Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform
Abstract
:1. Introduction
2. Results
2.1. PEG and Cy5 Load of PEGylated Cy5-PC-Latex
2.2. Cy5 Release Efficiency of PEGylated Cy5-PC-Latex
2.3. Hemocompatibility of the PEGylated Cy5-PC-Latex
3. Discussion
3.1. Evaluation of PEG and Cy5 Load
3.2. Drug Release Efficiency of PEGylated Latex Beads
3.3. Albumin Adsorption on PEGylated Latex Beads
3.4. General Discussion on PEGylation and Its Effect on Hemocompatibility
4. Materials and Methods
4.1. Materials
4.2. Preparation of Cy5-PC-Latex-PEG-FITC
4.3. Preparation of mPEG-Cy5-PC-Latex
4.4. Evaluation of PEG Load and Cy5 Load
4.5. Evaluation of Release Efficiency
4.6. Evaluation of Hemocompatibility via Protein Absorption Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, W.J.; Eaton, J.W.; Ugarova, T.P.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98, 1231–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.M. Biological responses to materials. Annu. Rev. Mater. Sci. 2001, 31, 81–110. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, A. Results of paclitaxel eluting balloon (DIOR) for the treatment of in-stent restenosis and small vessel at 1-year-follow-up: Insights from the Spanish registry. In Proceedings of the EuroPCR 2011, Paris, France, 18 May 2011. [Google Scholar]
- Hamm, C.W. Paclitaxel-eluting PTCA-balloon in combination with the Coroflex blue stent vs. the sirolimus coated Cypher stent in the treatment of advanced coronary artery disease; PEPCADIII. In Proceedings of the American Heart Association Scientific Sessions, Orlando, FL, USA, 14 November 2009. [Google Scholar]
- Loh, J.P.; Waksman, R. Paclitaxel Drug-Coated Balloons: A Review of Current Status and Emerging Applications in Native Coronary Artery De Novo Lesions. JACC Cadriovasc. Interv. 2012, 5, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Mulinti, P.; Brooks, J.E.; Lervick, B.; Pullan, J.E.; Brooks, A.E. Strategies to improve the hemocompatibility of biodegradable biomaterials. In Hemocompatibility of Biomaterials for Clinical Applications; Siedlecki, C.A., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 253–278. [Google Scholar]
- Corballis, N.H.; Wckramarachchi, U.; Vassiliou, V.S.; Eccleshall, S.C. Duration of dual antiplatelet therapy in elective drug-coated balloon angioplasty. Catheter Cardiovasc. Interv. 2020, 96, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Karaca, Ö.; Karasu, M.; Kobat, M.A.; Kivrak, T. Dapt review. J. Cardiol. Cardiovasc. Med. 2020, 5, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Cremers, B.; Clever, Y.; Schaffner, S.; Speck, U.; Böhm, M.; Scheller, B. Treatment of coronary in-stent restenosis with a novel paclitaxel urea coated balloon. Minerva Cardioangiol. 2010, 58, 583–588. [Google Scholar]
- Scheller, B.; Speck, U.; Romeike, B.; Schmitt, A.; Sovak, M.; Böhm, M.; Stoll, H.P. Contrast media as carriers for local drug delivery. Successful inhibition of neointimal proliferation in the porcine coronary stent model. Eur. Heart J. 2003, 24, 1462–1467. [Google Scholar] [CrossRef] [Green Version]
- Schorn, I.; Malinoff, H.; Anderson, S.; Lecy, C.; Wang, J.; Giorgianni, J.; Papandreou, G. The Lutonix® drug-coated balloon: A novel drug delivery technology for the treatment of vascular disease. Adv. Drug Deliv. Rev. 2017, 112, 78–87. [Google Scholar] [CrossRef]
- Mizuno, H.L.; Anraku, Y.; Sakuma, I.; Akagi, Y. Design of a photocleavable drug binding platform for a novel remotely controllable drug coated balloon. J. Drug Deliv. Sci. Technol. 2021, 62, 102375. [Google Scholar] [CrossRef]
- Archambault, J.G.; Brash, J.L. Protein resistant polyurethane surfaces by chemical grafting of PEO: Amino-terminated PEO as grafting reagen. Colloids Surf. B 2004, 39, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, L.D.; Sheardown, H.; Brash, J.L. In situ neutron reflectometry investigation of gold-chemisorbed PEO layers of varying chain density: Relationship of layer structure to protein resistance. Langmuir 2005, 21, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cheng, T.Y.; Shih, Y.J.; Lee, K.R.; Lai, J.Y. Biofouling-resistance expanded poly(tetrafluoroethylene) membrane with a hydrogel-like layer of surface-immobilized poly(ethylene glycol) methacrylate for human plasma protein repulsions. J. Membr. Sci. 2008, 323, 77–84. [Google Scholar] [CrossRef]
