.; Mahesh, S.; Patial, V.; Padwad, Y.S.; Yadav, S.K. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 2017, 155, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Nurazzi, N.M.; Norrrahim, M.N.F.; Sabaruddin, F.A.; Shazleen, S.S.; Ilyas, R.A.; Lee, S.H.; Padzil, F.N.M.; Aizat, G.; Aisyah, H.A.; Mohidem, N.A.; et al. Mechanical performance evaluation of bamboo fibre reinforced polymer composites and its applications: A review. Funct. Compos. Struct. 2022, 4, 015009. [Google Scholar] [CrossRef]
- Kerala Forest Research Institute; IDRC—Regional Office for Southeast and East Asia; Sastry, C.B.; Ramanuja Rao, I.V.; Gnanaharan, R. Bamboos Current Research. In Proceedings of the International Bamboo Workshop, Cochin, India, 14–18 November 1988; ISBN 9810020848. [Google Scholar]
- Wahyudi, B.A.; Octavia, F.A.; Hadipraja, M.; Isnaeniah, S.; Viriani, V. Lemang (Rice bamboo) as a representative of typical Malay food in Indonesia. J. Ethn. Foods 2017, 4, 3–7. [Google Scholar] [CrossRef]
- Siam, N.A.; Uyup, M.K.A.; Husain, H.; Mohmod, A.L.; Awalludin, M.F. Anatomical, physical, and mechanical properties of thirteen Malaysian bamboo species. BioResources 2019, 14, 3925–3943. [Google Scholar] [CrossRef]
- Shanmugasundaram, O.L.; Gowda, R.V.M. Development and characterization of bamboo and organic cotton fibre blended baby diapers. Indian J. Fibre Text. Res. 2010, 35, 201–205. [Google Scholar]
- Rahimi, A.; Mashak, A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 2013, 42, 223–230. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Azmi, A.; Nurazzi, N.M.; Atiqah, A.; Atikah, M.S.N.; Ibrahim, R.; Norrrahim, M.N.F.; Asyraf, M.R.M.; Sharma, S.; Punia, S.; et al. Oxygen permeability properties of nanocellulose reinforced biopolymer nanocomposites. Mater. Today Proc. 2022, 52, 2414–2419. [Google Scholar] [CrossRef]
- Meunier, L.; Chagnon, G.; Favier, D.; Orgéas, L.; Vacher, P. Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polym. Test. 2008, 27, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, A.A.; Araby, S.; Hassan, M.A.; El-Moneim, A.A. Constitutive modelling of elastomer/graphene platelet nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 244, 012016. [Google Scholar] [CrossRef]
- Kamarul Bahrain, S.H.; Mahmud, J. Arenga pinnata–Silicone Biocomposite: Quantifying its Tensile Properties using Neo-Hookean Model. Int. J. Recent Technol. 2019, 8, 3186–3190. [Google Scholar]
- Kamarul Bahrain, S.H.M.; Radzi, N.S.; Mahmud, J. Sealing capability and hyperelastic behaviour of silicone biocomposites via compression test. Materwiss. Werksttech. 2017, 48, 311–317. [Google Scholar] [CrossRef]
- Mohd Noor, S.N.A.; Khairuddin, M.A.F.; Mahmud, J. Biocomposite Silicone: Synthesis, Mechanical Testing and Analysis. New Dev. Mech. Mech. Eng. 2012, 1, 113–117. [Google Scholar]
- Azmi, N.N.; Hussain, A.K.; Mahmud, J. Kenaf silicone biocomposites: Synthesis and its hyperelastic behaviour. Mater. Sci. Forum 2017, 900 MSF, 12–16. [Google Scholar] [CrossRef]
- Azmi, N.N.; Mahmud, J.; Latif, M.J.A. The synthesis of agar silicone biocomposite and its mechanical properties. Int. J. Eng. Technol. 2018, 7, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Boguslawska, M.; Baczek; Hes, L. Thermal Conductivity and Resistace of Nomex Fabric Expose to Salty Water. Tekst. Konfeksiyon 2014, 24, 180–185. [Google Scholar]
- Raza, M.A.; Westwood, A.; Brown, A.; Hondow, N.; Stirling, C. Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon N. Y. 2011, 49, 4269–4279. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, D. Investigation of silicone rubber composites reinforced with carbon nanotube, nanographite, their hybrid, and applications for flexible devices. J. Vinyl Addit. Technol. 2020, 27, 254–263. [Google Scholar] [CrossRef]
