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Abstract: Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles
in intracellular communication through EV-encapsulated informative content, including proteins,
lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal
ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they
use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart,
liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like
growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against
various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs.
Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially
encapsulate various target molecules. In this review, we summarize the regenerative effects and
molecular mechanisms of MSC-derived EVs.

Keywords: drug delivery; exosomes; extracellular vesicles; lipid nanoparticle; mesenchymal stem
cell; regenerative medicine

1. Introduction

Extracellular vesicles (EVs), which are nano- to micro-sized lipid bilayer membrane
particles secreted by host cells, play critical roles in novel intercellular communication
mechanisms, mediating the transduction of functional molecules with physiological activity,
such as microRNAs, mRNAs, proteins, and lipids (Figure 1) [1–60]. The level of EVs in
humans has gained attention for the early diagnosis of various diseases using liquid
biopsy owing to their distribution in various body fluids, including blood, urine, saliva,
spinal fluid, and tears, as well as their stability [61–107]. As the amount and type of these
functional molecules present within or on the surface of EVs vary depending on the disease,
they could be used for disease diagnosis, prognosis, and therapeutic targets [108–114]. EVs
are classified into exosomes, microvesicles, and apoptotic bodies, based on differences in
particle size and formation mechanisms [115–126]. Since exosomes can be regarded as a
natural drug delivery system (DDS) that exists in the living body, they are widely used
in drug discovery technologies [127–131]. Furthermore, since exosomes are abundant in
numerous species and play a role in the transduction of molecular information between
different species, research has focused on their application in various fields and elucidation
of their mechanisms in various life phenomena and health and medical care. However,
exosome analysis and sample preparation techniques, which form the basis of research, are
still immature. Therefore, there is a need for the development of new technologies that can
facilitate a breakthrough in the research of EVs as a therapeutic strategy. In this review, we
summarize the latest studies on EVs and MSCs as novel therapeutic materials.
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Figure 1. Extracellular vesicle structure. Exosome consists of lipid bilayer membrane, including pro-
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(HSP60, HSP70, HSP90, etc.), tetraspanins (CD9, CD63, CD81, etc.), cytokines (IL-1β, TNF-α, IL-6, 
etc.), Lamp, nucleic acids such as microRNAs, circRNAs, IncRNAs, lipid rafts such as cholesterol, 
ceramide, sphingomyelin, phosphatidylserine, and protein receptor such as transferrin receptor. 

2. Mesenchymal Stem Cells (MSCs) for Regeneration 
MSCs are pluripotent stem cells with the ability to self-renew, regenerate, and repair 

deficient cells and the plasticity ability to differentiate into bone, cartilage, blood vessels, 
and cardiomyocytes, which are derived from the mesoderm [132–138]. Unlike embryonic 
stem cells and induced pluripotent stem cells, general stem cells, which are more abun-
dant during early childhood than adulthood, support human growth. Stem cells, also 
called tissue stem cells, such as adult stem cells or somatic stem cells, are still present at 
maturity when apparent growth ceases and serve to replenish cells in damaged tissue 
throughout life [139,140]. Hematopoietic stem cells (HSCs) present in the bone marrow 
have been studied for more than half a century and are being actively applied clinically 
[141]. The establishment of a treatment method using HSCs transplantation has expanded 
the possibilities of transplantation using other tissue stem cells [142–145]. However, de-
pending on the tissue, such as the brain or heart, it is difficult to separate stem cells from 
the living tissue and for use as treatment. In recent years, MSCs have been the focus of 
attention because they are relatively easy to extract from various tissues, including the 
bone marrow, adipose tissue, placenta, umbilical cord, synovium, and pulp [146–150]. 
Furthermore, they can also differentiate into ectoderm-derived nerve cells and glial cells 
that perform functions such as supporting nerve cells and endoderm-derived hepatocytes 
[151–154]. Thus, MSCs have garnered attention as cell sources in regenerative medicine 
because they grow almost indefinitely in a culture dish and perform various functions, 
such as wound healing, immune regulation, and nerve regeneration; additionally, the 
therapeutic effects of MSCs against diseases are through their paracrine action rather than 
differentiation into specific cells. This paracrine action—namely, immune system con-
trol, angiogenesis, anti-inflammatory effect, antioxidant action, antiapoptotic action, 

