Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models
Abstract
:1. Introduction
2. Results
2.1. Identified DEGs Belonged to ECM Remodeling and Cell Adhesion Pathways
2.2. Selection of DEGs Potentially Involved in Sarcoids Occurrence
2.3. Expression Patterns of Selected DEGs Evaluated Using qPCR
2.3.1. The Genes Up-Regulated in Sarcoids and BPV1-E1^E4 Transgenic Dermal Fibroblast Cell Lines
2.3.2. The Genes Down-Regulated in Sarcoids and BPV1-E1^E4 Transgenic Dermal Fibroblast Cell Lines
2.4. The Functional Enrichment Analysis of the Obtained Network
3. Discussion
4. Materials and Methods
4.1. The Use of High-Throughput Data to Establish Genes Involved in ECM Remodeling and Cell Adhesion Pathways
4.2. Collection of Tissue Samples
4.3. Establishment of Primary Cultures and Nucleofection of Equine ACFCs
4.4. Gene Expression Measurements Using Real-Time PCR Approach
5. Conclusions and Future Goals
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACFC | Adult cutaneous fibroblast cell |
BMP | Bone morphogenetic protein |
BPV | Bovine papillomavirus |
CADM1 | Cell adhesion molecule |
CD99 | Cluster of differentiation 99 surface antigen |
CLDN | Claudin |
CNTNAP | Contactin-associated protein |
CoA | Coenzyme A |
COL | Collagen |
DEG | Differentially expressed gene |
ECM | Extracellular matrix |
FC | Fold change |
FDR | False discovery rate |
FLNA | Filamin A |
FN1 | Fibronectin |
GO | Gene ontology |
HCC | Human hepatocellular cancer |
ITGA | Integrin subunit α |
ITGB | Integrin subunit β |
JAM | Junctional adhesion molecule |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LAMA | Laminin subunit α |
LTBP | Latent transforming growth factor-β-binding protein |
MMP | Matrix metalloproteinase |
MPZL1 | Myelin protein zero-like protein 1 |
MUFA | Monosaturated fatty acid |
NF-κB | Nuclear factor κ-light-chain-enhancer of activated B cells |
NGS | Next-generation sequencing |
PCR | Polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
SCNT | Somatic cell nuclear transfer |
SDC | Syndecan |
SFA | Saturated fatty acid |
VCAM | Vascular cell adhesion molecule |
VEGF | Vascular endothelial growth factor |
References
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Järveläinen, H.; Sainio, A.; Koulu, M.; Wight, T.N.; Penttinen, R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol. Rev. 2009, 61, 198–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knottenbelt, D.C. A Suggested Clinical Classification for the Equine Sarcoid. Clin. Tech. Equine Pract. 2005, 4, 278–295. [Google Scholar] [CrossRef]
- Yuan, Z.; Gallagher, A.; Gault, E.A.; Campo, M.S.; Nasir, L. Bovine Papillomavirus Infection in Equine Sarcoids and in Bovine Bladder Cancers. Vet. J. 2007, 174, 599–604. [Google Scholar] [CrossRef]
- Haralambus, R.; Burgstaller, J.; Klukowska-Rötzler, J.; Steinborn, R.; Buchinger, S.; Gerber, V.; Brandt, S. Intralesional Bovine Papillomavirus DNA Loads Reflect Severity of Equine Sarcoid Disease. Equine Vet. J. 2010, 42, 327–331. [Google Scholar] [CrossRef]
- Taylor, S.D.; Toth, B.; Baseler, L.J.; Charney, V.A.; Miller, M.A. Lack of Correlation Between Papillomaviral DNA in Surgical Margins and Recurrence of Equine Sarcoids. J. Equine Vet. Sci. 2014, 34, 722–725. [Google Scholar] [CrossRef]
- Nasir, L.; Reid, S.W.J. Bovine Papillomaviral Gene Expression in Equine Sarcoid Tumours. Virus Res. 1999, 61, 171–175. [Google Scholar] [CrossRef]