- Yerasi, C.; Case, B.C.; Forrestal, B.J.; Torguson, R.; Weintraub, W.S.; Garcia-Garcia, H.M.; Waksman, R. Drug-Coated Balloon for De Novo Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Caridol. 2020, 75, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Kolodgie, F.D.; Virmani, R.; Finn, A.V. IN. PACT Admiral drug-coated balloons in peripheral artery disease: Current perspectives. Med. Devices (Auckl.) 2019, 12, 53–64. [Google Scholar] [PubMed] [Green Version]
- Gongora, C.A.; Shibuya, M.; Wessler, J.D.; McGregor, J.; Tellez, A.; Cheng, Y.; Conditt, G.B.; Kaluza, G.L.; Granada, J.F. Impact of paclitaxel dose on tissue pharmacokinetics and vascular healing: A comparative drug-coated balloon study in the familial hypercholesterolemic swine model of superficial femoral in-stent restenosis. JACC Cardiovasc. Interv. 2015, 8, 1115–1123. [Google Scholar] [CrossRef] [Green Version]
- Wöhrle, J.; Zadura, M.; Möbius-Winkler, S.; Leschke, M.; Opitx, C.; Ahmed, W.; Barragan, P.; Simon, J.-P.; Cassel, G.; Scheller, B. Clinical results of SeQuent Please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J. Am. Coll. Cardiol. 2012, 60, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Clever, Y.P.; Peters, D.; Calisse, J.; Bettink, S.; Berg, M.-C.; Sperling, C.; Stoever, M.; Cremers, B.; Kelsch, B.; Böhm, M.; et al. Novel sirolimus-coated balloon catheter in vivo evaluation in a porcine coronary model. Circ. Cardiovasc. Interv. 2016, 9, e003543. [Google Scholar] [CrossRef]
- Ahmad, W.A.W.A.; Nuruddin, A.A.; Kader, M.A.S.K.A.; Ong, T.K.; Liew, H.B.; Ali, R.M.; Zuhdi, A.S.M.; Ismail, M.D.; Yusof, A.K.M.; Schwenke, C.; et al. Treatment of coronary de novo lesions by a sirolimus- or paclitaxel-coated balloon. JACC Cardiovasc. Interv. 2022, 15, 770–779. [Google Scholar] [CrossRef]
- Granada, J.F.; Milewski, K.; Zhao, H.; Stankus, J.J.; Tellez, A.; Aboodi, M.S.; Kaluza, G.L.; Krueger, C.G.; Virmani, R.; Schwartz, L.B.; et al. Vascular response to Zotarolimus-coated balloons in injured superficial femoral arteries of the familiar hypercholesterolemic swine. Cir. Cardiovasc. Interv. 2011, 4, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Cremers, B.; Toner, J.L.; Schwartz, L.B.; Von Oepen, R.; Speck, U.; Kaufels, N.; Clever, Y.P.; Mahnkopf, D.; Böhm, M.; Scheller, B. Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin. Res. Cardiol. 2012, 101, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Labouta, H.I.; Gomez, J.; Sarsons, C.; Nguyen, T.; Kennard, J.; Ngo, W.; Terefe, K.; Iragorri, N.; Lai, P.; Rinker, K.; et al. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Adv. 2018, 8, 7697–7708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parray, Z.A.; Hassan, M.I.; Ahman, F.; Islam, A. Amphiphilic nature of polyethylene glycols and their role in medical research. Polym. Test. 2020, 82, 106316. [Google Scholar] [CrossRef]
- Cherdhirankorn, T.; Best, A.; Koynov, K.; Peneva, K.; Muellen, K.; Fytas, G. Diffusion in Polymer Solutions Studied by Fluorescence Correlation Spectroscopy. J. Phys. Chem. B 2009, 113, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- Bachir, Z.A.; Huang, Y.K.; He, M.Y.; Huang, L.; Hou, X.Y.; Chen, R.J.; Gao, F. Effects of PEG surface density and chain length on the pharmacokinetics and biodistribution of methotrexate-loaded chitosan nanoparticles. Int. J. Nanomed. 2018, 13, 5657–5671. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, H.L.; Anraku, Y.; Sakuma, I.; Akagi, Y. Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform. Int. J. Mol. Sci. 2022, 23, 6686. https://doi.org/10.3390/ijms23126686
Mizuno HL, Anraku Y, Sakuma I, Akagi Y. Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform. International Journal of Molecular Sciences. 2022; 23(12):6686. https://doi.org/10.3390/ijms23126686
Chicago/Turabian StyleMizuno, Hayato L., Yasutaka Anraku, Ichiro Sakuma, and Yuki Akagi. 2022. "Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform" International Journal of Molecular Sciences 23, no. 12: 6686. https://doi.org/10.3390/ijms23126686
APA StyleMizuno, H. L., Anraku, Y., Sakuma, I., & Akagi, Y. (2022). Effect of PEGylation on the Drug Release Performance and Hemocompatibility of Photoresponsive Drug-Loading Platform. International Journal of Molecular Sciences, 23(12), 6686. https://doi.org/10.3390/ijms23126686