Figure 1. Extracellular vesicle structure. Exosome consists of lipid bilayer membrane, including
proteins such as cytoskeletal proteins (actin, myosin, vimentin, tubulin, etc.), heat shock proteins
(HSP60, HSP70, HSP90, etc.), tetraspanins (CD9, CD63, CD81, etc.), cytokines (IL-1β, TNF-α, IL-6,
etc.), Lamp, nucleic acids such as microRNAs, circRNAs, IncRNAs, lipid rafts such as cholesterol,
ceramide, sphingomyelin, phosphatidylserine, and protein receptor such as transferrin receptor.

2. Mesenchymal Stem Cells (MSCs) for Regeneration

MSCs are pluripotent stem cells with the ability to self-renew, regenerate, and repair
deficient cells and the plasticity ability to differentiate into bone, cartilage, blood vessels,
and cardiomyocytes, which are derived from the mesoderm [132–138]. Unlike embryonic
stem cells and induced pluripotent stem cells, general stem cells, which are more abundant
during early childhood than adulthood, support human growth. Stem cells, also called
tissue stem cells, such as adult stem cells or somatic stem cells, are still present at maturity
when apparent growth ceases and serve to replenish cells in damaged tissue throughout
life [139,140]. Hematopoietic stem cells (HSCs) present in the bone marrow have been
studied for more than half a century and are being actively applied clinically [141]. The
establishment of a treatment method using HSCs transplantation has expanded the possibil-
ities of transplantation using other tissue stem cells [142–145]. However, depending on the
tissue, such as the brain or heart, it is difficult to separate stem cells from the living tissue
and for use as treatment. In recent years, MSCs have been the focus of attention because
they are relatively easy to extract from various tissues, including the bone marrow, adipose
tissue, placenta, umbilical cord, synovium, and pulp [146–150]. Furthermore, they can also
differentiate into ectoderm-derived nerve cells and glial cells that perform functions such
as supporting nerve cells and endoderm-derived hepatocytes [151–154]. Thus, MSCs have
garnered attention as cell sources in regenerative medicine because they grow almost indef-
initely in a culture dish and perform various functions, such as wound healing, immune
regulation, and nerve regeneration; additionally, the therapeutic effects of MSCs against
diseases are through their paracrine action rather than differentiation into specific cells. This
paracrine action—namely, immune system control, angiogenesis, anti-inflammatory effect,
antioxidant action, antiapoptotic action, and tissue repair action, in which cell secretions
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act on neighboring cells through direct diffusion and not on endocrine cells that act on
distant cells via the general circulation—involves various cytokines, including tumor necro-
sis factor-α (TNF-α), interferon-gamma (IFN-g), interleukin 6 (IL-6), interleukin 10 (IL-10),
and transforming growth factor-β (TGF-β), and growth factors secreted by MSCs [155–159].
In particular, in MSC transplantation in cardiomyopathy, MSCs regulate the activation of
matrix metalloproteinases (MMPs), leading to the attenuation of cardiac remodeling [160].
In addition, MSCs produce vascular endothelial growth factor (VEGF), insulin-like growth
factor-l (IGF-1), adrenomedullin, and hepatocyte growth factor (HGF), which stimulate
myogenesis and angiogenesis in the injured myocardium [161–165]. Thus, MSCs improve
myocardial perfusion and regeneration by differentiating into cardiomyocytes.