- Bogaert, L.; Martens, A.; Van Poucke, M.; Ducatelle, R.; De Cock, H.; Dewulf, J.; De Baere, C.; Peelman, L.; Gasthuys, F. High Prevalence of Bovine Papillomaviral DNA in the Normal Skin of Equine Sarcoid-Affected and Healthy Horses. Vet. Microbiol. 2008, 129, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.Q.; Gault, E.A.; Gobeil, P.; Nixon, C.; Campo, M.S.; Nasir, L. Establishment and Characterization of Equine Fibroblast Cell Lines Transformed in Vivo and in Vitro by BPV-1: Model Systems for Equine Sarcoids. Virology 2008, 373, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Bogaert, L.; Martens, A.; Kast, W.M.; Van Marck, E.; De Cock, H. Bovine Papillomavirus DNA Can Be Detected in Keratinocytes of Equine Sarcoid Tumors. Vet. Microbiol. 2010, 146, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Rector, A.; Van Ranst, M. Animal Papillomaviruses. Virology 2013, 445, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Bogaert, L.; Martens, A.; De Baere, C.; Gasthuys, F. Detection of Bovine Papillomavirus DNA on the Normal Skin and in the Habitual Surroundings of Horses with and without Equine Sarcoids. Res. Vet. Sci. 2005, 79, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Martano, M.; Corteggio, A.; Restucci, B.; De Biase, M.E.; Borzacchiello, G.; Maiolino, P. Extracellular Matrix Remodeling in Equine Sarcoid: An Immunohistochemical and Molecular Study. BMC Vet. Res. 2016, 12, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KEGG PATHWAY Database. Available online: https://www.genome.jp/kegg/pathway.html (accessed on 16 May 2022).
- Venny 2.1.0. Available online: https://bioinfogp.cnb.csic.es/tools/venny/ (accessed on 16 May 2022).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 18 May 2022).
- STRING: Functional Protein Association Networks. Available online: https://string-db.org/ (accessed on 18 May 2022).
- To, W.S.; Midwood, K.S. Plasma and Cellular Fibronectin: Distinct and Independent Functions during Tissue Repair. Fibrogenesis Tissue Repair 2011, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.; Rybarczyk, B.J.; Odrljin, T.M.; Hocking, D.C.; Sottile, J.; Simpson-Haidaris, P.J. The Incorporation of Fibrinogen into Extracellular Matrix Is Dependent on Active Assembly of a Fibronectin Matrix. J. Cell Sci. 2002, 115, 609–617. [Google Scholar] [CrossRef]
- Sottile, J.; Hocking, D.C. Fibronectin Polymerization Regulates the Composition and Stability of Extracellular Matrix Fibrils and Cell-Matrix Adhesions. Mol. Biol. Cell 2002, 13, 3546–3559. [Google Scholar] [CrossRef] [Green Version]
- Dallas, S.L.; Sivakumar, P.; Jones, C.J.P.; Chen, Q.; Peters, D.M.; Mosher, D.F.; Humphries, M.J.; Kielty, C.M. Fibronectin Regulates Latent Transforming Growth Factor-β (TGFβ) by Controlling Matrix Assembly of Latent TGFβ-Binding Protein-1. J. Biol. Chem. 2005, 280, 18871–18880. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Yang, C.-H.; Cheng, L.-H.; Chang, W.-T.; Lin, Y.-R.; Cheng, H.-C. Fibronectin in Cancer: Friend or Foe. Cells 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, C.; Ye, Y.; Wang, Z.; He, Y.; Li, Y.; Mao, H. High Expression of Fibronectin 1 Indicates Poor Prognosis in Gastric Cancer. Oncol. Lett. 2020, 19, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.