- Raza, M.A.; Westwood, A.V.K.; Stirling, C.; Hondow, N. Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1335–1343. [Google Scholar] [CrossRef]
- Amatosa, T.A.; Loretero, M.E.; Santos, R.B.; Giduquio, M.B. Analysis of sea-water treated laminated bamboo composite for structural application. Nat. Environ. Pollut. Technol. 2019, 18, 307–312. [Google Scholar]
- Rashid, B.; Leman, Z.; Jawaid, M.; Ghazali, M.J.; Ishak, M.R.; Abdelgnei, M.A. Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique. Wear 2017, 380, 26–35. [Google Scholar] [CrossRef]
- Bai, J.; Liao, X.; Huang, E.; Luo, Y.; Yang, Q.; Li, G. Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance. Mater. Des. 2017, 133, 288–298. [Google Scholar] [CrossRef]
- Shahzad, M.; Kamran, A.; Siddiqui, M.Z.; Farhan, M. Mechanical Characterization and FE Modelling of a Hyperelastic Material. Mater. Res. 2015, 18, 918–924. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Lee, S.B.; Lee, J.; Cho, S.; Park, H.; Yeom, S.; Park, S.H. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 2012, 13, 759–764. [Google Scholar] [CrossRef]
- Tauheed, F.; Sarangi, S. Mullins effect on incompressible hyperelastic cylindrical tube in finite torsion. Int. J. Mech. Mater. Des. 2012, 8, 393–402. [Google Scholar] [CrossRef]
- Martins, P.A.L.S.; Natal Jorge, R.M.; Ferreira, A.J.M. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues. Strain 2006, 42, 135–147. [Google Scholar] [CrossRef]
- Huang, P.; Wang, Y.S.; Tao, J.Y. Analysis of Low Temperature Compression Characteristics of Rubber Seal Strip of Shelter based on ABAQUS. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 032050. [Google Scholar] [CrossRef]
- Huri, D.; Mankovits, T. Parameter Selection of Local Search Algorithm for Design Optimization of Automotive Rubber Bumper. Appl. Sci. 2020, 10, 3584. [Google Scholar] [CrossRef]
- ASTM D575-91; Standard Test Methods for Rubber Properties in Compression. ASTM: West Conshohocken, PA, USA, 2014; Volume 91.
Specimen (wt%) | Material Constants (kPa) | ||
---|---|---|---|
Neo-Hookean | Mooney-Rivlin | ||
C1 | C1 | C2 | |
0 | 25.965 | 107.499 | −97.281 |
8 | 35.004 | 163.987 | −151.779 |
16 | 55.074 | 261.279 | −241.705 |
Specimen (wt%) | Material Constants (kPa) | ||
---|---|---|---|
Neo-Hookean | Mooney-Rivlin | ||
C1 | C1 | C2 | |
0 | 25.143 | 107.434 | −97.455 |
8 | 40.865 | 202.583 | −189.399 |
16 | 59.054 | 288.867 | −269.905 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahrain, S.H.K.; Rahim, N.N.C.A.; Mahmud, J.; Mohammed, M.N.; Sapuan, S.M.; Ilyas, R.A.; Alkhatib, S.E.; Asyraf, M.R.M. Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test. Int. J. Mol. Sci. 2022, 23, 6338. https://doi.org/10.3390/ijms23116338
Bahrain SHK, Rahim NNCA, Mahmud J, Mohammed MN, Sapuan SM, Ilyas RA, Alkhatib SE, Asyraf MRM. Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test. International Journal of Molecular Sciences. 2022; 23(11):6338. https://doi.org/10.3390/ijms23116338
Chicago/Turabian StyleBahrain, Siti Humairah Kamarul, Nor Nabilah Che Abd Rahim, Jamaluddin Mahmud, M. N. Mohammed, S. M. Sapuan, R. A. Ilyas, Samah Elsayed Alkhatib, and M. R. M. Asyraf. 2022. "Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test" International Journal of Molecular Sciences 23, no. 11: 6338. https://doi.org/10.3390/ijms23116338
APA StyleBahrain, S. H. K., Rahim, N. N. C. A., Mahmud, J., Mohammed, M. N., Sapuan, S. M., Ilyas, R. A., Alkhatib, S. E., & Asyraf, M. R. M. (2022). Hyperelastic Properties of Bamboo Cellulosic Fibre–Reinforced Silicone Rubber Biocomposites via Compression Test. International Journal of Molecular Sciences, 23(11), 6338. https://doi.org/10.3390/ijms23116338