The minimum criteria for defining human MSCs are (1) adherence to plastics under
standard culture conditions; (2) positive cell surface markers CD73, CD90, CD105, and
negative CD11b or CD14, CD19 or CD79a, CD34, CD45, and HLA-DR; and (3) ability to
differentiate into osteoblasts, chondrocytes, and adipocytes [166]. Since MSCs express
major histocompatibility complex (MHC) class I, but not MHC class II, they are less likely
to be attacked by natural killer (NK) cells and exhibit difficulty in developing humoral
immunity. The MSCs used for clinical purposes are collected from various tissues such as
bone marrow, umbilical cord, umbilical cord blood, and fat, and have important biological
activities related to tissue repair, such as anti-inflammatory effect, proliferative factor se-
cretion, and angiogenesis-promoting effects without the risk of tumorigenesis [167–169].
Furthermore, it is clear that the properties of MSCs differ depending on the organ from
which they are collected. Adipose-derived MSCs, as well as bone-marrow-derived MSCs,
have received a great deal of attention because they can be collected more easily and
abundantly throughout the body, are less invasive, and have excellent organ repair and im-
munomodulatory abilities, compared with those of bone-marrow-derived MSCs [170,171].
Bone-marrow-derived MSCs comprise only approximately 0.01% of the cells in the bone
marrow, whereas the number of adipose-derived MSCs in adipose tissue is 500 times that
of MSCs in the bone marrow. Additionally, adipose-derived MSCs produce more growth
factors, such as HGF and VEGF, that contribute to organ repair than those derived from
bone marrow [172]. Furthermore, in addition to the ability to differentiate into fat, bone,
and cartilage, similar to bone-marrow-derived MSCs, they have the ability to differentiate
into the muscle, which is not derived from bone marrow. Although their cell morphology
and differentiation potential are not different from those of bone-marrow-derived MSCs,
they are characterized by a strong proliferative capacity, little effect of aging, and a small
decrease in bone differentiation ability [173,174]. The number and growth of bone-marrow-
derived MSCs decrease with age. Adipose-derived MSCs can grow sufficiently even if
they are obtained from the adipose tissue of elderly individuals. General anesthesia is
used to collect MSCs derived from the bone marrow, which puts a heavy burden on the
patient. In contrast, when adipose-derived MSCs are collected, the burden on the patient
is light because adipose tissue is close to the surface of the body. In addition, adipose-
derived MSCs are characterized by a higher immunosuppressive capacity than that of
bone-marrow-derived MSCs [175]. Animal studies have shown that adipose-derived MSCs
can dramatically improve nephritis [176]. Moreover, MSCs accumulate at the treatment
site because of the “homing phenomenon”, which includes MSCs recognizing the lesion-
induced signals such as cytokines and adhesion factors. Therefore, when MSCs are injected
into the blood circulation, they naturally accumulate at the desired site and exert a thera-
peutic effect. In particular, after intramuscular injection, MSCs deposit in the interstices of
muscle fibers through the production of basic fibroblast growth factor (bFGF) and VEGF,
and induce angiogenesis and support nerve cell regeneration, leading to amelioration
of neuropathy [177–179]. These results suggest that MSCs are excellent for clinical use
due to having a wide range of applications and sufficient supply, in addition to fewer
safety-related and ethical issues. Allogenic MSCs are expected to have a wide range of
therapeutic effects, and clinical trials are currently underway in various diseases, such
as osteochondral disease, decompensated liver cirrhosis, systemic erythematosus, acute
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transplant-to-host disease, Crohn’s disease, myocardial infarction, cerebral infarction, and
Parkinson’s disease [180–192]. In safety evaluation studies, mild-to-moderate abnormal-
ities, such as fever, chills, headache, fatigue, increased anxiety, redness of administered
skin, edema, weight loss, cold, and cough, were frequently observed, but no serious acute
adverse events were reported even in elderly patients. Currently, regenerative medicinal
products have been approved for the treatment of spinal cord injury and acute graft-versus-
host disease after HSC transplantation. However, some issues still exist when using MSC
for regenerative medicine.