-M.; Onodera, Y.; Bissell, M.J.; Park, C.C. Breast Cancer Cells in Three-Dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin Alpha5beta1 and Fibronectin. Cancer Res. 2010, 70, 5238–5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Q.S.; Huang, T.; Li, L.F.; Shen, Z.B.; Xue, W.H.; Zhao, J. Over-Expression and Prognostic Significance of FN1, Correlating With Immune Infiltrates in Thyroid Cancer. Front. Med. 2022, 8, 812278. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Ma, W.; Yang, W.; Hao, L.; Zhang, S.; Fang, K.; Hu, C.; Zhang, Q.; Shi, Z.; Zhang, W.; et al. Identification of C3 and FN1 as Potential Biomarkers Associated with Progression and Prognosis for Clear Cell Renal Cell Carcinoma. BMC Cancer 2021, 21, 1135. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Huo, Q.; Yuan, Q.; Xu, C. Fibronectin 1: A Potential Biomarker for Ovarian Cancer. Dis. Markers 2021, 2021, 5561651. [Google Scholar] [CrossRef] [PubMed]
- Soikkeli, J.; Podlasz, P.; Yin, M.; Nummela, P.; Jahkola, T.; Virolainen, S.; Krogerus, L.; Heikkilä, P.; von Smitten, K.; Saksela, O.; et al. Metastatic Outgrowth Encompasses COL-I, FN1, and POSTN up-Regulation and Assembly to Fibrillar Networks Regulating Cell Adhesion, Migration, and Growth. Am. J. Pathol. 2010, 177, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, L.; Huang, J.; Cai, R.; Zhu, X.; Liu, F.; Wang, Q.; Zhang, J.; Zheng, Y. High Expression of Fibronectin 1 Suppresses Apoptosis through the NF-κB Pathway and Is Associated with Migration in Nasopharyngeal Carcinoma. Am. J. Transl. Res. 2017, 9, 4502–4511. [Google Scholar]
- Podstawski, P.; Ropka-Molik, K.; Semik-Gurgul, E.; Samiec, M.; Skrzyszowska, M.; Podstawski, Z.; Szmatoła, T.; Witkowski, M.; Pawlina-Tyszko, K. Assessment of BPV-1 Mediated Matrix Metalloproteinase Genes Deregulation in the In Vivo and In Vitro Models Designed to Explore Molecular Nature of Equine Sarcoids. Cells 2022, 11, 1268. [Google Scholar] [CrossRef]
- Pasello, M.; Manara, M.C.; Scotlandi, K. CD99 at the Crossroads of Physiology and Pathology. J. Cell Commun. Signal. 2018, 12, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Seol, H.J.; Chang, J.H.; Yamamoto, J.; Romagnuolo, R.; Suh, Y.; Weeks, A.; Agnihotri, S.; Smith, C.A.; Rutka, J.T. Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells. Genes Cancer 2012, 3, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Manara, M.C.; Bernard, G.; Lollini, P.-L.; Nanni, P.; Zuntini, M.; Landuzzi, L.; Benini, S.; Lattanzi, G.; Sciandra, M.; Serra, M.; et al. CD99 Acts as an Oncosuppressor in Osteosarcoma. Mol. Biol. Cell 2006, 17, 1910–1921. [Google Scholar] [CrossRef]
- Mateos-Quiros, C.M.; Garrido-Jimenez, S.; Álvarez-Hernán, G.; Diaz-Chamorro, S.; Barrera-Lopez, J.F.; Francisco-Morcillo, J.; Roman, A.C.; Centeno, F.; Carvajal-Gonzalez, J.M. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front. Cell Dev. Biol. 2021, 9, 622515. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, A.; Zhang, W.; Zhao, F.; Lv, J.; Lv, J.; Sun, J. Jam3 Promotes Migration and Suppresses Apoptosis of Renal Carcinoma Cell Lines. Int. J. Mol. Med. 2018, 42, 2923–2929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Garcia, M.; Rickman, R.; Sero, J.; Yuan, Y.; Bakal, C. The Cell-Cell Adhesion Protein JAM3 Determines Nuclear Deformability by Regulating Microtubule Organization. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Z.; Gao, X.H.; Chang, W.J.; Gong, H.F.; Fu, C.G.; Zhang, W.; Cao, G.W. Expression of ITGB1 Predicts Prognosis in Colorectal Cancer: A Large Prospective Study Based on Tissue Microarray. Int. J. Clin. Exp. Pathol. 2015, 8, 12802–12810. [Google Scholar] [PubMed]