Since MSCs, compared with autologous cells, have a higher risk of transmitting
infectious factors such as viruses to patients undergoing transplantation, it is necessary to
exert stringent control on the quality of the cells used as raw materials [193]. Additionally,
a risk of immune rejection and low engraftment compared with that in autologous cells
has been suggested [194–199]. It can be pointed out that the risk of tumorigenicity may
be low because the engraftment is lower than that of autologous cells, and the immune
system is easily activated. However, as the cells are amplified, the risk of accumulation
of genomic mutation and chromosomal abnormalities also increases [200]. Therefore,
appropriate evaluation is a critical factor because the risk of tumorigenesis varies greatly
depending on the culture, proliferation period of used cells, and number of cells to be
transplanted. With allogeneic cells, it is assumed that a single cell strain will be transplanted
into multiple patients. Therefore, it is relatively easy to standardize and manage the timing
of the processing and shipping, which leads to reduced costs. However, the risk of an
intravascular embolism when administered transvascularly has been previously reported
for both autologous and allogeneic cells in clinical use [201]. In addition, as an allogeneic
bone-marrow-derived MSC preparation, Temcel®HS injection has already been approved
for regenerative medicine [202]. However, the results of nonclinical studies in rats showed
cell embolism in the brain, heart, lung, liver, kidney, spleen, bladder, etc., and thrombus in
the lungs of some individuals [203]. Furthermore, the risk assessment in clinical studies
did not rule out causality with the administered cells owing to one patient who died of
gastrointestinal bleeding and one among 25 patients who exhibited a systemic rash after
administration. However, no such adverse events have been confirmed in nonclinical
studies to date. Another MSC product derived from allogeneic cord blood, CARTISTEM, is
undergoing two clinical studies, including phase I/II and phase III, but no major adverse
events have been reported yet [204].

3. MSC-EVs for Regeneration

MSC is a mesoderm-derived somatic stem cell that can be established from tissues
such as bone marrow, fat, umbilical cord, and pulp, and has the ability to differentiate
into fat, bone, and cartilage [205,206]. In addition to this differentiation capacity, MSC
exerts secretory effects that induce anti-inflammatory, antifibrotic, or immunosuppressive
effects. In recent years, it has been suggested that these effects are due to EVs secreted
from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc. [207–210]. MSC
therapy is expected to be applied to various diseases including severe heart failure, but
there are challenges such as individual differences and insufficient effects. Since T-cadherin,
a receptor for adiponectin, is expressed in MSCs, it was revealed that adiponectin, which
is secreted by adipocytes and is abundant in blood, promotes EVs production, thereby
exerting a therapeutic effect on MSCs using a mouse model of heart failure (Figure 2) [211].
Thus, in MSC therapy, since the administrated MSCs produce a large amount of EVs by
incorporating adiponectin into the cells via T-cadherin expressed on the membrane surface,
the action of EVs on the heart improves the cardiac function of the heart failure model.
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cellular damage [219–221]. However, since no such effect was observed in fibroblast-de-
rived EVs, it was assumed that the cytoprotective action is a specific property of MSC-
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tablished from various fetal tissues, MSC-derived EVs have been shown to have thera-
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Figure 2. Regeneration effects of MSC-derived extracellular vesicles (MSC-EVs). MSC-EVs have
different sources, including adipocytes, bone marrow, umbilical cord, pulp, etc. These MSC-EVs
represent regenerative effects for heart, lung, kidney, neuron, etc. Further, MSC promotes secretion
of EVs via interaction between T-cadherin receptor on the MSC and adiponectin derived from
adipocytes, leading to regeneration effects of injured tissues.

4. Therapy via MSC-Derived EVs as a Novel DDS System

Recent studies have shown that EVs secreted by MSCs have similar therapeutic effects
on MSCs because some of the paracrine effects of MSCs are derived from exosomes, and
most of the therapeutic effects of MSCs are responsible for the paracrine effects of EVs in
certain diseases via miRNAs, mRNAs, and proteins as functional molecules [212–215].

As for the therapeutic effect of EVs secreted by MSCs, first, studies using animals
modeled for acute renal disease showed that MSCs acted paraclinically against living
epithelial cells to support tissue regeneration, in which paracrine effect plays a vital role via
EV-encapsulated mRNAs involved in transcriptional regulation, proliferation, and immune
regulation to induce tissue regeneration [216–218]. Furthermore, the in vitro signaling
pathway to induce apoptosis and suppress the proliferation of renal epithelial cells was
inactivated in the presence of EVs released by MSCs, leading to protection against cellular
damage [219–221]. However, since no such effect was observed in fibroblast-derived
EVs, it was assumed that the cytoprotective action is a specific property of MSC-derived
EVs. Additionally, MSCs, which are induced to differentiate from ES cells or established
from various fetal tissues, MSC-derived EVs have been shown to have therapeutic effects
on myocardial damage in a very short time in animal models with myocardial ischemia–
reperfusion disorder [222,223]. This was achieved through the delivery of proteins retaining
functionality within the EVs to cardiomyocytes efficiently and rapidly, leading to reduced
oxidative stress and promoted phosphorylation of the PI3K/Akt pathway; where the
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equivalent therapeutic effect of the EVs was indicated as an amount of 1/10 or less of the EV-
depleted supernatant from the MSC culture [224–227]. In addition, the increased expression
of microRNAs secreted by MSCs had therapeutic effects via the secretion of neurotrophic
factors and angiogenesis-promoting factors, and the EVs ameliorate neuropathy in stroke
animal models through neurite outgrowth, where administration of MSC-derived EVs
intravenously had the same effects as that of cell administration [228,229]. Furthermore, in
the Alzheimer’s disease (AD) model, neutral endopeptidase (NEP), which is the enzyme
responsible for the rate-determining process of amyloid-beta (Aβ) in the brain of patients
with this disorder and excessive accumulation of Aβ is one of the major characteristics of
the pathophysiology of AD, was higher in adipose-derived MSCs than in bone-marrow-
derived MSCs and contributed to the higher efficiency of Aβ degradation [230–232]. In
addition, the NEP protein is also present in EVs from adipose-derived MSCs and exhibits
enzymatic activity, leading to intracellular Aβ degradation via uptake by neural cells [233].
Moreover, in a mouse model of hypoxia-induced pulmonary hypertension, MSC-derived
EVs exerted therapeutic effects by suppressing inflammation through the inhibition of the
signal transducer and activator of transcription 3 (STAT3) pathway in the lung [234]. Here,
the EVs suppressed the upregulation of the hypoxia-inducible miR-17 superfamily and
induced the upregulation of the growth-inhibitory miR-204, and no therapeutic effects were
observed in the EV-depleted supernatant. Additionally, in a mouse model of acute lung
injury, keratinocyte growth factor (KGF) mRNA, which is important for the therapeutic
effect of EVs on lung disorders due to its abundance within the EVs and the paracrine
effect of MSCs, is partially responsible for the healing effect on lung injury [235]. In
addition, the administration of MSCs into the lungs of lipopolysaccharide-induced acute
lung injury mice restored the proliferative capacity of alveolar epithelial cells and lung
function through mitochondrial transmission [236]. Further, MSC-derived EVs have been
reported to have opposite effects, i.e., tumor progression via tumor microenvironment
remodeling and tumor suppression via regulation of immune responses and intercellular
signaling. However, it has been suggested that they will be safe carriers of antitumor
drugs [237–239].

Thus, although substantial evidence is available on the usefulness of the therapeu-
tic effects of MSC-derived EVs, some important challenges remain. The basic molecular
mechanisms of EVs, such as secretion, uptake by the receiving cell, sorting of their con-
tents, and biogenesis, are still unclear. Various regulatory molecules in multiple molecular
pathways have been identified as the mechanism of EV synthesis and secretion [240–244].
These pathways include the endosomal-sorting complex required for transport (ESCRT)
involved in membrane vesicle formation, neutral sphingomyelinase 2/sphingomyelin phos-
phodiesterase 3 (nSMase2/Smpd3) that is the rate-determining enzyme for a membrane
component ceramide synthesis, members of the Rab GTPase family involved in intracel-
lular membrane vesicle transport, and heparanase that is a heparan sulfate degrading
enzyme [245–248]. However, the degree of contribution of these regulatory molecules to
EV biogenesis and secretion pathways varies greatly depending on the cell type. Therefore,
to investigate the function of EVs in a cell, it is difficult to predict which pathways or
molecules should be suppressed, even if an attempt is made to inhibit the secretion of
EVs in target cells. Little is known about the mechanism of EV uptake into cells by the
nonimmune cell system, except for the uptake of EVs in immune cells by phagocytosis.
Another challenge is the unification of experimental techniques in EV research, especially in
the isolation of EVs, including the most common techniques ultracentrifugation, separation
based on molecular size via gel chromatography, and extraction reagents, which is the root
of this research. It is unclear whether the EV fractions recovered by using different isolation
methods show bioequivalence.