- Sharma, R.; Sharma, R.; Khaket, T.P.; Dutta, C.; Chakraborty, B.; Mukherjee, T.K. Breast Cancer Metastasis: Putative Therapeutic Role of Vascular Cell Adhesion Molecule-1. Cell. Oncol. 2017, 40, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [Green Version]
- Vallat, J.-M.; Nizon, M.; Magee, A.; Isidor, B.; Magy, L.; Péréon, Y.; Richard, L.; Ouvrier, R.; Cogné, B.; Devaux, J.; et al. Contactin-Associated Protein 1 (CNTNAP1) Mutations Induce Characteristic Lesions of the Paranodal Region. J. Neuropathol. Exp. Neurol. 2016, 75, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Meng, X.; Yuan, H.; Xiao, W.; Zhang, X. M2-Polarization-Related CNTNAP1 Gene Might Be a Novel Immunotherapeutic Target and Biomarker for Clear Cell Renal Cell Carcinoma. IUBMB Life 2022, 74, 391–407. [Google Scholar] [CrossRef]
- Ascenzi, F.; De Vitis, C.; Maugeri-Saccà, M.; Napoli, C.; Ciliberto, G.; Mancini, R. SCD1, Autophagy and Cancer: Implications for Therapy. J. Exp. Clin. Cancer Res. 2021, 40, 265. [Google Scholar] [CrossRef]
- Wang, C.; Shi, M.; Ji, J.; Cai, Q.; Zhao, Q.; Jiang, J.; Liu, J.; Zhang, H.; Zhu, Z.; Zhang, J. Stearoyl-CoA Desaturase 1 (SCD1) Facilitates the Growth and Anti-Ferroptosis of Gastric Cancer Cells and Predicts Poor Prognosis of Gastric Cancer. Aging 2020, 12, 15374–15391. [Google Scholar] [CrossRef]
- Luis, G.; Godfroid, A.; Nishiumi, S.; Cimino, J.; Blacher, S.; Maquoi, E.; Wery, C.; Collignon, A.; Longuespée, R.; Montero-Ruiz, L.; et al. Tumor Resistance to Ferroptosis Driven by Stearoyl-CoA Desaturase-1 (SCD1) in Cancer Cells and Fatty Acid Biding Protein-4 (FABP4) in Tumor Microenvironment Promote Tumor Recurrence. Redox Biol. 2021, 43, 102006. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, J.; Zhang, S. Functional and Clinical Characteristics of Cell Adhesion Molecule CADM1 in Cancer. Front. Cell Dev. Biol. 2021, 9, 714298. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Mashima, E.; Saito-Sasaki, N.; Nakamura, M. The Role of Cell Adhesion Molecule 1 (CADM1) in Cutaneous Malignancies. Int. J. Mol. Sci. 2020, 21, 9732. [Google Scholar] [CrossRef] [PubMed]
- Hartsough, E.J.; Weiss, M.B.; Heilman, S.A.; Purwin, T.J.; Kugel, C.H.; Rosenbaum, S.R.; Erkes, D.A.; Tiago, M.; HooKim, K.; Chervoneva, I.; et al. CADM1 Is a TWIST1-Regulated Suppressor of Invasion and Survival. Cell Death Dis. 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.Y.; Huang, C.Y.; Hou, M.F.; Yang, Y.H.; Chang, C.H.; Huang, H.W.; Chen, C.H.; Chang, H.W. Evaluating the Performance of Fibronectin 1 (FN1), Integrin A4β1 (ITGA4), Syndecan-2 (SDC2), and Glycoprotein CD44 as the Potential Biomarkers of Oral Squamous Cell Carcinoma (OSCC). Biomarkers 2013, 18, 63–72. [Google Scholar] [CrossRef]
- Semik, E.; Gurgul, A.; Ząbek, T.; Ropka-Molik, K.; Koch, C.; Mählmann, K.; Bugno-Poniewierska, M. Transcriptome Analysis of Equine Sarcoids. Vet. Comp. Oncol. 2017, 15, 1370–1381. [Google Scholar] [CrossRef]
- DAVID Functional Annotation Bioinformatics Microarray Analysis. Available online: https://david.ncifcrf.gov/ (accessed on 18 May 2022).