When considering the prospects for treatment strategies using MSC-derived EVs, first,
a stable supply of MSC-derived EVs is necessary to identify suitable molecular pathways
and appropriate management techniques to increase the yield of MSC-derived EVs while
retaining their original therapeutic effects. Second, ensuring sufficient capacity for clinical
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application, if the therapeutic effect of MSC-derived EVs can be amplified, the therapeutic
applicability will be greatly increased. A possible method to resolve this issue is to over-
express therapeutic molecules, such as mRNAs, miRNAs, or proteins, in MSC-derived
EVs and produce a large number of EVs encapsulating these molecules. In fact, it has
been shown that cells overexpressing certain miRNAs secrete EVs containing abundant
miRNAs [249–251]. In addition, an approach that completely improves the therapeutic
effect of MSC-derived EVs would be to produce a large number of EVs containing an excess
of molecules by inducing a specific stimulus to the MSCs with the target therapeutic effects.
Third, DDS techniques need to be developed to specifically deliver the MSC-derived EVs
to target tissues. Since MSC-derived EVs have not been characterized completely, there is
an unexpected risk from systemic administration via the intravenous route. For example,
given that MSC-derived EVs can promote the repair of damaged tissues, the risk of carcino-
genesis due to delivery to nontarget tissues cannot be ruled out. At present, modification
of the surface of EVs seems promising for tissue-specific DDS through the expression
of receptor proteins that exhibit tissue-specific expression using genetic recombination
technology [252,253]. Thus, a new DDS with high specificity and delivery efficiency can
be developed using MSC-derived EVs to introduce functional molecules with therapeutic
effects. In contrast, since the complete biological action of EVs is not completely understood
yet, the risk of side effects is a major concern. Bone-marrow-derived EVs induce dormancy
of tumor cells and are involved in long-term recurrence, while EV-encapsulated miRNAs
secreted by tumor cells cause intratumoral angiogenesis and promote metastasis in the
brain through disruption of the blood–brain barrier [254–256].

5. Clinical Use of MSC-EVs

More than 500 clinical research on MSC is underway in the world for various target
diseases, including rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease,
myocardial infarction, Parkinson’s disease, spinal cord injury, osteoarthritis, and graft-
versus-host disease (GVHD) [257–266]. MSCs other than those derived from bone marrow
are also being clinically applied. Physician-led clinical trials such as amniotic-membrane- or
umbilical-cord-derived MSC treatments for Crohn’s disease or acute GVHD are underway.
In addition, a study of the induced pluripotent stem (iPS)-cell-derived MSCs for acute
GVHD has begun. Further, bone-marrow-derived MSC Temcel®indication expanded to
epidermolysis bullosa. Additionally, a clinical trial has begun in which pulp-derived MSCs
are administrated for acute cerebral infarction. Since MSCs are slightly different in nature
depending on the organization from which they are sourced, it is important to select a
cell source suitable for specific diseases and therapeutic effects. Moreover, it has been
clarified that the secreted EV plays an important role when MSC exerts various actions.
Additionally, it has also been reported that administration of EVs secreted by cultured
bone-marrow-derived MSC to patients with refractory GVHD resulted in improvement in
symptoms. Furthermore, clinical trials of MSC-derived exosomes are currently underway
for diabetes mellitus type 1, cerebrovascular disorders, coronavirus, Alzheimer's disease,
and osteoarthritis (Table 1).

Table 1. Clinical trials of MSC-derived Exosomes.

# NCT Number Condition or Disease Phase Sponsor Brief Summary

1 NCT02138331 Diabetes Mellitus
Type 1

Phase 2,
Phase 3

General Committee of
Teaching Hospitals

and Institutes, Egypt

Effect of Microvesicles and Exosomes
Therapy on β-cell Mass in Type I

Diabetes Mellitus

2 NCT03384433 Cerebrovascular
Disorders

Phase 1,
Phase 2

Isfahan University of
Medical Sciences, Iran

Allogenic Mesenchymal Stem Cell
Derived Exosome in Patients With

Acute Ischemic Stroke
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Table 1. Cont.

# NCT Number Condition or Disease Phase Sponsor Brief Summary

3 NCT03437759 Macular Holes Early
Phase 1

Tianjin Medical
University, China

To assess the safety and efficacy of
mesenchymal stem cells (MSCs) and
MSC-derived exosomes (MSC-Exos)
for promoting healing of large and

refractory macular holes (MHs).

4 NCT03608631 Metastatic Pancreatic
Adenocarcinoma Phase 1 M.D. Anderson Cancer

Center, US

iExosomes in Treating Participants
With Metastatic Pancreas Cancer

With KrasG12D Mutation

5 NCT04173650 Dystrophic
Epidermolysis Bullosa

Phase 1,
Phase 2

Aegle Therapeutics,
US

MSC EVs in Dystrophic
Epidermolysis Bullosa

6 NCT04276987 Coronavirus Phase 1 Ruijin Hospital, China

A Pilot Clinical Study on Inhalation
of Mesenchymal Stem Cells

Exosomes Treating Severe Novel
Coronavirus Pneumonia

7 NCT04313647 Healthy Phase 1 Ruijin Hospital, China

A Tolerance Clinical Study on
Aerosol Inhalation of Mesenchymal

Stem Cells Exosomes In Healthy
Volunteers

8 NCT04388982 Alzheimer Disease Phase 1,
Phase 2 Ruijin Hospital, China

Safety and the Efficacy Evaluation of
Allogenic Adipose MSC-Exos in

Patients With Alzheimer's Disease

9 NCT04491240 SARS-CoV-2
PNEUMONIA Phase 2 State-Financed Health

Facility, Russia

Evaluation of Safety and Efficiency of
Method of Exosome Inhalation in

SARS-CoV-2 Associated Pneumonia

10 NCT04602442 SARS-CoV-2
PNEUMONIA Phase 2 State-Financed Health

Facility, Russia

Safety and Efficiency of Method of
Exosome Inhalation in COVID-19

Associated Pneumonia

11 NCT04747574 SARS-CoV-2 Phase 1 Tel-Aviv Sourasky
Medical Center, Israel

Evaluation of the Safety of
CD24-Exosomes in Patients With

COVID-19 Infection

12 NCT05060107 Osteoarthritis, Knee Phase 1 Universidad de los
Andes, Chile

Intra-articular Injection of
MSC-derived Exosomes in Knee

Osteoarthritis

13 NCT05216562 SARS-CoV2 Infection Phase 2

Dermama
Bioteknologi

Laboratorium,
Indonesia

Efficacy and Safety of
EXOSOME-MSC Therapy to Reduce

Hyper-inflammation In Moderate
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6. Conclusions

MSC-derived EVs treated with the cytokines upregulate the expression of the im-
munomodulatory molecules, including miRNAs and proteins, involved in the immunoreg-
ulatory pathways. This plays an important role in tissue repair of chronic damage through
the concentration of active ingredients in the contents and efficient migration of the
macrophages incorporated in the MSC-derived EVs to the damage site due to the re-
moval of dead cells and improvement of fibrosis. These therapeutic effects are equal to or
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higher than those of the MSCs themselves. These reports suggest that the administration of
MSC-derived EVs is a useful novel cell-free therapeutic strategy.
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