- Podstawski, P.; Samiec, M.; Skrzyszowska, M.; Szmatoła, T.; Semik-Gurgul, E.; Ropka-Molik, K. The Induced Expression of BPV E4 Gene in Equine Adult Dermal Fibroblast Cells as a Potential Model of Skin Sarcoid-like Neoplasia. Int. J. Mol. Sci. 2022, 23, 1970. [Google Scholar] [CrossRef]
- Tomasek, J.J.; Haaksma, C.J.; Eddy, R.J.; Vaughan, M.B. Fibroblast Contraction Occurs on Release of Tension in Attached Collagen Lattices: Dependency on an Organized Actin Cytoskeleton and Serum. Anat. Rec. 1992, 232, 359–368. [Google Scholar] [CrossRef]
- Bogaert, L.; Van Poucke, M.; De Baere, C.; Peelman, L.; Gasthuys, F.; Martens, A. Selection of a Set of Reliable Reference Genes for Quantitative Real-Time PCR in Normal Equine Skin and in Equine Sarcoids. BMC Biotechnol. 2006, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
ECM Remodeling | Cell Adhesion | |||
---|---|---|---|---|
cell lines transfected with BPV1-E1^E4 gene and control lines | sarcoid tissue and healthy skin | cell lines transfected with BPV1-E1^E4 gene and control lines | sarcoid tissue and healthy skin | |
Collagens | COL11A1; COL1A1; COL1A2; COL4A1; COL5A1; COL5A2; COL5A3; COL6A2; COL6A3; COL6A6 | COL1A1; COL1A2; COL2A1; COL4A1; COL4A2; COL6A1; COL6A2; COL6A3; COL9A1; COL9A2; COL9A3 | - | - |
Integrins | ITGA1; ITGA11; ITGA4; ITGA6; ITGA8; ITGB1; ITGB7 | ITGA2; ITGA2B; ITGA4; ITGA5; ITGB1 | ITGA4; ITGA6; ITGA8; ITGB1; ITGB7 | ITGA4; ITGB1 |
Laminins | LAMA3; LAMA4; LAMA5; LAMC3 | LAMA2; LAMB1; LAMB3; LAMB4; LAMC1 | - | - |
Claudins | - | - | - | CLDN14; CLDN16; CLDN17; CLDN2; CLDN34; CLDN4; CLDN9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podstawski, P.; Ropka-Molik, K.; Semik-Gurgul, E.; Samiec, M.; Skrzyszowska, M.; Podstawski, Z.; Szmatoła, T.; Witkowski, M.; Pawlina-Tyszko, K. Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models. Int. J. Mol. Sci. 2022, 23, 6506. https://doi.org/10.3390/ijms23126506
Podstawski P, Ropka-Molik K, Semik-Gurgul E, Samiec M, Skrzyszowska M, Podstawski Z, Szmatoła T, Witkowski M, Pawlina-Tyszko K. Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models. International Journal of Molecular Sciences. 2022; 23(12):6506. https://doi.org/10.3390/ijms23126506
Chicago/Turabian StylePodstawski, Przemysław, Katarzyna Ropka-Molik, Ewelina Semik-Gurgul, Marcin Samiec, Maria Skrzyszowska, Zenon Podstawski, Tomasz Szmatoła, Maciej Witkowski, and Klaudia Pawlina-Tyszko. 2022. "Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models" International Journal of Molecular Sciences 23, no. 12: 6506. https://doi.org/10.3390/ijms23126506
APA StylePodstawski, P., Ropka-Molik, K., Semik-Gurgul, E., Samiec, M., Skrzyszowska, M., Podstawski, Z., Szmatoła, T., Witkowski, M., & Pawlina-Tyszko, K. (2022). Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models. International Journal of Molecular Sciences, 23(12), 6506. https://doi.org/10.3390/ijms23126506